Moved the ArrayUsageCheck tests to their own new file (ArrayUsageCheckTest)
This commit is contained in:
parent
4f88a1e4a1
commit
423d22fa13
|
@ -70,6 +70,7 @@ tock_SOURCES = $(tock_SOURCES_hs) frontends/LexOccam.x frontends/LexRain.x
|
|||
|
||||
tocktest_SOURCES = $(tock_SOURCES)
|
||||
tocktest_SOURCES += transformations/PassTest.hs transformations/RainUsageCheckTest.hs
|
||||
tocktest_SOURCES += transformations/ArrayUsageCheckTest.hs
|
||||
tocktest_SOURCES += backends/GenerateCTest.hs backends/BackendPassesTest.hs
|
||||
tocktest_SOURCES += common/TestUtils.hs common/CommonTest.hs common/FlowGraphTest.hs
|
||||
tocktest_SOURCES += frontends/ParseRainTest.hs frontends/RainPassesTest.hs frontends/RainTypesTest.hs
|
||||
|
|
10
TestMain.hs
10
TestMain.hs
|
@ -18,6 +18,8 @@ with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
|
||||
-- | A module containing the 'main' function for the Tock test suite. It currently runs tests from the following modules:
|
||||
--
|
||||
-- * "ArrayUsageCheckTest"
|
||||
--
|
||||
-- * "BackendPassesTest"
|
||||
--
|
||||
-- * "CommonTest"
|
||||
|
@ -41,6 +43,7 @@ import System.Console.GetOpt
|
|||
import System.Environment
|
||||
import Test.HUnit
|
||||
|
||||
import qualified ArrayUsageCheckTest (qcTests)
|
||||
import qualified BackendPassesTest (tests)
|
||||
import qualified CommonTest (tests)
|
||||
import qualified FlowGraphTest (qcTests)
|
||||
|
@ -49,7 +52,7 @@ import qualified ParseRainTest (tests)
|
|||
import qualified PassTest (tests)
|
||||
import qualified RainPassesTest (tests)
|
||||
import qualified RainTypesTest (tests)
|
||||
import qualified RainUsageCheckTest (qcTests)
|
||||
import qualified RainUsageCheckTest (tests)
|
||||
import TestUtils
|
||||
import Utils
|
||||
|
||||
|
@ -88,7 +91,8 @@ main = do opts <- getArgs >>* getOpt RequireOrder options
|
|||
qcTests = concatMap snd tests
|
||||
|
||||
tests = [
|
||||
noqc BackendPassesTest.tests
|
||||
ArrayUsageCheckTest.qcTests
|
||||
,noqc BackendPassesTest.tests
|
||||
,noqc CommonTest.tests
|
||||
,FlowGraphTest.qcTests
|
||||
,noqc GenerateCTest.tests
|
||||
|
@ -96,7 +100,7 @@ main = do opts <- getArgs >>* getOpt RequireOrder options
|
|||
,noqc PassTest.tests
|
||||
,noqc RainPassesTest.tests
|
||||
,noqc RainTypesTest.tests
|
||||
,RainUsageCheckTest.qcTests
|
||||
,noqc RainUsageCheckTest.tests
|
||||
]
|
||||
|
||||
noqc :: Test -> (Test, [QuickCheckTest])
|
||||
|
|
449
transformations/ArrayUsageCheckTest.hs
Normal file
449
transformations/ArrayUsageCheckTest.hs
Normal file
|
@ -0,0 +1,449 @@
|
|||
{-
|
||||
Tock: a compiler for parallel languages
|
||||
Copyright (C) 2007 University of Kent
|
||||
|
||||
This program is free software; you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by the
|
||||
Free Software Foundation, either version 2 of the License, or (at your
|
||||
option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
-}
|
||||
|
||||
module ArrayUsageCheckTest (qcTests) where
|
||||
|
||||
import Control.Monad.Identity
|
||||
import Data.Array.IArray
|
||||
import Data.List
|
||||
import qualified Data.Map as Map
|
||||
import Data.Maybe
|
||||
import Prelude hiding ((**),fail)
|
||||
import Test.HUnit
|
||||
import Test.QuickCheck
|
||||
|
||||
|
||||
import ArrayUsageCheck
|
||||
import PrettyShow
|
||||
import TestUtils hiding (m)
|
||||
import Utils
|
||||
|
||||
testArrayCheck :: Test
|
||||
testArrayCheck = TestList
|
||||
[
|
||||
-- x_1 = 0
|
||||
pass (0, [], [[0,1]], [])
|
||||
-- x_1 = 0, 3x_1 >= 0 --> 0 >= 0
|
||||
,pass (1, [[0,0]], [[0,1]], [[0,3]])
|
||||
-- -7 + x_1 = 0
|
||||
,pass (2, [], [[-7,1]], [])
|
||||
-- x_1 = 9, 3 + 2x_1 >= 0 --> 21 >= 0
|
||||
,pass (3, [[21,0]], [[-9,1]], [[3,2]])
|
||||
-- x_1 + x_2 = 0, 4x_1 = 8, 2x_2 = -4
|
||||
,pass (4, [], [[0,1,1], [-8,4,0], [4,0,2]], [])
|
||||
-- - x_1 + x_2 = 0, 4x_1 = 8, 2x_2 = 4
|
||||
,pass (5, [], [[0,-1,1], [-8,4,0], [-4,0,2]], [])
|
||||
-- -x_1 = -9, 3 + 2x_1 >= 0 --> 21 >= 0
|
||||
,pass (6, [[21,0]], [[9,-1]], [[3,2]])
|
||||
|
||||
|
||||
-- From the Omega Test paper (x = x_1, y = x_2, z = x_3, sigma = x_1 (effectively)):
|
||||
,pass (100, [[11,13,0,0], [28,-13,0,0], [47,-5,0,0], [53,5,0,0]], [[-17,7,12,31], [-7,3,5,14]],
|
||||
[[-1,1,0,0], [40,-1,0,0], [50,0,1,0], [50,0,-1,0]])
|
||||
|
||||
-- Impossible/inconsistent equality constraints:
|
||||
|
||||
-- -7 = 0
|
||||
,TestCase $ assertEqual "testArrayCheck 1002" (Nothing) (solveConstraints' [simpleArray [(0,7),(1,0)]] [])
|
||||
-- x_1 = 3, x_1 = 4
|
||||
,TestCase $ assertEqual "testArrayCheck 1003" (Nothing) (solveConstraints' [simpleArray [(0,-3),(1,1)], simpleArray [(0,-4),(1,1)]] [])
|
||||
-- x_1 + x_2 = 0, x_1 + x_2 = -3
|
||||
,TestCase $ assertEqual "testArrayCheck 1004" (Nothing) (solveConstraints' [simpleArray [(0,0),(1,1),(2,1)], simpleArray [(0,3),(1,1),(2,1)]] [])
|
||||
-- 4x_1 = 7
|
||||
,TestCase $ assertEqual "testArrayCheck 1005" (Nothing) (solveConstraints' [simpleArray [(0,-7),(1,4)]] [])
|
||||
]
|
||||
where
|
||||
solveConstraints' = solveConstraints undefined
|
||||
|
||||
pass :: (Int, [[Integer]], [[Integer]], [[Integer]]) -> Test
|
||||
pass (ind, expIneq, inpEq, inpIneq) = TestCase $ assertEqual ("testArrayCheck " ++ show ind)
|
||||
(Just $ map arrayise expIneq) (transformMaybe snd $ solveConstraints' (map arrayise inpEq) (map arrayise inpIneq))
|
||||
|
||||
arrayise :: [Integer] -> Array Int Integer
|
||||
arrayise = simpleArray . zip [0..]
