scribble-math/infix/scribblings/manual.scrbl
Jens Axel Søgaard 1ae55396e4 Inital commit
2012-06-20 17:20:30 +02:00

276 lines
6.7 KiB
Racket

#lang scribble/doc
@(require scribble/manual
scribble/eval
scribble/basic
scribble/bnf
(planet cce/scheme:4:1/planet)
(for-label (planet dherman/pprint:4)
scheme/base
scheme/contract
"../main.ss")
"util.ss")
@title[#:tag "top"]{@bold{Infix Expressions} for PLT Scheme}
@author[(author+email "Jens Axel Søgaard" "jensaxel@soegaard.net")]
This package provides infix notation for writing mathematical expressions.
@section{Getting Started}
A simple example, calculating 1+2*3.
@verbatim[#:indent 2]|{
#lang at-exp scheme
(require (planet soegaard/infix))
(display (format "1+2*3 is ~a\n" @${1+2*3} )
}|
@subsection{Arithmetical Operations}
The arithmetical operations +, -, *, / and ^ is written with standard
mathematical notation. Normal parentheseses are used for grouping.
@verbatim[#:indent 2]|{
#lang at-exp scheme
(require (planet soegaard/infix))
@${2*(1+3^4)} ; evaluates to 164
}|
@subsection{Identifiers}
Identifiers refer to the current lexical scope:
@verbatim[#:indent 2]|{
#lang at-exp scheme
(require (planet soegaard/infix))
(define x 41)
@${ x+1 } ; evaluates to 42
}|
@subsection{Application}
Function application use square brackets (as does Mathematica).
Here @scheme[sqrt] is bound to the square root function defined
in the language after at-exp, here the scheme language.
@verbatim[#:indent 2]|{
#lang at-exp scheme
(require (planet soegaard/infix))
(display (format "The square root of 64 is ~a\n" @${sqrt[64]} ))
@${ list[1,2,3] } evaluates to the list (1 2 3)
}|
@subsection{Lists}
Lists are written with curly brackets {}.
@verbatim[#:indent 2]|{
#lang at-exp scheme
(require (planet soegaard/infix))
@${ {1,2,1+2} } ; evaluates to (1 2 3)
}|
@subsection{List Reference}
List reference is written with double square brackets.
@verbatim[#:indent 2]|{
#lang at-exp scheme
(require (planet soegaard/infix))
(define xs '(a b c))
@${ xs[[1]] } ; evaluates to b
}|
@subsection{Anonymous Functions}
The syntax (λ ids . expr) where ids are a space separated list
of identifiers evaluates to function in which the ids are bound in
body expressions.
@verbatim[#:indent 2]|{
#lang at-exp scheme
(require (planet soegaard/infix))
@${ (λ.1)[]} ; evaluates to 1
@${ (λx.x+1)[2]} ; evaluates to 3
@${ (λx y.x+y+1)[1,2]} ; evaluates to 4
}|
@subsection{Square Roots}
Square roots can be written with a literal square root:
@verbatim[#:indent 2]|{
#lang at-exp scheme
(require (planet soegaard/infix))
@${√4} ; evaluates to 2
@${√(2+2)} ; evaluates to 2
}|
@subsection{Comparisons}
The comparison operators <, =, >, <=, and >= are available.
The syntaxes and for <= and >= respectively, works too.
Inequality is tested with <>.
@subsection{Logical Negation}
Logical negations is written as ¬.
@verbatim[#:indent 2]|{
#lang at-exp scheme
(require (planet soegaard/infix))
@${ ¬true } ; evaluates to #f
@${ ¬(1<2) } ; evaluates to #f
}|
@subsection{Assignment}
Assignment is written with := .
@subsection{Sequencing}
A series of expresions can be evaluated by interspersing semi colons
between the expressions.
