solvespace/polygon.cpp
Jonathan Westhues c4e1270e25 Add constructive solid geometry ops. These work to some extent, but
not very well; I'm doing a b-rep, where the boundaries are complex
polygons, and there's too many special cases. I should probably
replace this with a triangle mesh solution.

[git-p4: depot-paths = "//depot/solvespace/": change = 1731]
2008-05-19 01:23:49 -08:00

494 lines
13 KiB
C++

#include "solvespace.h"
static int ByDouble(const void *av, const void *bv) {
const double *a = (const double *)av;
const double *b = (const double *)bv;
if(*a == *b) {
return 0;
} else if(*a > *b) {
return 1;
} else {
return -1;
}
}
bool SEdgeList::AssemblePolygon(SPolygon *dest, SEdge *errorAt) {
dest->Clear();
for(;;) {
Vector first, last;
int i;
for(i = 0; i < l.n; i++) {
if(!l.elem[i].tag) {
first = l.elem[i].a;
last = l.elem[i].b;
l.elem[i].tag = 1;
break;
}
}
if(i >= l.n) {
return true;
}
dest->AddEmptyContour();
dest->AddPoint(first);
dest->AddPoint(last);
do {
for(i = 0; i < l.n; i++) {
SEdge *se = &(l.elem[i]);
if(se->tag) continue;
if(se->a.Equals(last)) {
dest->AddPoint(se->b);
last = se->b;
se->tag = 1;
break;
}
if(se->b.Equals(last)) {
dest->AddPoint(se->a);
last = se->a;
se->tag = 1;
break;
}
}
if(i >= l.n) {
// Couldn't assemble a closed contour; mark where.
if(errorAt) {
errorAt->a = first;
errorAt->b = last;
}
return false;
}
} while(!last.Equals(first));
}
}
void SEdgeList::CopyBreaking(SEdgeList *dest) {
int i, j, k;
for(i = 0; i < l.n; i++) {
SEdge *ei = &(l.elem[i]);
Vector p0i = ei->a;
Vector dpi = (ei->b).Minus(ei->a);
double inter[100];
int inters = 0;
for(j = 0; j < l.n; j++) {
if(i == j) continue;
SEdge *ej = &(l.elem[j]);
Vector p0j = ej->a;
Vector dpj = (ej->b).Minus(ej->a);
// Find the intersection, if any
Vector dn = dpi.Cross(dpj);
if(dn.Magnitude() < 0.001) continue; // parallel, non-intersecting
Vector dni = dn.Cross(dpi);
Vector dnj = dn.Cross(dpj);
double tj = ((p0i.Minus(p0j)).Dot(dni))/(dpj.Dot(dni));
double ti = -((p0i.Minus(p0j)).Dot(dnj))/(dpi.Dot(dnj));
// could also test for skew, but assume it's all in plane so not
if(ti <= 0 || ti >= 1) continue;
if(tj < -0.001 || tj > 1.001) continue;
inter[inters++] = ti;
}
inter[inters++] = 0;
inter[inters++] = 1;
qsort(inter, inters, sizeof(inter[0]), ByDouble);
for(k = 1; k < inters; k++) {
SEdge ne;
ne.tag = 0;
ne.a = p0i.Plus(dpi.ScaledBy(inter[k-1]));
ne.b = p0i.Plus(dpi.ScaledBy(inter[k]));
dest->l.Add(&ne);
}
}
}
void SEdgeList::CullDuplicates(void) {
int i, j;
for(i = 0; i < l.n; i++) {
SEdge *se = &(l.elem[i]);
if(se->tag) continue;
if(((se->a).Minus(se->b)).Magnitude() < 0.01) {
se->tag = 1;
continue;
}
for(j = i+1; j < l.n; j++) {
SEdge *st = &(l.elem[j]);
if(st->tag) continue;
if(((se->a).Equals(st->a) && (se->b).Equals(st->b)) ||
((se->a).Equals(st->b) && (se->b).Equals(st->a)))
{
// This is an exact duplicate, so mark it as unused now.
st->tag = 1;
break;
}
}
}
}
bool SEdgeList::BooleanOp(int op, bool inA, bool inB) {
if(op == UNION) {
return inA || inB;
} else if(op == DIFF) {
return inA && (!inB);
} else if(op == INTERSECT) {
return inA && inB;
} else oops();
}
void SEdgeList::CullForBoolean(int op, SPolygon *a, SPolygon *b) {
int i;
for(i = 0; i < l.n; i++) {
SEdge *se = &(l.elem[i]);
if(se->tag) continue;
Vector tp = ((se->a).Plus(se->b)).ScaledBy(0.5);
Vector nudge = ((se->a).Minus(se->b)).Cross(a->normal);
nudge = nudge.WithMagnitude(.01);
Vector tp1 = tp.Plus(nudge);
Vector tp2 = tp.Minus(nudge);
bool inf1 = BooleanOp(op, a->ContainsPoint(tp1), b->ContainsPoint(tp1));
bool inf2 = BooleanOp(op, a->ContainsPoint(tp2), b->ContainsPoint(tp2));
if((inf1 && inf2) || (!inf1 && !inf2)) {
// The "in polygon" state doesn't change as you cross the edge;
// so it doesn't lie on the output polygon.