|
||||
|
||||
-- Various helpers for easily creating equations.
|
||||
-- Rules for writing equations:
|
||||
-- * You must use the variables i, j, k in that order as you need them.
|
||||
-- Never write an equation just involving i and k, or j and k. Always
|
||||
-- use (i), (i and j), or (i and j and k).
|
||||
-- * Constant scaling must always be on the left, and does not need the con
|
||||
-- function. con 1 ** i won't compile.
|
||||
|
||||
-- Useful to make sure the equation types are not mixed up:
|
||||
newtype HandyEq = Eq [(Int, Integer)] deriving (Show, Eq)
|
||||
newtype HandyIneq = Ineq [(Int, Integer)] deriving (Show, Eq)
|
||||
|
||||
-- | The constraint for an arbitrary i,j that exist between low and high (inclusive)
|
||||
-- and where i and j are distinct and i is taken to be the lower index.
|
||||
i_j_constraint :: Integer -> Integer -> [HandyIneq]
|
||||
i_j_constraint low high = [con low <== i, i ++ con 1 <== j, j <== con high]
|
||||
|
||||
-- The easy way of writing equations is built on the following Haskell magic.
|
||||
-- Essentially, everything is a list of (index, coefficient). You can scale
|
||||
-- with the ** operator, and you can form equalities and inequalities with
|
||||
-- the ===, <== and >== operators. The type system saves you from doing anything
|
||||
-- nonsensical. The other neat thing is that + is ++. An &&& operator is defined
|
||||
-- for combining inequality lists.
|
||||
|
||||
leq :: [[(Int,Integer)]] -> [HandyIneq]
|
||||
leq [] = []
|
||||
leq [_] = []
|
||||
leq (x:y:zs) = (x <== y) : (leq (y:zs))
|
||||
|
||||
(&&&) :: [HandyIneq] -> [HandyIneq] -> [HandyIneq]
|
||||
(&&&) = (++)
|
||||
|
||||
infixr 4 ===
|
||||
infixr 4 <==
|
||||
infixr 4 >==
|
||||
infix 6 **
|
||||
|
||||
(===) :: [(Int,Integer)] -> [(Int,Integer)] -> HandyEq
|
||||
lhs === rhs = Eq $ lhs ++ negateVars rhs
|
||||
(<==) :: [(Int,Integer)] -> [(Int,Integer)] -> HandyIneq
|
||||
lhs <== rhs = Ineq $ negateVars lhs ++ rhs
|
||||
(>==) :: [(Int,Integer)] -> [(Int,Integer)] -> HandyIneq
|
||||
lhs >== rhs = Ineq $ lhs ++ negateVars rhs
|
||||
negateVars :: [(Int,Integer)] -> [(Int,Integer)]
|
||||
negateVars = map (transformPair id negate)
|
||||
(**) :: Integer -> [(Int,Integer)] -> [(Int,Integer)]
|
||||
n ** var = map (transformPair id (* n)) var
|
||||
con :: Integer -> [(Int,Integer)]
|
||||
con c = [(0,c)]
|
||||
i,j,k,m,n,p :: [(Int, Integer)]
|
||||
i = [(1,1)]
|
||||
j = [(2,1)]
|
||||
k = [(3,1)]
|
||||
m = [(4,1)]
|
||||
n = [(5,1)]
|
||||
p = [(6,1)]
|
||||
|
||||
|
||||
testIndexes :: Test
|
||||
testIndexes = TestList
|
||||
[
|
||||
|
||||
easilySolved (0, [i === con 7], [])
|
||||
,easilySolved (1, [2 ** i === con 12], [])
|
||||
--should fail:
|
||||
,notSolveable (2, [i === con 7],[i <== con 5])
|
||||
|
||||
-- Can i = j?
|
||||
,notSolveable (3, [i === j], i_j_constraint 0 9)
|
||||
|
||||
-- TODO need to run the below exampls on a better test (they are not "easily" solved):
|
||||
|
||||
-- Can (j + 1 % 10 == i + 1 % 10)?
|
||||
,neverSolveable $ withKIsMod (i ++ con 1) 10 $ withNIsMod (j ++ con 1) 10 $ (4, [k === n], i_j_constraint 0 9)
|
||||
-- Off by one (i + 1 % 9)
|
||||
,hardSolved $ withKIsMod (i ++ con 1) 9 $ withNIsMod (j ++ con 1) 9 $ (5, [k === n], i_j_constraint 0 9)
|
||||
|
||||
-- The "nightmare" example from the Omega Test paper:
|
||||
,neverSolveable (6,[],leq [con 27, 11 ** i ++ 13 ** j, con 45] &&& leq [con (-10), 7 ** i ++ (-9) ** j, con 4])
|
||||
|
||||
,safeParTest 100 True (0,10) [i]
|
||||
,safeParTest 120 False (0,10) [i,i ++ con 1]
|
||||
,safeParTest 140 True (0,10) [2 ** i, 2 ** i ++ con 1]
|
||||
|
||||
|
||||
--TODO tidy up the tests and add this example that once failed the QuickCheck tests:
|
||||
|
||||
--OMI ([array (0,3) [(0,0),(1,-1),(2,0),(3,0)],array (0,3) [(0,5),(1,0),(2,-1),(3,0)],array (0,3) [(0,4),(1,0),(2,0),(3,-1)]],([array (0,3) [(0,-32),(1,4),(2,4),(3,3)],array (0,3) [(0,-17),(1,1),(2,1),(3,3)],array (0,3) [(0,-54),(1,10),(2,10),(3,1)]],[array (0,3) [(0,-60),(1,3),(2,8),(3,5)],array (0,3) [(0,-60),(1,9),(2,4),(3,10)],array (0,3) [(0,-25),(1,5),(2,1),(3,5)]]))
|
||||
|
||||
,TestCase $ assertStuff "testIndexes makeEq"
|
||||
(Right (Map.empty,(uncurry makeConsistent) (doubleEq [con 0 === con 1],leq [con 0,con 0,con 7] &&& leq [con 0,con 1,con 7]))) $
|
||||
makeEquations [intLiteral 0, intLiteral 1] (intLiteral 7)
|
||||
,TestCase $ assertStuff "testIndexes makeEq 2"
|
||||
(Right (Map.singleton "i" 1,(uncurry makeConsistent) (doubleEq [i === con 3],leq [con 0,con 3,con 7] &&& leq [con 0,i,con 7]))) $
|
||||
makeEquations [exprVariable "i",intLiteral 3] (intLiteral 7)
|
||||
|
||||
,TestCase $ assertCounterExampleIs "testIndexes testVarMapping" (Map.fromList [(1,7)])
|
||||
$ makeConsistent [i === con 7] []
|
||||
]
|
||||
where
|
||||
-- TODO comment these functions and rename the latter one
|
||||
doubleEq = concatMap (\(Eq e) -> [Eq e,Eq $ negateVars e])
|
||||
assertStuff title x y = assertEqual title (munge x) (munge y)
|
||||
where
|
||||
munge = transformEither id (transformPair id (transformPair sort sort))
|
||||
|
||||
assertCounterExampleIs title counterEq (eq,ineq)
|
||||
= assertCompareCustom title equivEq (Just counterEq) ((solveAndPrune eq ineq) >>* (getCounterEqs . fst))
|
||||
where
|
||||
equivEq (Just xs) (Just ys) = xs == ys
|
||||
equivEq Nothing Nothing = True
|
||||
equivEq _ _ = False
|
||||
|
||||
|
||||
-- Given some indexes using "i", this function checks whether these can
|
||||
-- ever overlap within the bounds given, and matches this against
|
||||
-- the expected value; True for safe, False for unsafe.
