Get rid of assumptions, which always did cause trouble. Instead,

solve the Newton's method iterations in a least squares sense. This
is much less likely to result in numerical disaster; a parameter
will never make a very large change, unless that really is the only
way to satisfy the constraints.

[git-p4: depot-paths = "//depot/solvespace/": change = 1717]
This commit is contained in:
Jonathan Westhues 2008-05-11 23:29:50 -08:00
parent e2263c69c8
commit f4d2651031
2 changed files with 66 additions and 116 deletions

View File

@ -112,8 +112,6 @@ public:
// The corresponding parameter for each column
hParam param[MAX_UNKNOWNS];
// The desired permutation, when we are sorting by sensitivity.
int permutation[MAX_UNKNOWNS];
bool bound[MAX_UNKNOWNS];
@ -124,11 +122,10 @@ public:
double num[MAX_UNKNOWNS][MAX_UNKNOWNS];
} A;
// Extra information about each unknown: whether it's being dragged
// or not (in which case it should get assumed preferentially), and
// the sensitivity used to decide the order in which things get
// assumed.
double sens[MAX_UNKNOWNS];
// Some helpers for the least squares solve
double AAt[MAX_UNKNOWNS][MAX_UNKNOWNS];
double Z[MAX_UNKNOWNS];
double X[MAX_UNKNOWNS];
struct {
@ -138,13 +135,14 @@ public:
} mat;
bool Tol(double v);
void GaussJordan(void);
bool SolveLinearSystem(void);
int GaussJordan(void);
static bool SolveLinearSystem(double X[], double A[][MAX_UNKNOWNS],
double B[], int N);
bool SolveLeastSquares(void);
void WriteJacobian(int eqTag, int paramTag);
void EvalJacobian(void);
void SortBySensitivity(void);
void SolveBySubstitution(void);
static bool IsDragged(hParam p);