@verbatim[#:indent 2]|{
#lang at-exp scheme
(require (planet soegaard/infix))
(define x 0)
@${ (x:=1); (x+3) } ; evaluates to 4
}|
@section{Examples}
@subsection{Example: Fibonacci}
This problem is from the Euler Project.
Each new term in the Fibonacci sequence is generated by adding the
previous two terms. By starting with 1 and 2, the first 10 terms will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
Find the sum of all the even-valued terms in the sequence which do not
exceed four million.
@verbatim[#:indent 2]|{
#lang at-exp scheme
(require
(planet soegaard/infix)
(only-in (planet "while.scm" ("soegaard" "control.plt" 2 0))
while))
(define-values (f g t) (values 1 2 0))
(define sum f)
@${
while[ g< 4000000,
when[ even?[g], sum:=sum+g];
t := f + g;
f := g;
g := t];
sum}|
@subsection{Example: Difference Between a Sum of Squares and the Square of a Sum}
This problem is from the Euler Project.
The sum of the squares of the first ten natural numbers is,
1^2 + 2^2 + ... + 10^2 = 385
The square of the sum of the first ten natural numbers is,
(1 + 2 + ... + 10)^2 = 552 = 3025
Hence the difference between the sum of the squares of the first ten natural
numbers and the square of the sum is 3025 - 385 = 2640.
Find the difference between the sum of the squares of the first one hundred
natural numbers and the square of the sum.
@verbatim[#:indent 2]|{
#lang at-exp scheme
(require (planet soegaard/infix))
(require (planet "while.scm" ("soegaard" "control.plt" 2 0))) ; while
#|
(define n 0)
(define ns 0)
(define squares 0)
(define sum 0)
@${
sum:=0;
while[ n<100,
n := n+1;
ns := ns+n;
squares := squares + n^2];
ns^2-squares
}
}|
@subsection{Example: Pythagorean Triplets}
This example is from the Euler Project.
A Pythagorean triplet is a set of three natural numbers, a,b,c for which,
a^2 + b^2 = c^2
For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
Find the product abc.
@verbatim[#:indent 2]|{
#lang at-exp scheme
(require (planet soegaard/infix))
(let-values ([(a b c) (values 0 0 0)])
(let/cc return
(for ([k (in-range 1 100)])
(for ([m (in-range 2 1000)])
(for ([n (in-range 1 m)])
@${ a := k* 2*m*n;
b := k* (m^2 - n^2);
c := k* (m^2 + n^2);
when[ a+b+c = 1000,
display[{{k,m,n}, {a,b,c}}];
newline[];
return[a*b*c] ]})))))
}|
@subsection{Example: Miller Rabin Primality Test}
This example was inspired by Programming Praxis:
http://programmingpraxis.com/2009/05/01/primality-checking/
@verbatim[#:indent 2]|{
#lang at-exp scheme
(require (planet soegaard/infix))
(require srfi/27) ; random-integer
(define (factor2 n)
; return r and s, s.t n = 2^r * s where s odd
; invariant: n = 2^r * s
(let loop ([r 0] [s n])
(let-values ([(q r) (quotient/remainder s 2)])
(if (zero? r)
(loop (+ r 1) q)
(values r s)))))
(define (miller-rabin n)
; Input: n odd
(define (mod x) (modulo x n))
(define (expt x m)
(cond [(zero? m) 1]
[(even? m) @${mod[sqr[x^(m/2)] ]}]
[(odd? m) @${mod[x*x^(m-1)]}]))
(define (check? a)
(let-values ([(r s) (factor2 (sub1 n))])
; is a^s congruent to 1 or -1 modulo n ?
(and @${member[a^s,{1,mod[-1]}]} #t)))
(andmap check?
(build-list 50 (λ (_) (+ 2 (random-integer (- n 3)))))))
(define (prime? n)
(cond [(< n 2) #f]
[(= n 2) #t]
[(even? n) #f]
[else (miller-rabin n)]))
(prime? @${2^89-1})
}|