|
||||
safeParTest :: Int -> Bool -> (Integer,Integer) -> [[(Int,Integer)]] -> Test
|
||||
safeParTest ind expSafe (low, high) usesI = TestCase $
|
||||
(if expSafe
|
||||
then assertEqual ("testIndexes " ++ show ind ++ " should be safe (unsolveable)") []
|
||||
else assertNotEqual ("testIndexes " ++ show ind ++ " should be solveable") []
|
||||
)
|
||||
$ findSolveable $ zip3 [ind..] (equalityCombinations) (repeat constraint)
|
||||
where
|
||||
changeItoJ (1,n) = (2,n)
|
||||
changeItoJ x = x
|
||||
|
||||
usesJ = map (map changeItoJ) usesI
|
||||
|
||||
constraint = i_j_constraint low high
|
||||
|
||||
equalityCombinations :: [[HandyEq]]
|
||||
equalityCombinations = map (\(lhs,rhs) -> [lhs === rhs]) $ product2 (usesI,usesJ)
|
||||
|
||||
|
||||
--TODO clear up this mess of easilySolved/hardSolved helper functions
|
||||
|
||||
findSolveable :: [(Int, [HandyEq], [HandyIneq])] -> [(Int, [HandyEq], [HandyIneq])]
|
||||
findSolveable = filter isSolveable
|
||||
|
||||
isSolveable :: (Int, [HandyEq], [HandyIneq]) -> Bool
|
||||
isSolveable (ind, eq, ineq) = isJust $ (uncurry solveAndPrune) (makeConsistent eq ineq)
|
||||
|
||||
easilySolved :: (Int, [HandyEq], [HandyIneq]) -> Test
|
||||
easilySolved (ind, eq, ineq) = TestCase $
|
||||
let ineq' = (uncurry solveAndPrune) (makeConsistent eq ineq) in
|
||||
case ineq' of
|
||||
Nothing -> assertFailure $ "testIndexes " ++ show ind ++ " expected to pass (solving+pruning) but failed; problem: " ++ show (eq,ineq)
|
||||
Just (_,ineq'') ->
|
||||
if numVariables ineq'' <= 1
|
||||
then return ()
|
||||
-- Until we put in the route from original to mapped variables,
|
||||
-- we can't give a useful test failure here:
|
||||
else assertFailure $ "testIndexes " ++ show ind ++ " more than one variable left after solving"
|
||||
|
||||
hardSolved :: (Int, [HandyEq], [HandyIneq]) -> Test
|
||||
hardSolved (ind, eq, ineq) = TestCase $
|
||||
assertBool ("testIndexes " ++ show ind) $ isJust $
|
||||
(transformMaybe snd . uncurry solveAndPrune) (makeConsistent eq ineq) >>= (pruneAndCheck . fmElimination)
|
||||
|
||||
notSolveable :: (Int, [HandyEq], [HandyIneq]) -> Test
|
||||
notSolveable (ind, eq, ineq) = TestCase $ assertEqual ("testIndexes " ++ show ind) Nothing $
|
||||
(transformMaybe snd . uncurry solveAndPrune) (makeConsistent eq ineq) >>* ((<= 1) . numVariables)
|
||||
|
||||
|
||||
neverSolveable :: (Int, [HandyEq], [HandyIneq]) -> Test
|
||||
neverSolveable (ind, eq, ineq) = TestCase $ assertEqual ("testIndexes " ++ show ind) Nothing $
|
||||
(transformMaybe snd . uncurry solveAndPrune) (makeConsistent eq ineq) >>= (pruneAndCheck . fmElimination)
|
||||
|
||||
|
||||
isMod :: [(Int,Integer)] -> [(Int,Integer)] -> Integer -> ([HandyEq], [HandyIneq])
|
||||
isMod var@[(ind,1)] alpha divisor = ([alpha_minus_div_sigma === var], leq [con 0, alpha_minus_div_sigma, con $ divisor - 1])
|
||||
where
|
||||
alpha_minus_div_sigma = alpha ++ (negate divisor) ** sigma
|
||||
sigma = [(ind+1,1)]
|
||||
|
||||
-- | Adds both k and m to the equation!
|
||||
withKIsMod :: [(Int,Integer)] -> Integer -> (Int, [HandyEq], [HandyIneq]) -> (Int, [HandyEq], [HandyIneq])
|
||||
withKIsMod alpha divisor (ind,eq,ineq) = let (eq',ineq') = isMod k alpha divisor in (ind,eq ++ eq',ineq ++ ineq')
|
||||
|
||||
-- | Adds both n and p to the equation!
|
||||
withNIsMod :: [(Int,Integer)] -> Integer -> (Int, [HandyEq], [HandyIneq]) -> (Int, [HandyEq], [HandyIneq])
|
||||
withNIsMod alpha divisor (ind,eq,ineq) = let (eq',ineq') = isMod n alpha divisor in (ind,eq ++ eq',ineq ++ ineq')
|
||||
|
||||
makeConsistent :: [HandyEq] -> [HandyIneq] -> (EqualityProblem, InequalityProblem)
|
||||
makeConsistent eqs ineqs = (map ensure eqs', map ensure ineqs')
|
||||
where
|
||||
eqs' = map (\(Eq e) -> e) eqs
|
||||
ineqs' = map (\(Ineq e) -> e) ineqs
|
||||
|
||||
ensure = accumArray (+) 0 (0, largestIndex)
|
||||
largestIndex = maximum $ map (maximum . map fst) $ eqs' ++ ineqs'
|
||||
|
||||
-- QuickCheck tests for Omega Test:
|
||||
-- The idea is to begin with a random list of integers, representing transformed y_i variables.
|
||||
-- This will be the solution. Feed this into a random list of inequalities. The inequalities do
|
||||
-- not have to be true; they merely have to exist. Then slowly transform
|
||||
|
||||
|
||||
--TODO Allow zero coefficients (but be careful we don't
|
||||
-- produce unsolveable equations, e.g. where an equation is all zeroes, or a_3 is zero in all of them)
|
||||
|
||||
-- | Generates a list of random numbers of the given size, where the numbers are all co-prime.
|
||||
-- This is so they can be used as normalised coefficients in a linear equation
|
||||
coprimeList :: Int -> Gen [Integer]
|
||||
coprimeList size = do non_normal <- replicateM size $ oneof [choose (-100,-1), choose (1,100)]
|
||||
return $ map (\x -> x `div` (mygcdList non_normal)) non_normal
|
||||
|
||||
-- | Generates a list of lists of co-prime numbers, where each list is distinct.
