Update to current configuration approach, and general clean up

This commit is contained in:
Davide P. Cervone 2011-03-01 12:53:11 -05:00
parent 83de1163c3
commit cf329906de
4 changed files with 35 additions and 29 deletions

View File

@ -1,19 +1,17 @@
<!DOCTYPE html>
<html>
<head>
<title>MathJax MathML Test Page</title>
<!-- Copyright (c) 2010 Design Science, Inc. -->
<!-- Copyright (c) 2010-2011 Design Science, Inc. -->
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7" >
<meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7" />
<script type="text/javascript" src="../MathJax.js?config=MML_HTMLorMML"></script>
<script src="../MathJax.js">
MathJax.Hub.Config({
extensions: ["mml2jax.js"],
jax: ["input/MathML","output/HTML-CSS"]
});
</script>
</head>
<body>
<p>
When <math><mi>a</mi><mo>&#x2260;</mo><mn>0</mn></math>,
there are two solutions to <math>
<mi>a</mi><msup><mi>x</mi><mn>2</mn></msup>
@ -39,6 +37,7 @@ there are two solutions to <math>
</mrow>
<mtext>.</mtext>
</math>
</p>
</body>
</html>

View File

@ -1,9 +1,10 @@
<!DOCTYPE html>
<html>
<head>
<title>MathJax Signals Test Page</title>
<!-- Copyright (c) 2010 Design Science, Inc. -->
<!-- Copyright (c) 2010-2011 Design Science, Inc. -->
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7" >
<meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7" />
<!--
| This example shows how to use MathJax's signal mechanism to find out
@ -11,7 +12,7 @@
| occur.
-->
<script src="../MathJax.js">
<script type="text/x-mathjax-config">
//
// Configure MathJax
@ -52,6 +53,7 @@
MathJax.Hub.Queue(function () {Message("*** MathJax is done ***")});
</script>
<script type="text/javascript" src="../MathJax.js"></script>
<style>
.output {
@ -61,19 +63,26 @@
padding: 3px 1em;
}
</style>
</head>
<body>
<p>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
</p>
<p>
Messages about mathematics:
<pre id="MathMessages" class="output">
</pre>
</p>
<p>
All Messages:
<pre id="AllMessages" class="output">
</pre>
</p>
<script>
(function () {

View File

@ -1,22 +1,25 @@
<!DOCTYPE html>
<html>
<head>
<title>MathJax TeX Test Page</title>
<!-- Copyright (c) 2010 Design Science, Inc. -->
<!-- Copyright (c) 2010-2011 Design Science, Inc. -->
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7" >
<meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7" />
<script src="../MathJax.js">
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
extensions: ["tex2jax.js"],
jax: ["input/TeX","output/HTML-CSS"],
tex2jax: {inlineMath: [["$","$"],["\\(","\\)"]]}
});
</script>
<script type="text/javascript" src="../MathJax.js?config=TeX-AMS_HTML-full"></script>
</head>
<body>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
<p>
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
</p>
</body>
</html>

View File

@ -1,22 +1,17 @@
<!DOCTYPE html>
<html>
<head>
<title>MathJax TeX input with MathML output Test Page</title>
<!-- Copyright (c) 2010 Design Science, Inc. -->
<title>MathJax TeX or MathML input with MathML or HTML/CSS output Test Page</title>
<!-- Copyright (c) 2010-2011 Design Science, Inc. -->
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7" >
<meta http-equiv="X-UA-Compatible" content="IE=EmulateIE7" />
<script type="text/javascript" src="../MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script src="../MathJax.js">
MathJax.Hub.Config({
config: ["MMLorHTML.js"],
extensions: ["tex2jax.js"],
jax: ["input/TeX"],
tex2jax: {inlineMath: [["$","$"],["\\(","\\)"]]}
});
</script>
</head>
<body>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
</body>