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Abstract

Computer algebra systems (CASs) have become an important computational tool
in the last decade. General purpose CASs, which are designed to solve a wide variety of
problems, have gained special prominence. In this paper, the capabilities of six major
general purpose CASs (Axiom, Derive, Macsyma, Maple, Mathematica and Reduce)
are reviewed on 131 short problems covering a broad range of (primarily) symbolic
mathematics.

A demo was developed for each CAS, run and the results evaluated. Problems were
graded in terms of whether it was easy or difficult or possible to produce an answer
and if an answer was produced, whether it was correct. It is the author’s hope that
this review will encourage the development of a comprehensive CAS test suite.

Presented below is a summary of 131 mathematical problems (primarily symbolic) that
were given to the six general purpose computer algebra systems (CASs) listed in Table 1.
The CAS versions tested were those that were available to the author and were typically the
newest and most comprehensive versions that were generally available at the time of this
evaluation.

The notations used in the summary are explained in Table 2. A demo was developed for
each CAS, run and the results evaluated. Problems easily and successfully solved are marked
by a e. Those that required more effort than a mere ‘simplify’ (sometimes considerably more
effort) or the results could not be completely simplified or were incomplete in some way are
marked with an o. If the problem could not be solved by the CAS, the corresponding entry
in the summary table was left blank. Incorrect answers are indicated by an Xx.

Problem descriptions are abbreviated due to space limitations with this format and may
not always be complete. However, the complete demos and their output are readily obtained
by anonymous FTP from math.unm.edu. The directory pub/cas will contain current versions
of these and other potentially interesting CAS related files.

The philosophy that I followed in making these comparisons included several facets. The
choice of problems was deliberately broad as a primary goal was to provide a useful indication
of the breadth of coverage of each general purpose system. A secondary goal was to give a



feeling of the depth of coverage provided for certain classes of problems. This aspect of the
survey is certainly incomplete as right now some areas of mathematics are covered by a more
interesting range of examples than others (e.g., the problems for matrix algebra, products
and limits currently are all quite easy). It is my intention to remedy this unevenness in a
future version of this review.

The primary emphasis of this review is on exact, symbolic mathematics, although a few
approximate, numerical problems are also included. I have totally ignored for the time being
issues of graphics, language design, user interface and computational speed, all of which are
important as well. The six general purpose CASs examined can, with varying amounts of
user assistance, solve a great variety of problems. I have tried to emphasize those problems
that ideally should involve minimal user intervention.

If it was necessary to tell a system most of the steps to solve a problem, I did not consider
this a solution by the CAS.! Poorly documented methods and results were also judged
unfavorably. If only ‘some’ user intervention was required, this was acknowledged by an o.
If at most minimal aid was provided by the user, only then was a e rewarded.? Packages not
provided with the standard distribution of a CAS were excluded from consideration. Many
systems do, however, have some quite nice user packages that are only available (easily) on
the Internet/via email or must be purchased separately.

Some final comments: in order to perform this review, it was necessary to dig deeply into
each of the CASs’ reference manuals. None of them were particularly easy to use without
a great deal of study and unfortunately, the indices in general were of fairly limited utility
(Mathematica’s was the best of the lot). Other people have also reviewed the software in
or made comparisons of multiple CASs, emphasizing different aspects than was done here.
For example, see [Har91, Her94, Sim92|. In summary, the general purpose CASs surveyed
here are all quite powerful, each with its own particular strengths and weaknesses. This
review should only be used as a guide, not as a definitive basis for comparison. Comments
are welcome and additional problems are actively solicited.
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Axiom, triangular system of two ODEs example [Rob93])
statistics examples)
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readability)

Footnotes to the Table of Problems

biased rather than unbiased estimator used (division by n rather than by n — 1)
pattern matching is primitive

evalc is correct, but simplify is incorrect

this happens automatically!

produces complete general solution!

one of the answers produced is incorrect

numerical evaluation of { worked only with big floats in this version

lack of documentation on the answer that is returned

incorrect answer produced with noPole option

ignores assumptions on a

limiting the order to 0 or 1 (Maple) or 1 or 2 (Mathematica) produces errors
answer contains an unevaluated (but obvious) limit

requires some user sophistication to solve

claims that this is a partial differential equation!

produces only the trivial solution

need to be careful about the statement order

definition is ‘hidden’ within one of the standard packages



Axi Axiom 1.2 March 17, 1993
Der Derive XM Version 3 | 1994

Mac | Macsyma 419.0 1994
Mpl | Maple V Release 3 1994
Mma | Mathematica 2.2 1993

Red Reduce 3.5 15-0Oct-93

@]

laplace( f(¢), t — s)
N(...{,k})

(operator)

pade(f(z), = = o)

poly

power_series(f(z), z = a)
Re 2

(real)

rectform(f(2))

(rewrite rules)

solve(z = f(y), y = a, series)

stdev(...)
taylor(f(z), z = a)
((n)

Table 1 CASs used.

success! (hurrah)

success, but indirectly, incomplete or unsimplified
could not do the problem (boo)

produced the wrong answer (hiss)

partial success, but also partially incorrect (hmmm)
yields

then

previous result

derivative operator

differentiate

factor over the algebraic field extension «
imaginary part of z

Bessel function of the first kind of order u
covariant derivative of the Riemann curvature tensor
Laplace transform of f(t) under ¢t — s
numerically evaluate (to k-digit precision)

define as an operator

Pade approximation of f(z) about z = a
polynomial

general power series formula of f(z) about z = a
real part of z

produce an explicitly real solution

rectangular form of the complex function f(z)
using user supplied rewrite rules

solve for y(z) about y = a using series reversion
unbiased sample standard deviation

truncated Taylor series of f(z) about z = a
Riemann zeta function

Table 2 Notations used.