|
||||
-- The returned list of lists will be square; N equations, each with N items
|
||||
distinctCoprimeLists :: Int -> Gen [[Integer]]
|
||||
distinctCoprimeLists size = distinctCoprimeLists' [] size
|
||||
where
|
||||
-- n is the number left to generate; size is still the "width" of the lists
|
||||
distinctCoprimeLists' :: [[Integer]] -> Int -> Gen [[Integer]]
|
||||
distinctCoprimeLists' result 0 = return result
|
||||
distinctCoprimeLists' soFar n = do next <- coprimeList size
|
||||
if (next `elem` soFar)
|
||||
then distinctCoprimeLists' soFar n -- Try again
|
||||
else distinctCoprimeLists' (soFar ++ [next]) (n - 1)
|
||||
|
||||
-- | Given a solution, and the coefficients, work out the result.
|
||||
-- Effectively the dot-product of the two lists.
|
||||
calcUnits :: [Integer] -> [Integer] -> Integer
|
||||
calcUnits a b = sum $ zipWith (*) a b
|
||||
|
||||
-- | Given the solution for an equation (values of x_1 .. x_n), generates
|
||||
-- equalities and inequalities. The equalities will all be true and consistent,
|
||||
-- the inequalities will all turn out to be equal. That is, when the inequalities
|
||||
-- are resolved, the LHS will equal 0. Therefore we can generate the inequalities
|
||||
-- using the same method as equalities. Also, the equalities are assured to be
|
||||
-- distinct. If they were not distinct (one could be transformed into another by scaling)
|
||||
-- then the equation set would be unsolveable.
|
||||
generateEqualities :: [Integer] -> Gen (EqualityProblem, InequalityProblem)
|
||||
generateEqualities solution = do eqCoeffs <- distinctCoprimeLists num_vars
|
||||
ineqCoeffs <- distinctCoprimeLists num_vars
|
||||
return (map mkCoeffArray eqCoeffs, map mkCoeffArray ineqCoeffs)
|
||||
where
|
||||
num_vars = length solution
|
||||
mkCoeffArray coeffs = arrayise $ (negate $ calcUnits solution coeffs) : coeffs
|
||||
|
||||
-- | The input to a test that will have an exact solution after the equality problems have been
|
||||
-- solved. All the inequalities will be simplified to 0 = 0. The answers to the equation are
|
||||
-- in the map.
|
||||
newtype OmegaTestInput = OMI (Map.Map CoeffIndex Integer,(EqualityProblem, InequalityProblem)) deriving (Show)
|
||||
|
||||
-- | Generates an Omega test problem with between 1 and 10 variables (incl), where the solutions
|
||||
-- are numbers between -20 and + 20 (incl).
|
||||
generateProblem :: Gen (Map.Map CoeffIndex Integer,(EqualityProblem, InequalityProblem))
|
||||
generateProblem = choose (1,10) >>= (\n -> replicateM n $ choose (-20,20)) >>=
|
||||
(\ans -> seqPair (return $ makeAns (zip [1..] ans),generateEqualities ans))
|
||||
where
|
||||
makeAns :: [(Int, Integer)] -> Map.Map CoeffIndex Integer
|
||||
makeAns = Map.fromList
|
||||
|
||||
instance Arbitrary OmegaTestInput where
|
||||
arbitrary = generateProblem >>* OMI
|
||||
|
||||
qcOmegaEquality :: [QuickCheckTest]
|
||||
qcOmegaEquality = [scaleQC (40,200,2000,10000) prop]
|
||||
where
|
||||
prop (OMI (ans,(eq,ineq))) = omegaCheck actAnswer
|
||||
where
|
||||
actAnswer = solveConstraints (defaultMapping $ Map.size ans) eq ineq
|
||||
-- We use Map.assocs because pshow doesn't work on Maps
|
||||
omegaCheck (Just (vm,ineqs)) = (True *==* all (all (== 0) . elems) ineqs)
|
||||
*&&* ((Map.assocs ans) *==* (Map.assocs $ getCounterEqs vm))
|
||||
omegaCheck Nothing = mkFailResult ("Found Nothing while expecting answer: " ++ show (eq,ineq))
|
||||
|
||||
-- | A randomly mutated problem ready for testing the inequality pruning.
|
||||
-- The first part is the input to the pruning, and the second part is the expected result;
|
||||
-- the remaining inequalities, preceding by a list of equalities.
|
||||
type MutatedProblem =
|
||||
(InequalityProblem
|
||||
,Maybe ([EqualityConstraintEquation],InequalityProblem))
|
||||
|
||||
-- | The type for inside the function; easier to work with since it can't be
|
||||
-- inconsistent until the end.
|
||||
type MutatedProblem' =
|
||||
(InequalityProblem
|
||||
,[EqualityConstraintEquation]
|
||||
,InequalityProblem)
|
||||
|
||||
-- | Given a distinct inequality list, mutates each one at random using one of these mutations:
|
||||
-- * Unchanged
|
||||
-- * Generates similar but redundant equations
|
||||
-- * Generates its dual (to be transformed into an equality equation)
|
||||
-- * Generates an inconsistent partner (rare - 20% chance of existing in the returned problem).
|
||||
-- The equations passed in do not have to be consistent, merely unique and normalised.
|
||||
-- Returns the input, and the expected output.
|
||||
mutateEquations :: InequalityProblem -> Gen MutatedProblem
|
||||
mutateEquations ineq = do (a,b,c) <- mapM mutate ineq >>*
|
||||
foldl (\(a,b,c) (x,y,z) -> (a++x,b++y,c++z)) ([],[],[])
|
||||
frequency
|
||||
[
|
||||
(80,return (a,Just (b,c)))
|
||||
,(20,addInconsistent a >>* (\x -> (x,Nothing)))
|
||||
]
|
||||
where
|
||||
-- We take an equation like 5 + 3x - y >=0 (i.e. 3x - y >= -5)
|
||||
-- and add -6 -3x + y >= 0 (i.e. -6 >= 3x - y)
|
||||
-- This works for all cases, even where the unit coeff is zero;
|
||||
-- 3x - y >= 0 becomes -1 -3x + y >= 0 (i.e. -1 >= 3x - y)
|
||||
addInconsistent :: InequalityProblem -> Gen InequalityProblem
|
||||
addInconsistent inpIneq
|
||||
= do randEq <- oneof (map return inpIneq)
|
||||
let negEq = amap negate randEq
|
||||
let modRandEq = (negEq) // [(0, (negEq ! 0) - 1)]
|
||||
return (modRandEq : inpIneq)
|
||||
|
||||
mutate :: InequalityConstraintEquation -> Gen MutatedProblem'
|
||||
mutate ineq = oneof
|
||||
[
|
||||
return ([ineq],[],[ineq])
|
||||
,addRedundant ineq
|
||||
,return $ addDual ineq
|
||||
]
|
||||
|
||||
addDual :: InequalityConstraintEquation -> MutatedProblem'
|
||||
addDual eq = ([eq,neg],[eq],[]) where neg = amap negate eq
|
||||
|
||||
addRedundant :: InequalityConstraintEquation -> Gen MutatedProblem'
|
||||
addRedundant ineq = do i <- choose (1,5) -- number of redundant equations to add
|
||||
newIneqs <- replicateM i addRedundant'
|
||||
return (ineq : newIneqs, [], [ineq])
|
||||
where
|
||||
-- A redundant equation is one with a bigger unit coefficient:
|
||||
addRedundant' = do n <- choose (1,100)
|
||||
return $ ineq // [(0,n + (ineq ! 0))]
|
||||
|
||||
-- | Puts an equality into normal form. This is where the first non-zero coefficient is positive.
