
our specified section plane; we then split them according to the start and endpoints of each STrimBy, using de Castejau's algorithm. These sections get projected (possibly in perspective, which I do correctly) into 2d and exported. Except, for now they just get pwl'd in the export files. That's the fallback, since it works for any file format. But that's the place to add special cases for circles etc., or to export them exactly. DXF supports the latter, but very painfully since I would need to write a later-versioned file, which requires thousands of lines of baggage. I'll probably stick with arcs. [git-p4: depot-paths = "//depot/solvespace/": change = 1936]
528 lines
17 KiB
C++
528 lines
17 KiB
C++
//-----------------------------------------------------------------------------
|
|
// Anything involving surfaces and sets of surfaces (i.e., shells); except
|
|
// for the real math, which is in ratpoly.cpp.
|
|
//-----------------------------------------------------------------------------
|
|
#include "../solvespace.h"
|
|
|
|
SSurface SSurface::FromExtrusionOf(SBezier *sb, Vector t0, Vector t1) {
|
|
SSurface ret;
|
|
ZERO(&ret);
|
|
|
|
ret.degm = sb->deg;
|
|
ret.degn = 1;
|
|
|
|
int i;
|
|
for(i = 0; i <= ret.degm; i++) {
|
|
ret.ctrl[i][0] = (sb->ctrl[i]).Plus(t0);
|
|
ret.weight[i][0] = sb->weight[i];
|
|
|
|
ret.ctrl[i][1] = (sb->ctrl[i]).Plus(t1);
|
|
ret.weight[i][1] = sb->weight[i];
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool SSurface::IsExtrusion(SBezier *of, Vector *alongp) {
|
|
int i;
|
|
|
|
if(degn != 1) return false;
|
|
|
|
Vector along = (ctrl[0][1]).Minus(ctrl[0][0]);
|
|
for(i = 0; i <= degm; i++) {
|
|
if((fabs(weight[i][1] - weight[i][0]) < LENGTH_EPS) &&
|
|
((ctrl[i][1]).Minus(ctrl[i][0])).Equals(along))
|
|
{
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// yes, we are a surface of extrusion; copy the original curve and return
|
|
if(of) {
|
|
for(i = 0; i <= degm; i++) {
|
|
of->weight[i] = weight[i][0];
|
|
of->ctrl[i] = ctrl[i][0];
|
|
}
|
|
of->deg = degm;
|
|
*alongp = along;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool SSurface::IsCylinder(Vector *center, Vector *axis, double *r,
|
|
Vector *start, Vector *finish)
|
|
{
|
|
SBezier sb;
|
|
if(!IsExtrusion(&sb, axis)) return false;
|
|
if(sb.deg != 2) return false;
|
|
|
|
Vector t0 = (sb.ctrl[0]).Minus(sb.ctrl[1]),
|
|
t2 = (sb.ctrl[2]).Minus(sb.ctrl[1]),
|
|
r0 = axis->Cross(t0),
|
|
r2 = axis->Cross(t2);
|
|
|
|
*center = Vector::AtIntersectionOfLines(sb.ctrl[0], (sb.ctrl[0]).Plus(r0),
|
|
sb.ctrl[2], (sb.ctrl[2]).Plus(r2),
|
|
NULL, NULL, NULL);
|
|
|
|
double rd0 = center->Minus(sb.ctrl[0]).Magnitude(),
|
|
rd2 = center->Minus(sb.ctrl[2]).Magnitude();
|
|
if(fabs(rd0 - rd2) > LENGTH_EPS) {
|
|
return false;
|
|
}
|
|
*r = rd0;
|
|
|
|
Vector u = r0.WithMagnitude(1),
|
|
v = (axis->Cross(u)).WithMagnitude(1);
|
|
Point2d c2 = center->Project2d(u, v),
|
|
pa2 = (sb.ctrl[0]).Project2d(u, v).Minus(c2),
|
|
pb2 = (sb.ctrl[2]).Project2d(u, v).Minus(c2);
|
|
|
|
double thetaa = atan2(pa2.y, pa2.x), // in fact always zero due to csys
|
|
thetab = atan2(pb2.y, pb2.x),
|
|
dtheta = WRAP_NOT_0(thetab - thetaa, 2*PI);
|
|
if(dtheta > PI) {
|
|
// Not possible with a second order Bezier arc; so we must have
|
|
// the points backwards.
