Added support (and tests) for case statements in the control-flow graph

This commit is contained in:
Neil Brown 2007-10-28 16:31:15 +00:00
parent bd14ed56ba
commit 5c4bf74a75
2 changed files with 68 additions and 4 deletions

View File

@ -16,6 +16,27 @@ You should have received a copy of the GNU General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.
-}
-- | The module for building control-flow graphs. Most statements are merely processed as-is (one statement becomes one node).
-- The only cases of interest are the control structures.
--
-- * Seq blocks are merely strung together with ESeq edges.
--
-- * Par blocks have a dummy begin and end node. The begin node has outgoing links
-- to all the members (EStartPar n), and the end nodes of each of the members has
-- a link (EEndPar n) back to the the dummy end node. Thus all the par members thread
-- back through the same common node at the end.
--
-- * While loops have a condition node representing the test-expression. This condition node
-- has an ESeq link out to the body of the while loop, and there is an ESeq link back from the
-- end of the while loop to the condition node. It is the condition node that is linked
-- to nodes before and after it.
--
-- * Case statements have a slight optimisation. Technically, the cases are examined in some
-- (probably undefined) order, with an Else option coming last. But since the expressions
-- to check against are constant, I have chosen to represent case statements as follows:
-- There is a dummy begin node with the test-expression. This has ESeq links to all possible options.
-- The end of each option links back to a dummy end node.
module FlowGraph (EdgeLabel(..), FNode(..), FlowGraph, buildFlowGraph, makeFlowGraphInstr) where
import Control.Monad.Error
@ -35,7 +56,7 @@ import Utils
-- and this identifier is unique and matches a later endpar link
data EdgeLabel = ESeq | EStartPar Int | EEndPar Int deriving (Show, Eq, Ord)
data OuterType = None | Seq | Par
data OuterType = None | Seq | Par | Case (Node,Node)
newtype FNode a = Node (Meta, a)
--type FEdge = (Node, EdgeLabel, Node)
@ -112,7 +133,26 @@ buildFlowGraph blank f s
nEnd <- addDummyNode m
addParEdges nStart nEnd nodes
return (nStart, nEnd)
_ -> return (-1,-1)
buildStructured _ (A.OnlyP _ p) = buildProcess p
buildStructured outer (A.OnlyO _ (A.Option m es p))
= do nexp <- addNode' m (A.ExpressionList m es)
(nbodys, nbodye) <- buildProcess p
addEdge ESeq nexp nbodys
case outer of
Case (cStart, cEnd) ->
do addEdge ESeq cStart nexp
addEdge ESeq nbodye cEnd
_ -> throwError "Option found inside CASE statement"
return (nexp,nbodye)
buildStructured outer (A.OnlyO _ (A.Else m p))
= do (nbodys, nbodye) <- buildProcess p
case outer of
Case (cStart, cEnd) ->
do addEdge ESeq cStart nbodys
addEdge ESeq nbodye cEnd
_ -> throwError "Option found inside CASE statement"
return (nbodys,nbodye)
buildStructured outer (A.Spec m spec str)
= do n <- addNode' m spec
(s,e) <- buildStructured outer str
@ -131,6 +171,11 @@ buildFlowGraph blank f s
addEdge ESeq n start
addEdge ESeq end n
return (n, n)
buildProcess (A.Case m e s)
= do nStart <- addNode' (findMeta e) e
nEnd <- addDummyNode m
buildStructured (Case (nStart,nEnd)) s
return (nStart, nEnd)
buildProcess p = do val <- (lift . lift) (f p)
(liftM mkPair) $ addNode (findMeta p, val)
@ -139,6 +184,6 @@ buildFlowGraph blank f s
-- So rather than using generics, we could have a small function dictionary instead.
-- Types definitely applied to:
-- A.Specification, A.Process, A.Expression
-- A.Specification, A.Process, A.Expression, A.ExpressionList
--TODO have scopeIn and scopeOut functions for Specification, and accordingly have two nodes produced by Structured

View File

@ -181,15 +181,34 @@ testWhile = TestList
(A.Seq m0 $ A.Several m1 [A.OnlyP m6 sm7,A.OnlyP mU $ A.While m2 (A.True mU) $ A.Seq mU $ A.Several mU [A.OnlyP mU sm3,A.OnlyP mU sm9],A.OnlyP m4 sm5])
]
testCase :: Test
testCase = TestList
[
testGraph "testCase 0" [(0,m10),(1,m0),(2,m3)] [(0,2,ESeq),(2,1,ESeq)] (A.Case m0 (A.True m10) $ cases m1 [A.Else m2 sm3])
,testGraph "testCase 1"
[(0,m10),(1,m0),(2,m2),(3,m3)]
[(0,2,ESeq),(2,3,ESeq),(3,1,ESeq)]
(A.Case m0 (A.True m10) $ cases m1 [A.Option m2 [A.True mU] sm3])
,testGraph "testCase 2"
[(0,m10),(1,m0),(2,m2),(3,m3),(4,m4),(5,m5)]
[(0,2,ESeq),(2,3,ESeq),(3,1,ESeq), (0,4,ESeq),(4,5,ESeq),(5,1,ESeq)]
(A.Case m0 (A.True m10) $ cases m1 [A.Option m2 [A.True mU] sm3, A.Option m4 [A.True mU] sm5])
--TODO test case statements that have specs
]
where
cases :: Meta -> [A.Option] -> A.Structured
cases m = (A.Several m) . (map (A.OnlyO mU))
--TODO test replicated seq/par
--TODO test ifs and cases
--TODO test ifs
--TODO test alts
--Returns the list of tests:
tests :: Test
tests = TestList
[
testSeq
testCase
,testPar
,testSeq
,testWhile
]