|
||||
-- If all coefficients are zero, it doesn't matter (it will be equal to its negation)
|
||||
normaliseEquality :: EqualityConstraintEquation -> EqualityConstraintEquation
|
||||
normaliseEquality eq = case listToMaybe $ filter (/= 0) $ elems eq of
|
||||
Nothing -> eq -- all zeroes
|
||||
Just x -> amap (* (signum x)) eq
|
||||
|
||||
newtype OmegaPruneInput = OPI MutatedProblem deriving (Show)
|
||||
|
||||
instance Arbitrary OmegaPruneInput where
|
||||
arbitrary = ((generateProblem >>* snd) >>= (return . snd) >>= mutateEquations) >>* OPI
|
||||
|
||||
qcOmegaPrune :: [QuickCheckTest]
|
||||
qcOmegaPrune = [scaleQC (100,1000,10000,50000) prop]
|
||||
where
|
||||
--We perform the map assocs because we can't compare arrays using *==*
|
||||
-- (toConstr fails in the pretty-printing!).
|
||||
prop (OPI (inp,out)) =
|
||||
case out of
|
||||
Nothing -> Nothing *==* result
|
||||
Just (expEq,expIneq) ->
|
||||
case result of
|
||||
Nothing -> mkFailResult $ "Expected success but got failure: " ++ pshow (inp,out)
|
||||
Just (actEq,actIneq) ->
|
||||
(sort (map assocs expIneq) *==* sort (map assocs actIneq))
|
||||
*&&* ((sort $ map normaliseEquality expEq) *==* (sort $ map normaliseEquality actEq))
|
||||
where
|
||||
result = pruneAndCheck inp
|
||||
|
||||
qcTests :: (Test, [QuickCheckTest])
|
||||
qcTests = (TestList
|
||||
[
|
||||
testArrayCheck
|
||||
,testIndexes
|
||||
]
|
||||
,qcOmegaEquality ++ qcOmegaPrune)
|
||||
|
||||
|
||||
|
|
@ -16,25 +16,19 @@ You should have received a copy of the GNU General Public License along
|
|||
with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
-}
|
||||
|
||||
module RainUsageCheckTest (qcTests) where
|
||||
module RainUsageCheckTest (tests) where
|
||||
|
||||
import Control.Monad.Identity
|
||||
import Data.Graph.Inductive
|
||||
import Data.Array.IArray
|
||||
import Data.List
|
||||
import qualified Data.Map as Map
|
||||
import Data.Maybe
|
||||
import qualified Data.Set as Set
|
||||
import Prelude hiding (fail)
|
||||
import Test.HUnit
|
||||
import Test.QuickCheck
|
||||
|
||||
|
||||
import ArrayUsageCheck
|
||||
import qualified AST as A
|
||||
import FlowGraph
|
||||
import Metadata
|
||||
import PrettyShow
|
||||
import RainUsageCheck
|
||||
import TestUtils
|
||||
import Utils
|
||||
|
@ -300,412 +294,11 @@ testReachDef = TestList
|
|||
fst3 :: (a,b,c) -> a
|
||||
fst3(x,_,_) = x
|
||||
|
||||
testArrayCheck :: Test
|
||||
testArrayCheck = TestList
|
||||
[
|
||||
-- x_1 = 0
|
||||
pass (0, [], [[0,1]], [])
|
||||
-- x_1 = 0, 3x_1 >= 0 --> 0 >= 0
|
||||
,pass (1, [[0,0]], [[0,1]], [[0,3]])
|
||||
-- -7 + x_1 = 0
|
||||
,pass (2, [], [[-7,1]], [])
|
||||
-- x_1 = 9, 3 + 2x_1 >= 0 --> 21 >= 0
|
||||
,pass (3, [[21,0]], [[-9,1]], [[3,2]])
|
||||
-- x_1 + x_2 = 0, 4x_1 = 8, 2x_2 = -4
|
||||
,pass (4, [], [[0,1,1], [-8,4,0], [4,0,2]], [])
|
||||
-- - x_1 + x_2 = 0, 4x_1 = 8, 2x_2 = 4
|
||||
,pass (5, [], [[0,-1,1], [-8,4,0], [-4,0,2]], [])
|
||||
-- -x_1 = -9, 3 + 2x_1 >= 0 --> 21 >= 0
|
||||
,pass (6, [[21,0]], [[9,-1]], [[3,2]])
|
||||
|
||||
|
||||
-- From the Omega Test paper (x = x_1, y = x_2, z = x_3, sigma = x_1 (effectively)):
|
||||
,pass (100, [[11,13,0,0], [28,-13,0,0], [47,-5,0,0], [53,5,0,0]], [[-17,7,12,31], [-7,3,5,14]],
|
||||
[[-1,1,0,0], [40,-1,0,0], [50,0,1,0], [50,0,-1,0]])
|
||||
|
||||
-- Impossible/inconsistent equality constraints:
|
||||
|
||||
-- -7 = 0
|
||||
,TestCase $ assertEqual "testArrayCheck 1002" (Nothing) (solveConstraints' [simpleArray [(0,7),(1,0)]] [])
|
||||
-- x_1 = 3, x_1 = 4
|
||||
,TestCase $ assertEqual "testArrayCheck 1003" (Nothing) (solveConstraints' [simpleArray [(0,-3),(1,1)], simpleArray [(0,-4),(1,1)]] [])
|
||||
-- x_1 + x_2 = 0, x_1 + x_2 = -3
|
||||
,TestCase $ assertEqual "testArrayCheck 1004" (Nothing) (solveConstraints' [simpleArray [(0,0),(1,1),(2,1)], simpleArray [(0,3),(1,1),(2,1)]] [])
|
||||
-- 4x_1 = 7
|
||||
,TestCase $ assertEqual "testArrayCheck 1005" (Nothing) (solveConstraints' [simpleArray [(0,-7),(1,4)]] [])
|
||||
]
|
||||
where
|
||||
solveConstraints' = solveConstraints undefined
|
||||
|
||||
pass :: (Int, [[Integer]], [[Integer]], [[Integer]]) -> Test
|
||||
pass (ind, expIneq, inpEq, inpIneq) = TestCase $ assertEqual ("testArrayCheck " ++ show ind)
|
||||
(Just $ map arrayise expIneq) (transformMaybe snd $ solveConstraints' (map arrayise inpEq) (map arrayise inpIneq))
|
||||
|
||||
arrayise :: [Integer] -> Array Int Integer
|
||||
arrayise = simpleArray . zip [0..]
|
||||
|
||||
-- Useful to make sure the equation types are not mixed up:
|
||||
newtype HandyEq = Eq [(Int, Integer)] deriving (Show, Eq)
|
||||
newtype HandyIneq = Ineq [(Int, Integer)] deriving (Show, Eq)
|
||||
|
||||
testIndexes :: Test
|
||||
testIndexes = TestList
|
||||
[
|
||||
-- Rules for writing equations:
|
||||
-- You must use the variables i, j, k in that order as you need them.
|
||||
-- Never write an equation just involving i and k, or j and k. Always
|
||||
-- use (i), (i and j), or (i and j and k).
|
||||
-- Constant scaling must always be on the left, and does not need the con
|
||||
-- function. con 1 ** i won't compile.