|
|
dtheta = 2*PI - dtheta;
|
|
}
|
|
|
|
if(fabs(sb.weight[1] - cos(dtheta/2)) > LENGTH_EPS) {
|
|
return false;
|
|
}
|
|
|
|
*start = sb.ctrl[0];
|
|
*finish = sb.ctrl[2];
|
|
|
|
return true;
|
|
}
|
|
|
|
SSurface SSurface::FromPlane(Vector pt, Vector u, Vector v) {
|
|
SSurface ret;
|
|
ZERO(&ret);
|
|
|
|
ret.degm = 1;
|
|
ret.degn = 1;
|
|
|
|
ret.weight[0][0] = ret.weight[0][1] = 1;
|
|
ret.weight[1][0] = ret.weight[1][1] = 1;
|
|
|
|
ret.ctrl[0][0] = pt;
|
|
ret.ctrl[0][1] = pt.Plus(u);
|
|
ret.ctrl[1][0] = pt.Plus(v);
|
|
ret.ctrl[1][1] = pt.Plus(v).Plus(u);
|
|
|
|
return ret;
|
|
}
|
|
|
|
SSurface SSurface::FromTransformationOf(SSurface *a, Vector t, Quaternion q,
|
|
bool includingTrims)
|
|
{
|
|
SSurface ret;
|
|
ZERO(&ret);
|
|
|
|
ret.h = a->h;
|
|
ret.color = a->color;
|
|
ret.face = a->face;
|
|
|
|
ret.degm = a->degm;
|
|
ret.degn = a->degn;
|
|
int i, j;
|
|
for(i = 0; i <= 3; i++) {
|
|
for(j = 0; j <= 3; j++) {
|
|
ret.ctrl[i][j] = (q.Rotate(a->ctrl[i][j])).Plus(t);
|
|
ret.weight[i][j] = a->weight[i][j];
|
|
}
|
|
}
|
|
|
|
if(includingTrims) {
|
|
STrimBy *stb;
|
|
for(stb = a->trim.First(); stb; stb = a->trim.NextAfter(stb)) {
|
|
STrimBy n = *stb;
|
|
n.start = (q.Rotate(n.start)) .Plus(t);
|
|
n.finish = (q.Rotate(n.finish)).Plus(t);
|
|
ret.trim.Add(&n);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void SSurface::GetAxisAlignedBounding(Vector *ptMax, Vector *ptMin) {
|
|
*ptMax = Vector::From(VERY_NEGATIVE, VERY_NEGATIVE, VERY_NEGATIVE);
|
|
*ptMin = Vector::From(VERY_POSITIVE, VERY_POSITIVE, VERY_POSITIVE);
|
|
|
|
int i, j;
|
|
for(i = 0; i <= degm; i++) {
|
|
for(j = 0; j <= degn; j++) {
|
|
(ctrl[i][j]).MakeMaxMin(ptMax, ptMin);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SSurface::LineEntirelyOutsideBbox(Vector a, Vector b, bool segment) {
|
|
Vector amax, amin;
|
|
GetAxisAlignedBounding(&amax, &amin);
|
|
if(!Vector::BoundingBoxIntersectsLine(amax, amin, a, b, segment)) {
|
|
// The line segment could fail to intersect the bbox, but lie entirely
|
|
// within it and intersect the surface.
|
|
if(a.OutsideAndNotOn(amax, amin) && b.OutsideAndNotOn(amax, amin)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Generate the piecewise linear approximation of the trim stb, which applies
|
|
// to the curve sc.
|
|
//-----------------------------------------------------------------------------
|
|
void SSurface::MakeTrimEdgesInto(SEdgeList *sel, bool asUv,
|
|
SCurve *sc, STrimBy *stb)
|
|
{
|
|
Vector prev, prevuv, ptuv;
|
|
bool inCurve = false, empty = true;
|
|
double u = 0, v = 0;
|
|
|
|
int i, first, last, increment;
|
|
if(stb->backwards) {
|
|
first = sc->pts.n - 1;
|
|
last = 0;
|
|
increment = -1;
|
|
} else {
|
|
first = 0;
|
|
last = sc->pts.n - 1;
|
|
increment = 1;
|
|
}
|
|
for(i = first; i != (last + increment); i += increment) {
|
|
Vector *pt = &(sc->pts.elem[i]);
|
|
if(asUv) {
|
|
ClosestPointTo(*pt, &u, &v);
|
|
ptuv = Vector::From(u, v, 0);
|
|
if(inCurve) {
|
|
sel->AddEdge(prevuv, ptuv, sc->h.v, stb->backwards);
|
|
empty = false;
|
|
}
|
|
prevuv = ptuv;
|
|
} else {
|
|
if(inCurve) {
|
|
sel->AddEdge(prev, *pt, sc->h.v, stb->backwards);
|
|
empty = false;
|
|
}
|
|
prev = *pt;
|
|
}
|
|
|
|
if(pt->Equals(stb->start)) inCurve = true;
|
|
if(pt->Equals(stb->finish)) inCurve = false;
|
|
}
|
|
if(inCurve) dbp("trim was unterminated");
|
|
if(empty) dbp("trim was empty");
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Generate all of our trim curves, in piecewise linear form. We can do
|
|
// so in either uv or xyz coordinates. And if requested, then we can use
|
|
// the split curves from useCurvesFrom instead of the curves in our own
|
|
// shell.