# PROBLEM Axi | Der | Mac | Mpl | Mma | Red
1| 50! ° ° ° o ° °
2 | factor(50!) = 2473%2512781113% . . - 47 ) ) 3 3 . 0
3 % 4+ -4 11—0 = % ° ° ° ° ° °
4 N(e”\/ﬁ, 50) ~ 262537412640768744.0 o o o o o o
5| N(Jo(1 +12)) ~ 0.04158 + 0.24740¢ o o o o o
6 N(%) = 0.142857 o
7 | continued fraction of 3.1415926535 . . ° °
8 \/2\/§ +4=14++3 ° ° ° °
914433+ =3+2 o | o | e

10 | 200 =3 = > . ° 0 0 °

11 | stdev([1,2,3,4,5]) = /3 ol | o . .

12 | hypothesis testing: ¢ distribution x 1 0 0 °

13 | hypothesis testing: normal distribution ol 0 o °

14 x;il_;l—4 = % ° ° ° ° ° °

15 eij;_:l = /2 — 1 ° . . o °

16 | expand((z + 1)**) — diff — factor ) 3 3 3 . .

17 | factor(z'® — 1) o o o o . .

18 | factor(z* — 3z + 1, RootOf(¢? — ¢ — 1)) . . o

19 | factor(z* — 3z* + 1) mod 5 . o o . .

20 % = 953? — x% + ﬁ 0 ° ° ° ° °

21 | assume(z >y, y > 2,z > z); is(z = z) o X

22 | assume(z >y, y > 0); is(2z* > 2y?) o o

23 | solve(jlz — 1| >2) =z < —lorz >3 ) .

24 | solve(expand((z —1)---(z — 5)) < 0) . 3

25 | €232 — cos’ ¢ — 3sin’z  (or similar) 0 o o o o

26 % = 2cos2z — 1 0 ° ° ° °

27 | <32 — cos?¢ — 3sin’z  (rewrite rules) o o 02 o o

28 | v/997 — (9973)1/6 =0 ° ° ° ° ° o

29 | v/999983 — (999983%)'/6 = 0 . . . . o

30 | (213 4 41/3)3 — (213 4+ 41/%) —6 =0 . . . . .

31 log(tan(%a: + %)) — sinh_l(tan z)=0 o o

32 | derivative of above is 0 & above at 0 is 0 0 0 . ° o

33 VS E) . . . .

log 7 vegat




# PROBLEM Axi | Der | Mac | Mpl | Mma | Red
34 | (dr + 4y/fr + 1)TF (24/r + 1)7771 - o | o o

35 | rectform(log(3 4 41)) = log5 + itan™' 2 0 o o o o

36 | rectform(tan(z + 1y)) o o o o o

37 \/xj”j \/_ 7 /Y 0 o o o 0 X
38 - = 0 (z is not real negative) X o o o o X
39 | Ve —e?=0 (—m<Imz<m) o . 3 X o X
40 e% = —e*  (principal value) o o R3 o X
41 | loge” = 2z (-7 <Imz <) o o X o o X
42 | loge'” = (10 —47)i  (principal value) o o o

43 | (xy)'/" —z'/"y'/" = 0 (Re z,Rey > 0) . o o o X
44 | tan"'(tanz) = z (-5 <z<I) o o o ° °
45 | tan~'(tan4) = 4 — 7  (principal value) o o o o

46 % +1 = % +1=1 ° ° ° X X
47 | solve(3z® — 18z? + 33z — 19 =0) (real) ot . 3 . ot
48 | solve(z* +z° + z* +z+1 = 0) 0 . . o o o
49 | verify a solution of the above . . . . ° °
50 | solve(e*” +2¢e* + 1 = z, z) 3 3 3 3 . o’
51 | solve((z + 1)(s11r12 z +1)% cos® 3z = 0) o o o o o?
52 | solve(e® = 1) = z = 0] + n277] ) ) ) ) 3 o’
53 | solve(sinz = cosz) = z = N [+ nn] . . . 0
54 | solve(tanz = 1) = = = § [+ n7] ) ) ) ) 3 o’
55 | solve(sinz = tanz) = 0,0[ + n7, + n27] o 0 . . 0
56 soIve(\/m—az—Z) =z =1} X o 0 ) X
57 | solve(e?™ =e™*) = z = {—1,2} 3 3 o

58 soIve(\/m = log V) =z ={1,e*} ®8 .