|
||||
|
||||
easilySolved (0, [i === con 7], [])
|
||||
,easilySolved (1, [2 ** i === con 12], [])
|
||||
--should fail:
|
||||
,notSolveable (2, [i === con 7],[i <== con 5])
|
||||
|
||||
-- Can i = j?
|
||||
,notSolveable (3, [i === j], i_j_constraint 0 9)
|
||||
|
||||
-- TODO need to run the below exampls on a better test (they are not "easily" solved):
|
||||
|
||||
-- Can (j + 1 % 10 == i + 1 % 10)?
|
||||
,neverSolveable $ withKIsMod (i ++ con 1) 10 $ withNIsMod (j ++ con 1) 10 $ (4, [k === n], i_j_constraint 0 9)
|
||||
-- Off by one (i + 1 % 9)
|
||||
,hardSolved $ withKIsMod (i ++ con 1) 9 $ withNIsMod (j ++ con 1) 9 $ (5, [k === n], i_j_constraint 0 9)
|
||||
|
||||
-- The "nightmare" example from the Omega Test paper:
|
||||
,neverSolveable (6,[],leq [con 27, 11 ** i ++ 13 ** j, con 45] &&& leq [con (-10), 7 ** i ++ (-9) ** j, con 4])
|
||||
|
||||
,safeParTest 100 True (0,10) [i]
|
||||
,safeParTest 120 False (0,10) [i,i ++ con 1]
|
||||
,safeParTest 140 True (0,10) [2 ** i, 2 ** i ++ con 1]
|
||||
|
||||
|
||||
,TestCase $ assertStuff "testIndexes makeEq"
|
||||
(Right (Map.empty,(uncurry makeConsistent) (doubleEq [con 0 === con 1],leq [con 0,con 0,con 7] &&& leq [con 0,con 1,con 7]))) $
|
||||
makeEquations [intLiteral 0, intLiteral 1] (intLiteral 7)
|
||||
,TestCase $ assertStuff "testIndexes makeEq 2"
|
||||
(Right (Map.singleton "i" 1,(uncurry makeConsistent) (doubleEq [i === con 3],leq [con 0,con 3,con 7] &&& leq [con 0,i,con 7]))) $
|
||||
makeEquations [exprVariable "i",intLiteral 3] (intLiteral 7)
|
||||
|
||||
,TestCase $ assertCounterExampleIs "testIndexes testVarMapping" (Map.fromList [(1,7)])
|
||||
$ makeConsistent [i === con 7] []
|
||||
]
|
||||
where
|
||||
-- TODO comment these functions and rename the latter one
|
||||
doubleEq = concatMap (\(Eq e) -> [Eq e,Eq $ negateVars e])
|
||||
assertStuff title x y = assertEqual title (munge x) (munge y)
|
||||
where
|
||||
munge = transformEither id (transformPair id (transformPair sort sort))
|
||||
|
||||
assertCounterExampleIs title counterEq (eq,ineq)
|
||||
= assertCompareCustom title equivEq (Just counterEq) ((solveAndPrune eq ineq) >>* (getCounterEqs . fst))
|
||||
where
|
||||
equivEq (Just xs) (Just ys) = xs == ys
|
||||
equivEq Nothing Nothing = True
|
||||
equivEq _ _ = False
|
||||
|
||||
|
||||
-- Given some indexes using "i", this function checks whether these can
|
||||
-- ever overlap within the bounds given, and matches this against
|
||||
-- the expected value; True for safe, False for unsafe.
|
||||
safeParTest :: Int -> Bool -> (Integer,Integer) -> [[(Int,Integer)]] -> Test
|
||||
safeParTest ind expSafe (low, high) usesI = TestCase $
|
||||
(if expSafe
|
||||
then assertEqual ("testIndexes " ++ show ind ++ " should be safe (unsolveable)") []
|
||||
else assertNotEqual ("testIndexes " ++ show ind ++ " should be solveable") []
|
||||
)
|
||||
$ findSolveable $ zip3 [ind..] (equalityCombinations) (repeat constraint)
|
||||
where
|
||||
changeItoJ (1,n) = (2,n)
|
||||
changeItoJ x = x
|
||||
|
||||
usesJ = map (map changeItoJ) usesI
|
||||
|
||||
constraint = i_j_constraint low high
|
||||
|
||||
equalityCombinations :: [[HandyEq]]
|
||||
equalityCombinations = map (\(lhs,rhs) -> [lhs === rhs]) $ product2 (usesI,usesJ)
|
||||
|
||||
|
||||
-- | The constraint for an arbitrary i,j that exist between low and high (inclusive)
|
||||
-- and where i and j are distinct and i is taken to be the lower index.
|
||||
i_j_constraint :: Integer -> Integer -> [HandyIneq]
|
||||
i_j_constraint low high = [con low <== i, i ++ con 1 <== j, j <== con high]
|
||||
|
||||
--TODO clear up this mess of easilySolved/hardSolved helper functions
|
||||
|
||||
findSolveable :: [(Int, [HandyEq], [HandyIneq])] -> [(Int, [HandyEq], [HandyIneq])]
|
||||
findSolveable = filter isSolveable
|
||||
|
||||
isSolveable :: (Int, [HandyEq], [HandyIneq]) -> Bool
|
||||
isSolveable (ind, eq, ineq) = isJust $ (uncurry solveAndPrune) (makeConsistent eq ineq)
|
||||
|
||||
easilySolved :: (Int, [HandyEq], [HandyIneq]) -> Test
|
||||
easilySolved (ind, eq, ineq) = TestCase $
|
||||
let ineq' = (uncurry solveAndPrune) (makeConsistent eq ineq) in
|
||||
case ineq' of
|
||||
Nothing -> assertFailure $ "testIndexes " ++ show ind ++ " expected to pass (solving+pruning) but failed; problem: " ++ show (eq,ineq)
|
||||
Just (_,ineq'') ->
|
||||
if numVariables ineq'' <= 1
|
||||
then return ()
|
||||
-- Until we put in the route from original to mapped variables,
|
||||
-- we can't give a useful test failure here:
|
||||
else assertFailure $ "testIndexes " ++ show ind ++ " more than one variable left after solving"
|
||||
|
||||
hardSolved :: (Int, [HandyEq], [HandyIneq]) -> Test
|
||||
hardSolved (ind, eq, ineq) = TestCase $
|
||||
assertBool ("testIndexes " ++ show ind) $ isJust $
|
||||
(transformMaybe snd . uncurry solveAndPrune) (makeConsistent eq ineq) >>= (pruneAndCheck . fmElimination)
|
||||
|
||||
notSolveable :: (Int, [HandyEq], [HandyIneq]) -> Test
|
||||
notSolveable (ind, eq, ineq) = TestCase $ assertEqual ("testIndexes " ++ show ind) Nothing $
|
||||
(transformMaybe snd . uncurry solveAndPrune) (makeConsistent eq ineq) >>* ((<= 1) . numVariables)
|
||||
|
||||
|
||||
neverSolveable :: (Int, [HandyEq], [HandyIneq]) -> Test
|
||||
neverSolveable (ind, eq, ineq) = TestCase $ assertEqual ("testIndexes " ++ show ind) Nothing $
|
||||
(transformMaybe snd . uncurry solveAndPrune) (makeConsistent eq ineq) >>= (pruneAndCheck . fmElimination)
|
||||
|
||||
|
||||
-- The easy way of writing equations is built on the following Haskell magic.