|
|
//-----------------------------------------------------------------------------
|
|
void SSurface::MakeEdgesInto(SShell *shell, SEdgeList *sel, bool asUv,
|
|
SShell *useCurvesFrom)
|
|
{
|
|
STrimBy *stb;
|
|
for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
|
|
SCurve *sc = shell->curve.FindById(stb->curve);
|
|
|
|
// We have the option to use the curves from another shell; this
|
|
// is relevant when generating the coincident edges while doing the
|
|
// Booleans, since the curves from the output shell will be split
|
|
// against any intersecting surfaces (and the originals aren't).
|
|
if(useCurvesFrom) {
|
|
sc = useCurvesFrom->curve.FindById(sc->newH);
|
|
}
|
|
|
|
MakeTrimEdgesInto(sel, asUv, sc, stb);
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Report our trim curves. If a trim curve is exact and sbl is not null, then
|
|
// add its exact form to sbl. Otherwise, add its piecewise linearization to
|
|
// sel.
|
|
//-----------------------------------------------------------------------------
|
|
void SSurface::MakeSectionEdgesInto(SShell *shell,
|
|
SEdgeList *sel, SBezierList *sbl)
|
|
{
|
|
STrimBy *stb;
|
|
for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
|
|
SCurve *sc = shell->curve.FindById(stb->curve);
|
|
SBezier *sb = &(sc->exact);
|
|
|
|
if(sbl && sc->isExact && sb->deg != 1) {
|
|
double ts, tf;
|
|
if(stb->backwards) {
|
|
sb->ClosestPointTo(stb->start, &tf);
|
|
sb->ClosestPointTo(stb->finish, &ts);
|
|
} else {
|
|
sb->ClosestPointTo(stb->start, &ts);
|
|
sb->ClosestPointTo(stb->finish, &tf);
|
|
}
|
|
SBezier junk_bef, keep_aft;
|
|
sb->SplitAt(ts, &junk_bef, &keep_aft);
|
|
// In the kept piece, the range that used to go from ts to 1
|
|
// now goes from 0 to 1; so rescale tf appropriately.
|
|
tf = (tf - ts)/(1 - ts);
|
|
|
|
SBezier keep_bef, junk_aft;
|
|
keep_aft.SplitAt(tf, &keep_bef, &junk_aft);
|
|
|
|
sbl->l.Add(&keep_bef);
|
|
} else {
|
|
MakeTrimEdgesInto(sel, false, sc, stb);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SSurface::TriangulateInto(SShell *shell, SMesh *sm) {
|
|
SEdgeList el;
|
|
ZERO(&el);
|
|
|
|
MakeEdgesInto(shell, &el, true);
|
|
|
|
SPolygon poly;
|
|
ZERO(&poly);
|
|
if(el.AssemblePolygon(&poly, NULL, true)) {
|
|
int i, start = sm->l.n;
|
|
// Curved surfaces are triangulated in such a way as to minimize
|
|
// deviation between edges and surface; but doesn't matter for planes.
|
|
poly.UvTriangulateInto(sm, (degm == 1 && degn == 1) ? NULL : this);
|
|
|
|
STriMeta meta = { face, color };
|
|
for(i = start; i < sm->l.n; i++) {
|
|
STriangle *st = &(sm->l.elem[i]);
|
|
st->meta = meta;
|
|
st->an = NormalAt(st->a.x, st->a.y);
|
|
st->bn = NormalAt(st->b.x, st->b.y);
|
|
st->cn = NormalAt(st->c.x, st->c.y);
|
|
st->a = PointAt(st->a.x, st->a.y);
|
|
st->b = PointAt(st->b.x, st->b.y);
|
|
st->c = PointAt(st->c.x, st->c.y);
|
|
// Works out that my chosen contour direction is inconsistent with
|
|
// the triangle direction, sigh.
