solvespace/util.cpp
Jonathan Westhues 853c6cb59c A big change, to add a concept of normals. These are "oriented
vectors", represented by unit quaternions. This permits me to add
circles, where the normal defines the plane of the circle.

Still many things painful. The interface for editing normals is not
so intuitive, and it's not yet clear how I would e.g. export a
circle entity and recreate it properly, since that entity has a
param not associated with a normal or point.

And the transformed points/normals do not yet support rotations.
That will be necessary soon.

[git-p4: depot-paths = "//depot/solvespace/": change = 1705]
2008-05-04 22:18:01 -08:00

325 lines
6.6 KiB
C++

#include "solvespace.h"
void MakeMatrix(double *mat, double a11, double a12, double a13, double a14,
double a21, double a22, double a23, double a24,
double a31, double a32, double a33, double a34,
double a41, double a42, double a43, double a44)
{
mat[ 0] = a11;
mat[ 1] = a21;
mat[ 2] = a31;
mat[ 3] = a41;
mat[ 4] = a12;
mat[ 5] = a22;
mat[ 6] = a32;
mat[ 7] = a42;
mat[ 8] = a13;
mat[ 9] = a23;
mat[10] = a33;
mat[11] = a43;
mat[12] = a14;
mat[13] = a24;
mat[14] = a34;
mat[15] = a44;
}
Quaternion Quaternion::MakeFrom(double w, double vx, double vy, double vz) {
Quaternion q;
q.w = w;
q.vx = vx;
q.vy = vy;
q.vz = vz;
return q;
}
Quaternion Quaternion::MakeFrom(Vector u, Vector v)
{
Vector n = u.Cross(v);
Quaternion q;
double s, tr = 1 + u.x + v.y + n.z;
if(tr > 1e-4) {
s = 2*sqrt(tr);
q.w = s/4;
q.vx = (v.z - n.y)/s;
q.vy = (n.x - u.z)/s;
q.vz = (u.y - v.x)/s;
} else {
double m = max(u.x, max(v.y, n.z));
if(m == u.x) {
s = 2*sqrt(1 + u.x - v.y - n.z);
q.w = (v.z - n.y)/s;
q.vx = s/4;
q.vy = (u.y + v.x)/s;
q.vz = (n.x + u.z)/s;
} else if(m == v.y) {
s = 2*sqrt(1 - u.x + v.y - n.z);
q.w = (n.x - u.z)/s;
q.vx = (u.y + v.x)/s;
q.vy = s/4;
q.vz = (v.z + n.y)/s;
} else if(m == n.z) {
s = 2*sqrt(1 - u.x - v.y + n.z);
q.w = (u.y - v.x)/s;
q.vx = (n.x + u.z)/s;
q.vy = (v.z + n.y)/s;
q.vz = s/4;
} else oops();
}
return q.WithMagnitude(1);
}
Quaternion Quaternion::Plus(Quaternion b) {
Quaternion q;
q.w = w + b.w;
q.vx = vx + b.vx;
q.vy = vy + b.vy;
q.vz = vz + b.vz;
return q;
}
Quaternion Quaternion::Minus(Quaternion b) {
Quaternion q;
q.w = w - b.w;
q.vx = vx - b.vx;
q.vy = vy - b.vy;
q.vz = vz - b.vz;
return q;
}
Quaternion Quaternion::ScaledBy(double s) {
Quaternion q;
q.w = w*s;
q.vx = vx*s;
q.vy = vy*s;
q.vz = vz*s;
return q;
}
double Quaternion::Magnitude(void) {
return sqrt(w*w + vx*vx + vy*vy + vz*vz);
}
Quaternion Quaternion::WithMagnitude(double s) {
return ScaledBy(s/Magnitude());
}
Vector Quaternion::RotationU(void) {
Vector v;
v.x = w*w + vx*vx - vy*vy - vz*vz;
v.y = 2*w *vz + 2*vx*vy;
v.z = 2*vx*vz - 2*w *vy;
return v;
}
Vector Quaternion::RotationV(void) {
Vector v;
v.x = 2*vx*vy - 2*w*vz;
v.y = w*w - vx*vx + vy*vy - vz*vz;
v.z = 2*w*vx + 2*vy*vz;
return v;
}
Vector Quaternion::RotationN(void) {
return RotationU().Cross(RotationV());
}
Vector Vector::MakeFrom(double x, double y, double z) {
Vector v;
v.x = x; v.y = y; v.z = z;
return v;
}
bool Vector::Equals(Vector v) {
double tol = 0.1;