|
||||
-- Essentially, everything is a list of (index, coefficient). You can scale
|
||||
-- with the ** operator, and you can form equalities and inequalities with
|
||||
-- the ===, <== and >== operators. The type system saves you from doing anything
|
||||
-- nonsensical.
|
||||
|
||||
leq :: [[(Int,Integer)]] -> [HandyIneq]
|
||||
leq [] = []
|
||||
leq [_] = []
|
||||
leq (x:y:zs) = (x <== y) : (leq (y:zs))
|
||||
|
||||
(&&&) = (++)
|
||||
|
||||
infixr 4 ===
|
||||
infixr 4 <==
|
||||
infixr 4 >==
|
||||
infix 6 **
|
||||
|
||||
(===) :: [(Int,Integer)] -> [(Int,Integer)] -> HandyEq
|
||||
lhs === rhs = Eq $ lhs ++ negateVars rhs
|
||||
(<==) :: [(Int,Integer)] -> [(Int,Integer)] -> HandyIneq
|
||||
lhs <== rhs = Ineq $ negateVars lhs ++ rhs
|
||||
(>==) :: [(Int,Integer)] -> [(Int,Integer)] -> HandyIneq
|
||||
lhs >== rhs = Ineq $ lhs ++ negateVars rhs
|
||||
negateVars :: [(Int,Integer)] -> [(Int,Integer)]
|
||||
negateVars = map (transformPair id negate)
|
||||
(**) :: Integer -> [(Int,Integer)] -> [(Int,Integer)]
|
||||
n ** var = map (transformPair id (* n)) var
|
||||
con :: Integer -> [(Int,Integer)]
|
||||
con c = [(0,c)]
|
||||
i,j,k,m,n,p :: [(Int, Integer)]
|
||||
i = [(1,1)]
|
||||
j = [(2,1)]
|
||||
k = [(3,1)]
|
||||
m = [(4,1)]
|
||||
n = [(5,1)]
|
||||
p = [(6,1)]
|
||||
|
||||
isMod :: [(Int,Integer)] -> [(Int,Integer)] -> Integer -> ([HandyEq], [HandyIneq])
|
||||
isMod var@[(ind,1)] alpha divisor = ([alpha_minus_div_sigma === var], leq [con 0, alpha_minus_div_sigma, con $ divisor - 1])
|
||||
where
|
||||
alpha_minus_div_sigma = alpha ++ (negate divisor) ** sigma
|
||||
sigma = [(ind+1,1)]
|
||||
|
||||
-- | Adds both k and m to the equation!
|
||||
withKIsMod :: [(Int,Integer)] -> Integer -> (Int, [HandyEq], [HandyIneq]) -> (Int, [HandyEq], [HandyIneq])
|
||||
withKIsMod alpha divisor (ind,eq,ineq) = let (eq',ineq') = isMod k alpha divisor in (ind,eq ++ eq',ineq ++ ineq')
|
||||
|
||||
-- | Adds both n and p to the equation!
|
||||
withNIsMod :: [(Int,Integer)] -> Integer -> (Int, [HandyEq], [HandyIneq]) -> (Int, [HandyEq], [HandyIneq])
|
||||
withNIsMod alpha divisor (ind,eq,ineq) = let (eq',ineq') = isMod n alpha divisor in (ind,eq ++ eq',ineq ++ ineq')
|
||||
|
||||
makeConsistent :: [HandyEq] -> [HandyIneq] -> (EqualityProblem, InequalityProblem)
|
||||
makeConsistent eqs ineqs = (map ensure eqs', map ensure ineqs')
|
||||
where
|
||||
eqs' = map (\(Eq e) -> e) eqs
|
||||
ineqs' = map (\(Ineq e) -> e) ineqs
|
||||
|
||||
ensure = accumArray (+) 0 (0, largestIndex)
|
||||
largestIndex = maximum $ map (maximum . map fst) $ eqs' ++ ineqs'
|
||||
|
||||
-- QuickCheck tests for Omega Test:
|
||||
-- The idea is to begin with a random list of integers, representing transformed y_i variables.
|
||||
-- This will be the solution. Feed this into a random list of inequalities. The inequalities do
|
||||
-- not have to be true; they merely have to exist. Then slowly transform
|
||||
|
||||
|
||||
--TODO Allow zero coefficients (but be careful we don't
|
||||
-- produce unsolveable equations, e.g. where an equation is all zeroes, or a_3 is zero in all of them)
|
||||
|
||||
-- | Generates a list of random numbers of the given size, where the numbers are all co-prime.
|
||||
-- This is so they can be used as normalised coefficients in a linear equation
|
||||
coprimeList :: Int -> Gen [Integer]
|
||||
coprimeList size = do non_normal <- replicateM size $ oneof [choose (-100,-1), choose (1,100)]
|
||||
return $ map (\x -> x `div` (mygcdList non_normal)) non_normal
|
||||
|
||||
-- | Generates a list of lists of co-prime numbers, where each list is distinct.
|
||||
-- The returned list of lists will be square; N equations, each with N items
|
||||
distinctCoprimeLists :: Int -> Gen [[Integer]]
|
||||
distinctCoprimeLists size = distinctCoprimeLists' [] size
|
||||
where
|
||||
-- n is the number left to generate; size is still the "width" of the lists
|
||||
distinctCoprimeLists' :: [[Integer]] -> Int -> Gen [[Integer]]
|
||||
distinctCoprimeLists' result 0 = return result
|
||||
distinctCoprimeLists' soFar n = do next <- coprimeList size
|
||||
if (next `elem` soFar)
|
||||
then distinctCoprimeLists' soFar n -- Try again
|
||||
else distinctCoprimeLists' (soFar ++ [next]) (n - 1)
|
||||
|
||||
-- | Given a solution, and the coefficients, work out the result.
|
||||
-- Effectively the dot-product of the two lists.
|
||||
calcUnits :: [Integer] -> [Integer] -> Integer
|
||||
calcUnits a b = sum $ zipWith (*) a b
|
||||
|
||||
-- | Given the solution for an equation (values of x_1 .. x_n), generates
|
||||
-- equalities and inequalities. The equalities will all be true and consistent,
|
||||
-- the inequalities will all turn out to be equal. That is, when the inequalities
|
||||
-- are resolved, the LHS will equal 0. Therefore we can generate the inequalities
|
||||
-- using the same method as equalities. Also, the equalities are assured to be
|
||||
-- distinct. If they were not distinct (one could be transformed into another by scaling)
|
||||
-- then the equation set would be unsolveable.
|
||||
generateEqualities :: [Integer] -> Gen (EqualityProblem, InequalityProblem)
|
||||
generateEqualities solution = do eqCoeffs <- distinctCoprimeLists num_vars
|
||||
ineqCoeffs <- distinctCoprimeLists num_vars
|
||||
return (map mkCoeffArray eqCoeffs, map mkCoeffArray ineqCoeffs)
|
||||
where
|
||||
num_vars = length solution
|
||||
mkCoeffArray coeffs = arrayise $ (negate $ calcUnits solution coeffs) : coeffs
|
||||
|
||||
-- | The input to a test that will have an exact solution after the equality problems have been
|
||||
-- solved. All the inequalities will be simplified to 0 = 0. The answers to the equation are
|
||||
-- in the map.