|
|
st->FlipNormal();
|
|
}
|
|
} else {
|
|
dbp("failed to assemble polygon to trim nurbs surface in uv space");
|
|
}
|
|
|
|
el.Clear();
|
|
poly.Clear();
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Reverse the parametrisation of one of our dimensions, which flips the
|
|
// normal. We therefore must reverse all our trim curves too. The uv
|
|
// coordinates change, but trim curves are stored as xyz so nothing happens
|
|
//-----------------------------------------------------------------------------
|
|
void SSurface::Reverse(void) {
|
|
int i, j;
|
|
for(i = 0; i < (degm+1)/2; i++) {
|
|
for(j = 0; j <= degn; j++) {
|
|
SWAP(Vector, ctrl[i][j], ctrl[degm-i][j]);
|
|
SWAP(double, weight[i][j], weight[degm-i][j]);
|
|
}
|
|
}
|
|
|
|
STrimBy *stb;
|
|
for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
|
|
stb->backwards = !stb->backwards;
|
|
SWAP(Vector, stb->start, stb->finish);
|
|
}
|
|
}
|
|
|
|
void SSurface::Clear(void) {
|
|
trim.Clear();
|
|
}
|
|
|
|
void SShell::MakeFromExtrusionOf(SBezierLoopSet *sbls, Vector t0, Vector t1,
|
|
int color)
|
|
{
|
|
ZERO(this);
|
|
|
|
// Make the extrusion direction consistent with respect to the normal
|
|
// of the sketch we're extruding.
|
|
if((t0.Minus(t1)).Dot(sbls->normal) < 0) {
|
|
SWAP(Vector, t0, t1);
|
|
}
|
|
|
|
// Define a coordinate system to contain the original sketch, and get
|
|
// a bounding box in that csys
|
|
Vector n = sbls->normal.ScaledBy(-1);
|
|
Vector u = n.Normal(0), v = n.Normal(1);
|
|
Vector orig = sbls->point;
|
|
double umax = 1e-10, umin = 1e10;
|
|
sbls->GetBoundingProjd(u, orig, &umin, &umax);
|
|
double vmax = 1e-10, vmin = 1e10;
|
|
sbls->GetBoundingProjd(v, orig, &vmin, &vmax);
|
|
// and now fix things up so that all u and v lie between 0 and 1
|
|
orig = orig.Plus(u.ScaledBy(umin));
|
|
orig = orig.Plus(v.ScaledBy(vmin));
|
|
u = u.ScaledBy(umax - umin);
|
|
v = v.ScaledBy(vmax - vmin);
|
|
|
|
// So we can now generate the top and bottom surfaces of the extrusion,
|
|
// planes within a translated (and maybe mirrored) version of that csys.
|
|
SSurface s0, s1;
|
|
s0 = SSurface::FromPlane(orig.Plus(t0), u, v);
|
|
s0.color = color;
|
|
s1 = SSurface::FromPlane(orig.Plus(t1).Plus(u), u.ScaledBy(-1), v);
|
|
s1.color = color;
|
|
hSSurface hs0 = surface.AddAndAssignId(&s0),
|
|
hs1 = surface.AddAndAssignId(&s1);
|
|
|
|
// Now go through the input curves. For each one, generate its surface
|
|
// of extrusion, its two translated trim curves, and one trim line. We
|
|
// go through by loops so that we can assign the lines correctly.
|
|
SBezierLoop *sbl;
|
|
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
|
|
SBezier *sb;
|
|
|
|
typedef struct {
|
|
hSCurve hc;
|
|
hSSurface hs;
|
|
} TrimLine;
|
|
List<TrimLine> trimLines;
|
|
ZERO(&trimLines);
|
|
|
|
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
|
|
// Generate the surface of extrusion of this curve, and add
|
|
// it to the list
|
|
SSurface ss = SSurface::FromExtrusionOf(sb, t0, t1);
|
|
ss.color = color;
|
|
hSSurface hsext = surface.AddAndAssignId(&ss);
|
|
|
|
// Translate the curve by t0 and t1 to produce two trim curves
|
|
SCurve sc;
|
|
ZERO(&sc);
|
|
sc.isExact = true;
|
|
sc.exact = sb->TransformedBy(t0, Quaternion::IDENTITY);
|
|
(sc.exact).MakePwlInto(&(sc.pts));
|
|
sc.surfA = hs0;
|
|
sc.surfB = hsext;
|
|
hSCurve hc0 = curve.AddAndAssignId(&sc);
|
|
|
|
ZERO(&sc);
|
|
sc.isExact = true;
|
|
sc.exact = sb->TransformedBy(t1, Quaternion::IDENTITY);
|
|
(sc.exact).MakePwlInto(&(sc.pts));
|
|
sc.surfA = hs1;
|
|
sc.surfB = hsext;
|
|
hSCurve hc1 = curve.AddAndAssignId(&sc);
|
|
|
|
STrimBy stb0, stb1;
|
|
// The translated curves trim the flat top and bottom surfaces.
