scribble-math/docs/index.html
Jens Axel Søgaard 1ae55396e4 Inital commit
2012-06-20 17:20:30 +02:00

9 lines
7.1 KiB
HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html><head><meta http-equiv="content-type" content="text-html; charset=utf-8" /><title>Racket Math Libraries</title><link rel="stylesheet" type="text/css" href="scribble.css" title="default" /><link rel="stylesheet" type="text/css" href="math-display.css" title="default" /><link rel="stylesheet" type="text/css" href="racket.css" title="default" /><link rel="stylesheet" type="text/css" href="scribble-style.css" title="default" /><script type="text/javascript" src="scribble-common.js"></script></head><body id="scribble-racket-lang-org"><div class="tocset"><div class="tocview"><div class="tocviewlist" style="margin-bottom: 1em;"><div class="tocviewtitle"><table cellspacing="0" cellpadding="0"><tr><td style="width: 1em;"><a href="javascript:void(0);" title="Expand/Collapse" class="tocviewtoggle" onclick="TocviewToggle(this,&quot;tocview_0&quot;);">&#9658;</a></td><td></td><td><a href="" class="tocviewselflink" pltdoc="x">Racket Math Libraries</a></td></tr></table></div><div class="tocviewsublistonly" style="display: none;" id="tocview_0"><table cellspacing="0" cellpadding="0"><tr><td align="right">1&nbsp;</td><td><a href="#(part._matrix)" class="tocviewlink" pltdoc="x">Matrix Library</a></td></tr><tr><td align="right"></td><td><a href="#(part._doc-index)" class="tocviewlink" pltdoc="x">Index</a></td></tr></table></div></div></div><div class="tocsub"><table class="tocsublist" cellspacing="0"><tr><td><span class="tocsublinknumber">1<tt>&nbsp;</tt></span><a href="#(part._matrix)" class="tocsubseclink" pltdoc="x">Matrix Library</a></td></tr><tr><td><span class="tocsublinknumber">1.1<tt>&nbsp;</tt></span><a href="#(part._.Example)" class="tocsubseclink" pltdoc="x">Example</a></td></tr><tr><td><span class="tocsublinknumber">1.2<tt>&nbsp;</tt></span><a href="#(part._.Constructors)" class="tocsubseclink" pltdoc="x">Constructors</a></td></tr><tr><td><span class="tocsublinknumber">1.3<tt>&nbsp;</tt></span><a href="#(part._.Comprehensions)" class="tocsubseclink" pltdoc="x">Comprehensions</a></td></tr><tr><td><span class="tocsublinknumber">1.4<tt>&nbsp;</tt></span><a href="#(part._.Unary_.Operators)" class="tocsubseclink" pltdoc="x">Unary Operators</a></td></tr><tr><td><span class="tocsublinknumber">1.5<tt>&nbsp;</tt></span><a href="#(part._.Binary_.Operators)" class="tocsubseclink" pltdoc="x">Binary Operators</a></td></tr><tr><td><span class="tocsublinknumber"></span><a href="#(part._doc-index)" class="tocsubseclink" pltdoc="x">Index</a></td></tr></table></div></div><div class="maincolumn"><div class="main"><div class="versionbox"><span class="versionNoNav">Version: 5.3.0.6</span></div><h2><a name="(part._.Racket_.Math_.Libraries)"></a>Racket Math Libraries</h2><div class="SAuthorListBox"><span class="SAuthorList"><p class="author">Jens Axel S&#248;gaard</p></span></div><p>These libraries is intended to become the backend for a CAS
written in Racket. A CAS requires libraries for a wide range
of mathematical concepts and algorithms.</p><p>The matrix library implements matrices over Racket numbers.