se->tag = 1;
}
}
}
void SPolygon::Clear(void) {
int i;
for(i = 0; i < l.n; i++) {
(l.elem[i]).l.Clear();
}
l.Clear();
}
void SPolygon::AddEmptyContour(void) {
SContour c;
memset(&c, 0, sizeof(c));
l.Add(&c);
}
void SPolygon::AddPoint(Vector p) {
if(l.n < 1) oops();
SPoint sp;
sp.tag = 0;
sp.p = p;
// Add to the last contour in the list
(l.elem[l.n-1]).l.Add(&sp);
}
void SPolygon::MakeEdgesInto(SEdgeList *el) {
int i;
for(i = 0; i < l.n; i++) {
(l.elem[i]).MakeEdgesInto(el);
}
}
Vector SPolygon::ComputeNormal(void) {
if(l.n < 1) return Vector::MakeFrom(0, 0, 0);
return (l.elem[0]).ComputeNormal();
}
bool SPolygon::ContainsPoint(Vector p) {
bool inside = false;
int i;
for(i = 0; i < l.n; i++) {
SContour *sc = &(l.elem[i]);
if(sc->ContainsPointProjdToNormal(normal, p)) {
inside = !inside;
}
}
return inside;
}
void SPolygon::IntersectAgainstPlane(SEdgeList *dest, Vector p0, Vector n) {
if(l.n == 0 || (l.elem[0].l.n == 0)) return;
double od = normal.Dot(l.elem[0].l.elem[0].p);
double d = n.Dot(p0);
Vector u = (normal.Cross(n));
if(u.Magnitude() < 0.001) {
if(n.Dot(normal) < 0) od = -od;
if(fabs(od - d) < 0.001) {
// The planes are coincident; so the intersection is a copy of
// this polygon.
MakeEdgesInto(dest);
}
return;
}
u = u.WithMagnitude(1);
Vector v = normal.Cross(u);
Vector lp = Vector::AtIntersectionOfPlanes(n, d, normal, od);
double vp = v.Dot(lp);
double inter[100];
int inters = 0;
int i;
for(i = 0; i < l.n; i++) {
SContour *sc = &(l.elem[i]);
// The 0.01 is because I mishandle the case where the intersection
// plane goes through a vertex
sc->IntersectAgainstPlane(inter, &inters, u, v, vp);
}
qsort(inter, inters, sizeof(inter[0]), ByDouble);
for(i = 0; i < inters; i += 2) {
SEdge se;
se.tag = 0;
se.a = lp.Plus(u.ScaledBy(inter[i]));
se.b = lp.Plus(u.ScaledBy(inter[i+1]));
dest->l.Add(&se);
}
}
void SPolygon::CopyBreaking(SPolyhedron *dest, SPolyhedron *against, int how) {
if(l.n == 0 || (l.elem[0].l.n == 0)) return;
Vector p0 = l.elem[0].l.elem[0].p;
SEdgeList el; ZERO(&el);
int i;
for(i = 0; i < against->l.n; i++) {
SPolygon *pb = &(against->l.elem[i]);
pb->IntersectAgainstPlane(&el, p0, normal);
}
el.CullDuplicates();
SPolygon inter; ZERO(&inter);
bool worked = el.AssemblePolygon(&inter, NULL);
inter.normal = normal;
SPolygon res; ZERO(&res);
if(how == 0) {
this->Boolean(&res, SEdgeList::DIFF, &inter);
res.normal = normal;
} else if(how == 1) {
this->Boolean(&res, SEdgeList::INTERSECT, &inter);
res.normal = normal.ScaledBy(-1);
} else oops();
if(res.l.n > 0) {
dest->l.Add(&res);
}
el.l.Clear();
inter.Clear();
}
void SPolygon::FixContourDirections(void) {
// Outside curve looks counterclockwise, projected against our normal.