|
|
stb0 = STrimBy::EntireCurve(this, hc0, false);
|
|
stb1 = STrimBy::EntireCurve(this, hc1, true);
|
|
(surface.FindById(hs0))->trim.Add(&stb0);
|
|
(surface.FindById(hs1))->trim.Add(&stb1);
|
|
|
|
// The translated curves also trim the surface of extrusion.
|
|
stb0 = STrimBy::EntireCurve(this, hc0, true);
|
|
stb1 = STrimBy::EntireCurve(this, hc1, false);
|
|
(surface.FindById(hsext))->trim.Add(&stb0);
|
|
(surface.FindById(hsext))->trim.Add(&stb1);
|
|
|
|
// And form the trim line
|
|
Vector pt = sb->Finish();
|
|
ZERO(&sc);
|
|
sc.isExact = true;
|
|
sc.exact = SBezier::From(pt.Plus(t0), pt.Plus(t1));
|
|
(sc.exact).MakePwlInto(&(sc.pts));
|
|
hSCurve hl = curve.AddAndAssignId(&sc);
|
|
// save this for later
|
|
TrimLine tl;
|
|
tl.hc = hl;
|
|
tl.hs = hsext;
|
|
trimLines.Add(&tl);
|
|
}
|
|
|
|
int i;
|
|
for(i = 0; i < trimLines.n; i++) {
|
|
TrimLine *tl = &(trimLines.elem[i]);
|
|
SSurface *ss = surface.FindById(tl->hs);
|
|
|
|
TrimLine *tlp = &(trimLines.elem[WRAP(i-1, trimLines.n)]);
|
|
|
|
STrimBy stb;
|
|
stb = STrimBy::EntireCurve(this, tl->hc, true);
|
|
ss->trim.Add(&stb);
|
|
stb = STrimBy::EntireCurve(this, tlp->hc, false);
|
|
ss->trim.Add(&stb);
|
|
|
|
(curve.FindById(tl->hc))->surfA = ss->h;
|
|
(curve.FindById(tlp->hc))->surfB = ss->h;
|
|
}
|
|
trimLines.Clear();
|
|
}
|
|
}
|
|
|
|
void SShell::MakeFromCopyOf(SShell *a) {
|
|
MakeFromTransformationOf(a, Vector::From(0, 0, 0), Quaternion::IDENTITY);
|
|
}
|
|
|
|
void SShell::MakeFromTransformationOf(SShell *a, Vector t, Quaternion q) {
|
|
SSurface *s;
|
|
for(s = a->surface.First(); s; s = a->surface.NextAfter(s)) {
|
|
SSurface n;
|
|
n = SSurface::FromTransformationOf(s, t, q, true);
|
|
surface.Add(&n); // keeping the old ID
|
|
}
|
|
|
|
SCurve *c;
|
|
for(c = a->curve.First(); c; c = a->curve.NextAfter(c)) {
|
|
SCurve n;
|
|
n = SCurve::FromTransformationOf(c, t, q);
|
|
curve.Add(&n); // keeping the old ID
|
|
}
|
|
}
|
|
|
|
void SShell::MakeEdgesInto(SEdgeList *sel) {
|
|
SSurface *s;
|
|
for(s = surface.First(); s; s = surface.NextAfter(s)) {
|
|
s->MakeEdgesInto(this, sel, false);
|
|
}
|
|
}
|
|
|
|
void SShell::MakeSectionEdgesInto(Vector n, double d,
|
|
SEdgeList *sel, SBezierList *sbl)
|
|
{
|
|
SSurface *s;
|
|
for(s = surface.First(); s; s = surface.NextAfter(s)) {
|
|
if(s->CoincidentWithPlane(n, d)) {
|
|
s->MakeSectionEdgesInto(this, sel, sbl);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SShell::TriangulateInto(SMesh *sm) {
|
|
SSurface *s;
|
|
for(s = surface.First(); s; s = surface.NextAfter(s)) {
|
|
s->TriangulateInto(this, sm);
|
|
}
|
|
}
|
|
|
|
void SShell::Clear(void) {
|
|
SSurface *s;
|
|
for(s = surface.First(); s; s = surface.NextAfter(s)) {
|
|
s->Clear();
|
|
}
|
|
surface.Clear();
|
|
|
|
SCurve *c;
|
|
for(c = curve.First(); c; c = curve.NextAfter(c)) {
|
|
c->Clear();
|
|
}
|
|
curve.Clear();
|
|
}
|
|
|