The implementation is written in Racket, that is there are no
external dependencies.</p><p>The development version of this library is available at Github:
<a href="https://github.com/soegaard">https://github.com/soegaard</a></p><table cellspacing="0"><tr><td><p><span class="hspace">&nbsp;&nbsp;&nbsp;&nbsp;</span><a href="#(part._matrix)" class="toptoclink" pltdoc="x">1<span class="hspace">&nbsp;</span>Matrix Library</a></p></td></tr><tr><td><p><span class="hspace">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</span><a href="#(part._.Example)" class="toclink" pltdoc="x">1.1<span class="hspace">&nbsp;</span>Example</a></p></td></tr><tr><td><p><span class="hspace">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</span><a href="#(part._.Constructors)" class="toclink" pltdoc="x">1.2<span class="hspace">&nbsp;</span>Constructors</a></p></td></tr><tr><td><p><span class="hspace">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</span><a href="#(part._.Comprehensions)" class="toclink" pltdoc="x">1.3<span class="hspace">&nbsp;</span>Comprehensions</a></p></td></tr><tr><td><p><span class="hspace">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</span><a href="#(part._.Unary_.Operators)" class="toclink" pltdoc="x">1.4<span class="hspace">&nbsp;</span>Unary Operators</a></p></td></tr><tr><td><p><span class="hspace">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</span><a href="#(part._.Binary_.Operators)" class="toclink" pltdoc="x">1.5<span class="hspace">&nbsp;</span>Binary Operators</a></p></td></tr><tr><td><p><span class="hspace"></span></p></td></tr><tr><td><p><span class="hspace">&nbsp;&nbsp;&nbsp;&nbsp;</span><a href="#(part._doc-index)" class="toptoclink" pltdoc="x">Index</a></p></td></tr></table><h3>1<tt>&nbsp;</tt><a name="(part._matrix)"></a>Matrix Library</h3><p>A matrix is a rectangular array of numbers. A matrix with
m rows and n columns is called an mxn-matrix.
<span class="MathDisplay">\[1+x \]</span></p><h4>1.1<tt>&nbsp;</tt><a name="(part._.Example)"></a>Example</h4><h4>1.2<tt>&nbsp;</tt><a name="(part._.Constructors)"></a>Constructors</h4><h4>1.3<tt>&nbsp;</tt><a name="(part._.Comprehensions)"></a>Comprehensions</h4><h4>1.4<tt>&nbsp;</tt><a name="(part._.Unary_.Operators)"></a>Unary Operators</h4><h4>1.5<tt>&nbsp;</tt><a name="(part._.Binary_.Operators)"></a>Binary Operators</h4><h3><a name="(part._doc-index)"></a>Index</h3><table cellspacing="0"><tr><td><p><span class="nonavigation">A</span> <a href="#alpha:B">B</a> <a href="#alpha:C">C</a> <span class="nonavigation">D</span> <a href="#alpha:E">E</a> <span class="nonavigation">F</span> <span class="nonavigation">G</span> <span class="nonavigation">H</span> <span class="nonavigation">I</span> <span class="nonavigation">J</span> <span class="nonavigation">K</span> <span class="nonavigation">L</span> <a href="#alpha:M">M</a> <span class="nonavigation">N</span> <span class="nonavigation">O</span> <span class="nonavigation">P</span> <span class="nonavigation">Q</span> <a href="#alpha:R">R</a> <span class="nonavigation">S</span> <span class="nonavigation">T</span> <a href="#alpha:U">U</a> <span class="nonavigation">V</span> <span class="nonavigation">W</span> <span class="nonavigation">X</span> <span class="nonavigation">Y</span> <span class="nonavigation">Z</span> </p></td></tr><tr><td><p>&nbsp;</p></td></tr><tr><td><p><a name="alpha:B"></a><span><a href="#(part._.Binary_.Operators)" class="indexlink" pltdoc="x">Binary Operators<br /></a></span><a name="alpha:C"></a><span><a href="#(part._.Comprehensions)" class="indexlink" pltdoc="x">Comprehensions<br /></a></span><a href="#(part._.Constructors)" class="indexlink" pltdoc="x">Constructors<br /></a><a name="alpha:E"></a><span><a href="#(part._.Example)" class="indexlink" pltdoc="x">Example<br /></a></span><a name="alpha:M"></a><span><a href="#(part._matrix)" class="indexlink" pltdoc="x">Matrix Library<br /></a></span><a name="alpha:R"></a><span><a href="" class="indexlink" pltdoc="x">Racket Math Libraries<br /></a></span><a name="alpha:U"></a><span><a href="#(part._.Unary_.Operators)" class="indexlink" pltdoc="x">Unary Operators<br /></a></span></p></td></tr></table></div></div><div id="contextindicator">&nbsp;</div></body></html>