View File

@ -28,6 +28,7 @@ void System::WriteJacobian(int eqTag, int paramTag) {
if(scoreboard & (1 << (mat.param[j].v % 31))) {
pd = f->PartialWrt(mat.param[j]);
pd = pd->FoldConstants();
pd = pd->DeepCopyWithParamsAsPointers(&param, &(SS.param));
} else {
pd = Expr::FromConstant(0);
}
@ -144,73 +145,11 @@ void System::SolveBySubstitution(void) {
}
}
static int BySensitivity(const void *va, const void *vb) {
const int *a = (const int *)va, *b = (const int *)vb;
hParam pa = SS.sys.mat.param[*a];
hParam pb = SS.sys.mat.param[*b];
if(System::IsDragged(pa) && !System::IsDragged(pb)) return 1;
if(System::IsDragged(pb) && !System::IsDragged(pa)) return -1;
double as = SS.sys.mat.sens[*a];
double bs = SS.sys.mat.sens[*b];
if(as < bs) return 1;
if(as > bs) return -1;
return 0;
}
void System::SortBySensitivity(void) {
// For each unknown, sum up the sensitivities in that column of the
// Jacobian
int i, j;
for(j = 0; j < mat.n; j++) {
double s = 0;
int i;
for(i = 0; i < mat.m; i++) {
s += fabs(mat.A.num[i][j]);
}
mat.sens[j] = s;
}
for(j = 0; j < mat.n; j++) {
mat.permutation[j] = j;
}
qsort(mat.permutation, mat.n, sizeof(mat.permutation[0]), BySensitivity);
int origPos[MAX_UNKNOWNS];
int entryWithOrigPos[MAX_UNKNOWNS];
for(j = 0; j < mat.n; j++) {
origPos[j] = j;
entryWithOrigPos[j] = j;
}
for(j = 0; j < mat.n; j++) {
int dest = j; // we are writing to position j
// And the source is whichever position ahead of us can be swapped
// in to make the permutation vectors line up.
int src = entryWithOrigPos[mat.permutation[j]];
for(i = 0; i < mat.m; i++) {
SWAP(double, mat.A.num[i][src], mat.A.num[i][dest]);
SWAP(Expr *, mat.A.sym[i][src], mat.A.sym[i][dest]);
}
SWAP(hParam, mat.param[src], mat.param[dest]);
SWAP(int, origPos[src], origPos[dest]);
if(mat.permutation[dest] != origPos[dest]) oops();
// Update the table; only necessary to do this for src, since dest
// is already done.
entryWithOrigPos[origPos[src]] = src;
}
}
bool System::Tol(double v) {
return (fabs(v) < 0.01);
}
void System::GaussJordan(void) {
int System::GaussJordan(void) {
int i, j;
for(j = 0; j < mat.n; j++) {
@ -219,6 +158,7 @@ void System::GaussJordan(void) {
// Now eliminate.
i = 0;
int rank = 0;
for(j = 0; j < mat.n; j++) {
// First, seek a pivot in our column.
int ip, imax;
@ -263,6 +203,7 @@ void System::GaussJordan(void) {
// And mark this as a bound variable.
mat.bound[j] = true;
rank++;
// Move on to the next row, since we just used this one to
// eliminate from column j.
@ -270,24 +211,26 @@ void System::GaussJordan(void) {
if(i >= mat.m) break;
}
}
return rank;
}
bool System::SolveLinearSystem(void) {
if(mat.m != mat.n) oops();
bool System::SolveLinearSystem(double X[], double A[][MAX_UNKNOWNS],
double B[], int n)
{
// Gaussian elimination, with partial pivoting. It's an error if the
// matrix is singular, because that means two constraints are
// equivalent.
int i, j, ip, jp, imax;
double max, temp;
for(i = 0; i < mat.m; i++) {
for(i = 0; i < n; i++) {
// We are trying eliminate the term in column i, for rows i+1 and
// greater. First, find a pivot (between rows i and N-1).
max = 0;
for(ip = i; ip < mat.m; ip++) {
if(fabs(mat.A.num[ip][i]) > max) {
for(ip = i; ip < n; ip++) {
if(fabs(A[ip][i]) > max) {
imax = ip;
max = fabs(mat.A.num[ip][i]);
max = fabs(A[ip][i]);
}
}
// Don't give up on a singular matrix unless it's really bad; the
@ -296,44 +239,67 @@ bool System::SolveLinearSystem(void) {
if(fabs(max) < 1e-20) return false;
// Swap row imax with row i
for(jp = 0; jp < mat.n; jp++) {
temp = mat.A.num[i][jp];
mat.A.num[i][jp] = mat.A.num[imax][jp];
mat.A.num[imax][jp] = temp;
for(jp = 0; jp < n; jp++) {
SWAP(double, A[i][jp], A[imax][jp]);
}
temp = mat.B.num[i];
mat.B.num[i] = mat.B.num[imax];
mat.B.num[imax] = temp;
SWAP(double, B[i], B[imax]);
// For rows i+1 and greater, eliminate the term in column i.
for(ip = i+1; ip < mat.m; ip++) {
temp = mat.A.num[ip][i]/mat.A.num[i][i];
for(ip = i+1; ip < n; ip++) {
temp = A[ip][i]/A[i][i];
for(jp = 0; jp < mat.n; jp++) {
mat.A.num[ip][jp] -= temp*(mat.A.num[i][jp]);
for(jp = 0; jp < n; jp++) {
A[ip][jp] -= temp*(A[i][jp]);
}
mat.B.num[ip] -= temp*mat.B.num[i];
B[ip] -= temp*B[i];
}
}
// We've put the matrix in upper triangular form, so at this point we
// can solve by back-substitution.
for(i = mat.m - 1; i >= 0; i--) {
if(fabs(mat.A.num[i][i]) < 1e-20) return false;
for(i = n - 1; i >= 0; i--) {
if(fabs(A[i][i]) < 1e-20) return false;
temp = mat.B.num[i];
for(j = mat.n - 1; j > i; j--) {
temp -= mat.X[j]*mat.A.num[i][j];
temp = B[i];
for(j = n - 1; j > i; j--) {
temp -= X[j]*A[i][j];
}
mat.X[i] = temp / mat.A.num[i][i];
X[i] = temp / A[i][i];
}
return true;
}
bool System::SolveLeastSquares(void) {
int r, c, i;
// Write A*A'
for(r = 0; r < mat.m; r++) {
for(c = 0; c < mat.m; c++) { // yes, AAt is square
double sum = 0;
for(i = 0; i < mat.n; i++) {
sum += mat.A.num[r][i]*mat.A.num[c][i];
}
mat.AAt[r][c] = sum;
}
}
if(!SolveLinearSystem(mat.Z, mat.AAt, mat.B.num, mat.m)) return false;
// And multiply that by A' to get our solution.
for(c = 0; c < mat.n; c++) {
double sum = 0;
for(i = 0; i < mat.m; i++) {
sum += mat.A.num[i][c]*mat.Z[i];
}
mat.X[c] = sum;
}
return true;
}
bool System::NewtonSolve(int tag) {
WriteJacobian(tag, tag);
if(mat.m != mat.n) oops();
if(mat.m > mat.n) oops();
int iter = 0;
bool converged = false;
@ -347,11 +313,11 @@ bool System::NewtonSolve(int tag) {
// And evaluate the Jacobian at our initial operating point.
EvalJacobian();
if(!SolveLinearSystem()) break;
if(!SolveLeastSquares()) break;
// Take the Newton step;
// J(x_n) (x_{n+1} - x_n) = 0 - F(x_n)
for(i = 0; i < mat.m; i++) {
for(i = 0; i < mat.n; i++) {
(param.FindById(mat.param[i]))->val -= mat.X[i];
}
@ -399,8 +365,6 @@ bool System::Solve(void) {
EvalJacobian();
SortBySensitivity();
/*
for(i = 0; i < mat.m; i++) {
dbp("function %d: %s", i, mat.B.sym[i]->Print());
@ -408,29 +372,17 @@ bool System::Solve(void) {
dbp("m=%d", mat.m);
for(i = 0; i < mat.m; i++) {
for(j = 0; j < mat.n; j++) {
dbp("A[%d][%d] = %.3f", i, j, mat.A.num[i][j]);
dbp("A(%d,%d) = %.10f;", i+1, j+1, mat.A.num[i][j]);
}
} */
GaussJordan();
int rank = GaussJordan();
/* dbp("bound states:");
for(j = 0; j < mat.n; j++) {
dbp(" param %08x: %d", mat.param[j], mat.bound[j]);
} */
// Fix any still-free variables wherever they are now.
for(j = mat.n-1; j >= 0; --j) {
if(mat.bound[j]) continue;
Param *p = param.FindByIdNoOops(mat.param[j]);
if(!p) {
// This is parameter does not occur in this group, so it's
// not available to assume.
continue;
}
p->tag = VAR_ASSUMED;
}
bool ok = NewtonSolve(0);
if(ok) {