if(fabs(x - v.x) > tol) return false;
if(fabs(y - v.y) > tol) return false;
if(fabs(z - v.z) > tol) return false;
return true;
}
Vector Vector::Plus(Vector b) {
Vector r;
r.x = x + b.x;
r.y = y + b.y;
r.z = z + b.z;
return r;
}
Vector Vector::Minus(Vector b) {
Vector r;
r.x = x - b.x;
r.y = y - b.y;
r.z = z - b.z;
return r;
}
Vector Vector::Negated(void) {
Vector r;
r.x = -x;
r.y = -y;
r.z = -z;
return r;
}
Vector Vector::Cross(Vector b) {
Vector r;
r.x = -(z*b.y) + (y*b.z);
r.y = (z*b.x) - (x*b.z);
r.z = -(y*b.x) + (x*b.y);
return r;
}
double Vector::Dot(Vector b) {
return (x*b.x + y*b.y + z*b.z);
}
Vector Vector::Normal(int which) {
Vector n;
// Arbitrarily choose one vector that's normal to us, pivoting
// appropriately.
double xa = fabs(x), ya = fabs(y), za = fabs(z);
double minc = min(min(xa, ya), za);
if(minc == xa) {
n.x = 0;
n.y = z;
n.z = -y;
} else if(minc == ya) {
n.y = 0;
n.z = x;
n.x = -z;
} else if(minc == za) {
n.z = 0;
n.x = y;
n.y = -x;
} else oops();
if(which == 0) {
// That's the vector we return.
} else if(which == 1) {
n = this->Cross(n);
} else oops();
n = n.WithMagnitude(1);
return n;
}
Vector Vector::RotatedAbout(Vector axis, double theta) {
double c = cos(theta);
double s = sin(theta);
axis = axis.WithMagnitude(1);
Vector r;
r.x = (x)*(c + (1 - c)*(axis.x)*(axis.x)) +
(y)*((1 - c)*(axis.x)*(axis.y) - s*(axis.z)) +
(z)*((1 - c)*(axis.x)*(axis.z) + s*(axis.y));
r.y = (x)*((1 - c)*(axis.y)*(axis.x) + s*(axis.z)) +
(y)*(c + (1 - c)*(axis.y)*(axis.y)) +
(z)*((1 - c)*(axis.y)*(axis.z) - s*(axis.x));
r.z = (x)*((1 - c)*(axis.z)*(axis.x) - s*(axis.y)) +
(y)*((1 - c)*(axis.z)*(axis.y) + s*(axis.x)) +
(z)*(c + (1 - c)*(axis.z)*(axis.z));
return r;
}
double Vector::Magnitude(void) {
return sqrt(x*x + y*y + z*z);
}
Vector Vector::ScaledBy(double v) {
Vector r;
r.x = x * v;
r.y = y * v;
r.z = z * v;
return r;
}
Vector Vector::WithMagnitude(double v) {
double m = Magnitude();
if(m < 0.001) {
return MakeFrom(v, 0, 0);
} else {
return ScaledBy(v/Magnitude());
}
}
Point2d Point2d::Plus(Point2d b) {
Point2d r;
r.x = x + b.x;
r.y = y + b.y;
return r;
}
Point2d Point2d::Minus(Point2d b) {
Point2d r;
r.x = x - b.x;
r.y = y - b.y;
return r;
}
Point2d Point2d::ScaledBy(double s) {
Point2d r;
r.x = x*s;
r.y = y*s;
return r;
}
double Point2d::Magnitude(void) {
return sqrt(x*x + y*y);
}
Point2d Point2d::WithMagnitude(double v) {
double m = Magnitude();
if(m < 0.001) {
Point2d r = { v, 0 };
return r;
} else {
return ScaledBy(v/Magnitude());
}
}
double Point2d::DistanceTo(Point2d p) {
double dx = x - p.x;
double dy = y - p.y;
return sqrt(dx*dx + dy*dy);
}
double Point2d::DistanceToLine(Point2d p0, Point2d dp, bool segment) {
double m = dp.x*dp.x + dp.y*dp.y;
if(m < 0.05) return 1e12;
// Let our line be p = p0 + t*dp, for a scalar t from 0 to 1
double t = (dp.x*(x - p0.x) + dp.y*(y - p0.y))/m;
if((t < 0 || t > 1) && segment) {
// The closest point is one of the endpoints; determine which.
double d0 = DistanceTo(p0);
double d1 = DistanceTo(p0.Plus(dp));
return min(d1, d0);
} else {
Point2d closest = p0.Plus(dp.ScaledBy(t));
return DistanceTo(closest);
}
}