|
||||
newtype OmegaTestInput = OMI (Map.Map CoeffIndex Integer,(EqualityProblem, InequalityProblem)) deriving (Show)
|
||||
|
||||
-- | Generates an Omega test problem with between 1 and 10 variables (incl), where the solutions
|
||||
-- are numbers between -20 and + 20 (incl).
|
||||
generateProblem :: Gen (Map.Map CoeffIndex Integer,(EqualityProblem, InequalityProblem))
|
||||
generateProblem = choose (1,10) >>= (\n -> replicateM n $ choose (-20,20)) >>=
|
||||
(\ans -> seqPair (return $ makeAns (zip [1..] ans),generateEqualities ans))
|
||||
where
|
||||
makeAns :: [(Int, Integer)] -> Map.Map CoeffIndex Integer
|
||||
makeAns = Map.fromList
|
||||
|
||||
instance Arbitrary OmegaTestInput where
|
||||
arbitrary = generateProblem >>* OMI
|
||||
|
||||
qcOmegaEquality :: [QuickCheckTest]
|
||||
qcOmegaEquality = [scaleQC (40,200,2000,10000) prop]
|
||||
where
|
||||
prop (OMI (ans,(eq,ineq))) = omegaCheck actAnswer
|
||||
where
|
||||
actAnswer = solveConstraints (defaultMapping $ Map.size ans) eq ineq
|
||||
-- We use Map.assocs because pshow doesn't work on Maps
|
||||
omegaCheck (Just (vm,ineqs)) = (True *==* all (all (== 0) . elems) ineqs)
|
||||
*&&* ((Map.assocs ans) *==* (Map.assocs $ getCounterEqs vm))
|
||||
omegaCheck Nothing = mkFailResult ("Found Nothing while expecting answer: " ++ show (eq,ineq))
|
||||
|
||||
-- | A randomly mutated problem ready for testing the inequality pruning.
|
||||
-- The first part is the input to the pruning, and the second part is the expected result;
|
||||
-- the remaining inequalities, preceding by a list of equalities.
|
||||
type MutatedProblem =
|
||||
(InequalityProblem
|
||||
,Maybe ([EqualityConstraintEquation],InequalityProblem))
|
||||
|
||||
-- | The type for inside the function; easier to work with since it can't be
|
||||
-- inconsistent until the end.
|
||||
type MutatedProblem' =
|
||||
(InequalityProblem
|
||||
,[EqualityConstraintEquation]
|
||||
,InequalityProblem)
|
||||
|
||||
-- | Given a distinct inequality list, mutates each one at random using one of these mutations:
|
||||
-- * Unchanged
|
||||
-- * Generates similar but redundant equations
|
||||
-- * Generates its dual (to be transformed into an equality equation)
|
||||
-- * Generates an inconsistent partner (rare - 20% chance of existing in the returned problem).
|
||||
-- The equations passed in do not have to be consistent, merely unique and normalised.
|
||||
-- Returns the input, and the expected output.
|
||||
mutateEquations :: InequalityProblem -> Gen MutatedProblem
|
||||
mutateEquations ineq = do (a,b,c) <- mapM mutate ineq >>*
|
||||
foldl (\(a,b,c) (x,y,z) -> (a++x,b++y,c++z)) ([],[],[])
|
||||
frequency
|
||||
[
|
||||
(80,return (a,Just (b,c)))
|
||||
,(20,addInconsistent a >>* (\x -> (x,Nothing)))
|
||||
]
|
||||
where
|
||||
-- We take an equation like 5 + 3x - y >=0 (i.e. 3x - y >= -5)
|
||||
-- and add -6 -3x + y >= 0 (i.e. -6 >= 3x - y)
|
||||
-- This works for all cases, even where the unit coeff is zero;
|
||||
-- 3x - y >= 0 becomes -1 -3x + y >= 0 (i.e. -1 >= 3x - y)
|
||||
addInconsistent :: InequalityProblem -> Gen InequalityProblem
|
||||
addInconsistent inpIneq
|
||||
= do randEq <- oneof (map return inpIneq)
|
||||
let negEq = amap negate randEq
|
||||
let modRandEq = (negEq) // [(0, (negEq ! 0) - 1)]
|
||||
return (modRandEq : inpIneq)
|
||||
|
||||
mutate :: InequalityConstraintEquation -> Gen MutatedProblem'
|
||||
mutate ineq = oneof
|
||||
[
|
||||
return ([ineq],[],[ineq])
|
||||
,addRedundant ineq
|
||||
,return $ addDual ineq
|
||||
]
|
||||
|
||||
addDual :: InequalityConstraintEquation -> MutatedProblem'
|
||||
addDual eq = ([eq,neg],[eq],[]) where neg = amap negate eq
|
||||
|
||||
addRedundant :: InequalityConstraintEquation -> Gen MutatedProblem'
|
||||
addRedundant ineq = do i <- choose (1,5) -- number of redundant equations to add
|
||||
newIneqs <- replicateM i addRedundant'
|
||||
return (ineq : newIneqs, [], [ineq])
|
||||
where
|
||||
-- A redundant equation is one with a bigger unit coefficient:
|
||||
addRedundant' = do n <- choose (1,100)
|
||||
return $ ineq // [(0,n + (ineq ! 0))]
|
||||
|
||||
-- | Puts an equality into normal form. This is where the first non-zero coefficient is positive.
|
||||
-- If all coefficients are zero, it doesn't matter (it will be equal to its negation)
|
||||
normaliseEquality :: EqualityConstraintEquation -> EqualityConstraintEquation
|
||||
normaliseEquality eq = case listToMaybe $ filter (/= 0) $ elems eq of
|
||||
Nothing -> eq -- all zeroes
|
||||
Just x -> amap (* (signum x)) eq
|
||||
|
||||
newtype OmegaPruneInput = OPI MutatedProblem deriving (Show)
|
||||
|
||||
instance Arbitrary OmegaPruneInput where
|
||||
arbitrary = ((generateProblem >>* snd) >>= (return . snd) >>= mutateEquations) >>* OPI
|
||||
|
||||
qcOmegaPrune :: [QuickCheckTest]
|
||||
qcOmegaPrune = [scaleQC (100,1000,10000,50000) prop]
|
||||
where
|
||||
--We perform the map assocs because we can't compare arrays using *==*
|
||||
-- (toConstr fails in the pretty-printing!).
|
||||
prop (OPI (inp,out)) =
|
||||
case out of
|
||||
Nothing -> Nothing *==* result
|
||||
Just (expEq,expIneq) ->
|
||||
case result of
|
||||
Nothing -> mkFailResult $ "Expected success but got failure: " ++ pshow (inp,out)
|
||||
Just (actEq,actIneq) ->
|
||||
(sort (map assocs expIneq) *==* sort (map assocs actIneq))
|
||||
*&&* ((sort $ map normaliseEquality expEq) *==* (sort $ map normaliseEquality actEq))
|
||||
where
|
||||
result = pruneAndCheck inp
|
||||
|
||||
qcTests :: (Test, [QuickCheckTest])
|
||||
qcTests = (TestList
|
||||
tests :: Test
|
||||
tests = TestList
|
||||
[
|
||||
testGetVarProc
|
||||
,testIndexes
|
||||
,testInitVar
|
||||
-- ,testParUsageCheck
|
||||
,testReachDef
|
||||
,testArrayCheck
|
||||
]
|
||||
,qcOmegaEquality ++ qcOmegaPrune)
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user