59 | solve(|lz — 1| =2) = z = {-1,3} 3 3 3 .
60 | solve a 3 x 3 dependent linear system . . . . ° °
61 | solve a system of nonlinear equations . . . ° °
62 | invert a 2 X 2 symbolic matrix . . . . ° °
63 | det(4 x 4 Vandermonde matrix) o o o o o o
64 | eigenvalues of a 3 x 3 integer matrix ) o ) ) o o
65 | tensor covariant derivative .

66 Kih]‘ku + K/LM + thg e 0 (Bianchi) o




# PROBLEM Axi | Der | Mac | Mpl | Mma | Red
67 | Yr_ k® = W ° ° ° ° ° °
68 | St (x + ) = 5 +¢(3) I L

69 | N(Xi2, (% + &) ~ 2.84699 o | o | o .

70 | TTizy & = n! o ) o o

71 | lim, (1 + ) = e; lim,_ m = % ° ° ° ° . °
72 %y(m(t)) = 3732’ (Cfl—f) + %% o o o o o

3| f 1,314_2 dz — diff — simplify o o o o o o
4| J m dz (a <b) o o o

75 % a—I—blcosac dx = a—I—blcosac ¢ ¢ ¢ ¢ ¢ ©
76 | Llz| = oy or sign(z) 3 3 3 o8 0 .
7| [|z|dz = $|$| (for real z) o o o o o
78 | Lzl (p1ecew1se defined) X ) ) .

79 | [|z|dz (piecewise defined) o

80 | f mdm = (1+w)3/2§(1_x)3/2 . . 0 . . .
81 | [ Mdm = (1+$)3/2§(1_$)3/2 o o o o o o
82 | fit! L ——dz = 0 (principal value) X o X X

83 faa_—i'll m dz = divergent X ° X X

84 fol\/m+%—2da::>% 9 ) ) o o

85 flz\/a:+%—2dm:>4_3\/§ 0 . ) X .

86 | Jy \Jz + 1 —2dz = 28 o | X .

87 | J°0 whzdz (a>0)= Ze™® ) x10 | o10

88 | i irdt (0<a<l)= = o | o0 [ ol0

89 | i (20) dz = 4 X .

90 fflx/aflx/a y/b)1alzalyala::>U‘bC o o o o o

91 | taylor( 1_(U/C)z, =0) o o o o o o
92 o = 1-% + ° 0 ° 0 ° o
93 m% = taylor(tan z, z = 0) o o o o o o
94 | taylor((log z)%e="*, z = 1) o o
95 | taylor(log(sinh z) + log(cosh(z + w))) ) oll oll 3
96 | " — taylor(log(sinh z cosh(z + w)), z = 0) ) oll oll 3
97 taylor(log(su“")7 z =0) o o o o o o
98 | power_series(log(*22), z = 0) o

99 | power_series(e “sinz, z = 0) o o




# PROBLEM Axi | Der | Mac | Mpl | Mma | Red
100 | solve(z = siny + cos y, y = 0, series) o o o

101 | pade(e ™, z =0) = 2+x o o o o o

102 | laplace(cos((w — 1)), t — s) = m o ol2 o o o o
103 | inverse Laplace transform of above . . . ° o
104 | solve([rpy2 — 2rpq1 + 70 =2, ...], 70) o o . .

105 soIve([dt2 +4f =sin2t, f(0)= f(0)=0]) | e 0 o o o o
106 | above solution using Laplace transforms ) o o

107 | solve(z? & + 3y = S22 y(z)) . 0 . . o o
108 soIve( + y( £)? =0, y(z)) ol3 o o

109 soIve( ~y(z,a) = ay(z,a), y(z, a)) o 14 14 o
110 soIve([de +k*y =0, y(0)=0, y'(1) = 0]) 15 15 15

111 | solve([4 =z —y, E—az—l—y], [z, y]) o o o

112 | verify the above is a solution . . o

113 | solve([% =z (1 + ;20), % = 2 —y]) .

114 | as above, but one equation at a time o 0 0 . o °
115 | L=(D —1)(D +2) (operator) ° ° ° °

116 | L(f) = D*f + Df —2f o o o o

117 | L(9(y)) = T4+ 22 — 2 o . . 0

118 | L.(Asin2?) o ° . 0

119 | T =37, (Dkg!)(a)(a: —a)*  (operator) 0 ) ) . 0
120 | T(f) = fla)+ (Df)(a)(z —a) + - -- o o o o o
121 | T, p(9(y)) = 9(b) + j_f,|y=b(y —b)+--- * * * . ©
122 | T .(sin z) ° ° ° . .
123 | compute Legendre polys directly . . . o ° °
124 | compute Legendre polys recursively . . . ol6 ° °
125 | evaluate the 4" Legendre poly at 1 0 0 ) o 0 0
126 | p =32 a;x! . . . . . .
127 | Horner’s rule applied to the above . ° 17

128 | convert to FORTRAN syntax 0 o . . o o
129 | true and false = false ) o o . o o
130 | z or (not z) = true ) ) 3 3
131 |zoryor(zandy) =z ory o o o