int i, j;
for(i = 0; i < l.n; i++) {
SContour *sc = &(l.elem[i]);
if(sc->l.n < 1) continue;
Vector pt = (sc->l.elem[0]).p;
bool outer = true;
for(j = 0; j < l.n; j++) {
if(i == j) continue;
SContour *sct = &(l.elem[j]);
if(sct->ContainsPointProjdToNormal(normal, pt)) {
outer = !outer;
}
}
bool clockwise = sc->IsClockwiseProjdToNormal(normal);
if(clockwise && outer || (!clockwise && !outer)) {
sc->Reverse();
}
}
}
bool SPolygon::Boolean(SPolygon *dest, int op, SPolygon *b) {
SEdgeList el;
ZERO(&el);
this->MakeEdgesInto(&el);
b->MakeEdgesInto(&el);
SEdgeList br;
ZERO(&br);
el.CopyBreaking(&br);
br.CullDuplicates();
br.CullForBoolean(op, this, b);
SEdge e;
bool ret = br.AssemblePolygon(dest, &e);
if(!ret) {
br.l.ClearTags();
br.CullDuplicates();
br.CullForBoolean(op, this, b);
}
br.l.Clear();
el.l.Clear();
return ret;
}
void SContour::MakeEdgesInto(SEdgeList *el) {
int i;
for(i = 0; i < (l.n-1); i++) {
SEdge e;
e.tag = 0;
e.a = l.elem[i].p;
e.b = l.elem[i+1].p;
el->l.Add(&e);
}
}
Vector SContour::ComputeNormal(void) {
Vector n = Vector::MakeFrom(0, 0, 0);
for(int i = 0; i < l.n - 2; i++) {
Vector u = (l.elem[i+1].p).Minus(l.elem[i+0].p).WithMagnitude(1);
Vector v = (l.elem[i+2].p).Minus(l.elem[i+1].p).WithMagnitude(1);
Vector nt = u.Cross(v);
if(nt.Magnitude() > n.Magnitude()) {
n = nt;
}
}
return n.WithMagnitude(1);
}
bool SContour::IsClockwiseProjdToNormal(Vector n) {
// Degenerate things might happen as we draw; doesn't really matter
// what we do then.
if(n.Magnitude() < 0.01) return true;
// An arbitrary 2d coordinate system that has n as its normal
Vector u = n.Normal(0);
Vector v = n.Normal(1);
double area = 0;
for(int i = 0; i < (l.n - 1); i++) {
double u0 = (l.elem[i ].p).Dot(u);
double v0 = (l.elem[i ].p).Dot(v);
double u1 = (l.elem[i+1].p).Dot(u);
double v1 = (l.elem[i+1].p).Dot(v);
area += ((v0 + v1)/2)*(u1 - u0);
}
return (area < 0);
}
bool SContour::ContainsPointProjdToNormal(Vector n, Vector p) {
Vector u = n.Normal(0);
Vector v = n.Normal(1);
double up = p.Dot(u);
double vp = p.Dot(v);
bool inside = false;
for(int i = 0; i < (l.n - 1); i++) {
double ua = (l.elem[i ].p).Dot(u);
double va = (l.elem[i ].p).Dot(v);
// The curve needs to be exactly closed; approximation is death.
double ub = (l.elem[(i+1)%(l.n-1)].p).Dot(u);
double vb = (l.elem[(i+1)%(l.n-1)].p).Dot(v);
if ((((va <= vp) && (vp < vb)) ||
((vb <= vp) && (vp < va))) &&
(up < (ub - ua) * (vp - va) / (vb - va) + ua))
{
inside = !inside;
}
}
return inside;
}
void SContour::IntersectAgainstPlane(double *inter, int *inters,
Vector u, Vector v, double vp)
{
for(int i = 0; i < (l.n - 1); i++) {
double ua = (l.elem[i ].p).Dot(u);
double va = (l.elem[i ].p).Dot(v);
double ub = (l.elem[(i+1)%(l.n-1)].p).Dot(u);
double vb = (l.elem[(i+1)%(l.n-1)].p).Dot(v);
double u0, v0, du, dv;
if(va < vb) {
u0 = ua; v0 = va;
du = (ub - ua); dv = (vb - va);
} else {
u0 = ub; v0 = vb;
du = (ua - ub); dv = (va - vb);
}
if(dv == 0) continue;
double t = (vp - v0)/dv;
if(t >= 0 && t < 1) {
double ui = u0 + t*du;
// Our line v = vp intersects the edge; record the u value
inter[(*inters)++] = ui;
}
}
}
void SContour::Reverse(void) {
int i;
for(i = 0; i < (l.n / 2); i++) {
int i2 = (l.n - 1) - i;
SPoint t = l.elem[i2];
l.elem[i2] = l.elem[i];
l.elem[i] = t;
}
}
void SPolyhedron::AddFace(SPolygon *p) {
l.Add(p);
}
void SPolyhedron::Clear(void) {
int i;
for(i = 0; i < l.n; i++) {
(l.elem[i]).Clear();
}
l.Clear();
}
void SPolyhedron::IntersectAgainstPlane(SEdgeList *d, Vector p0, Vector n) {
int i;
for(i = 0; i < l.n; i++) {
SPolygon *sp = &(l.elem[i]);
sp->IntersectAgainstPlane(d, p0, n);
}
}
bool SPolyhedron::Boolean(SPolyhedron *dest, int op, SPolyhedron *b) {
int i;
dbp(">>>");
for(i = 0; i < l.n; i++) {
SPolygon *sp = &(l.elem[i]);
sp->CopyBreaking(dest, b, 0);
}
for(i = 0; i < b->l.n; i++) {
SPolygon *sp = &(b->l.elem[i]);
sp->CopyBreaking(dest, this, 1);
}
return true;
}