Tag parse tree nodes with source position metadata while parsing

This commit is contained in:
Adam Sampson 2006-10-05 00:08:57 +00:00
parent d82e37c111
commit 5f697e8286
7 changed files with 277 additions and 247 deletions

View File

@ -56,7 +56,7 @@ main = do
progress $ "}}}"
progress $ "{{{ Parser"
let pt = parseSource preprocessed
let pt = parseSource preprocessed fn
progress $ pshow pt
progress $ "}}}"

View File

@ -3,14 +3,15 @@ all: fco
sources = \
AST.hs \
ASTPasses.hs \
Main.hs \
Metadata.hs \
Parse.hs \
Pass.hs \
PrettyShow.hs \
PT.hs \
PTPasses.hs \
SExpression.hs \
PTToAST.hs \
Main.hs
PTToAST.hs
fco: $(sources)
ghc -fglasgow-exts -o fco --make Main

12
fco/Metadata.hs Normal file
View File

@ -0,0 +1,12 @@
-- Metadata types
module Metadata where
import Data.Generics
type Meta = [Metadatum]
data Metadatum =
SourcePos String Int Int
deriving (Show, Eq, Typeable, Data)

View File

@ -5,8 +5,12 @@
module PT where
import Data.Generics
import Metadata
data Node =
data Node = Node Meta NodeType
deriving (Show, Eq, Typeable, Data)
data NodeType =
Decl Node Node
| Alt [Node]
| AltRep Node Node

View File

@ -6,14 +6,14 @@ import qualified PT as N
import qualified AST as O
doName :: N.Node -> O.Name
doName (N.Name s) = O.Name s
doName (N.Node _ (N.Name s)) = O.Name s
doName n = error $ "Can't do name: " ++ (show n)
doTag :: N.Node -> O.Tag
doTag (N.Name s) = O.Tag s
doTag (N.Node _ (N.Name s)) = O.Tag s
doType :: N.Node -> O.Type
doType n = case n of
doType n@(N.Node _ nt) = case nt of
N.Bool -> O.Bool
N.Byte -> O.Byte
N.Int -> O.Int
@ -33,14 +33,14 @@ doType n = case n of
N.Val t -> O.Val (doType t)
doMonadicOp :: N.Node -> O.MonadicOp
doMonadicOp n = case n of
doMonadicOp n@(N.Node _ nt) = case nt of
N.MonSub -> O.MonadicSubtr
N.MonBitNot -> O.MonadicBitNot
N.MonNot -> O.MonadicNot
N.MonSize -> O.MonadicSize
doDyadicOp :: N.Node -> O.DyadicOp
doDyadicOp n = case n of
doDyadicOp n@(N.Node _ nt) = case nt of
N.Add -> O.Add
N.Subtr -> O.Subtr
N.Mul -> O.Mul
@ -63,14 +63,14 @@ doDyadicOp n = case n of
N.After -> O.After
doSubscript :: N.Node -> O.Subscript
doSubscript n = case n of
doSubscript n@(N.Node _ nt) = case nt of
N.SubPlain e -> O.Subscript (doExpression e)
N.SubFromFor e f -> O.SubFromFor (doExpression e) (doExpression f)
N.SubFrom e -> O.SubFrom (doExpression e)
N.SubFor f -> O.SubFor (doExpression f)
doLiteral :: N.Node -> O.Literal
doLiteral n = case n of
doLiteral n@(N.Node _ nt) = case nt of
N.TypedLit t l -> O.Literal (doType t) rep where (O.Literal _ rep) = doLiteral l
N.LitReal s -> O.Literal O.Real32 (O.RealLiteral s)
N.LitInt s -> O.Literal O.Int (O.IntLiteral s)
@ -81,12 +81,12 @@ doLiteral n = case n of
N.Sub s l -> O.SubscriptedLiteral (doSubscript s) (doLiteral l)
doVariable :: N.Node -> O.Variable
doVariable n = case n of
doVariable n@(N.Node _ nt) = case nt of
N.Name _ -> O.Variable (doName n)
N.Sub s v -> O.SubscriptedVariable (doSubscript s) (doVariable v)
doExpression :: N.Node -> O.Expression
doExpression n = case n of
doExpression n@(N.Node _ nt) = case nt of
N.MonadicOp o a -> O.Monadic (doMonadicOp o) (doExpression a)
N.DyadicOp o a b -> O.Dyadic (doDyadicOp o) (doExpression a) (doExpression b)
N.MostPos t -> O.MostPos (doType t)
@ -110,67 +110,67 @@ doExpression n = case n of
otherwise -> O.ExprVariable (doVariable n)
doExpressionList :: N.Node -> O.ExpressionList
doExpressionList n = case n of
doExpressionList n@(N.Node _ nt) = case nt of
N.Call f es -> O.FunctionCallList (doName f) (map doExpression es)
N.ExpList es -> O.ExpressionList (map doExpression es)
doReplicator :: N.Node -> O.Replicator
doReplicator n = case n of
doReplicator n@(N.Node _ nt) = case nt of
N.For v f t -> O.For (doName v) (doExpression f) (doExpression t)
doFields :: [N.Node] -> [(O.Type, O.Tag)]
doFields ns = concat $ [[(doType t, doTag f) | f <- fs] | (N.Fields t fs) <- ns]
doFields ns = concat $ [[(doType t, doTag f) | f <- fs] | (N.Node _ (N.Fields t fs)) <- ns]
doFormals :: [N.Node] -> [(O.Type, O.Name)]
doFormals fs = concat $ [[(doType t, doName n) | n <- ns] | (N.Formals t ns) <- fs]
doFormals fs = concat $ [[(doType t, doName n) | n <- ns] | (N.Node _ (N.Formals t ns)) <- fs]
doVariant :: N.Node -> O.Structured O.Variant
doVariant n = case n of
N.Variant (N.Tag t is) p -> O.Only $ O.Variant (doTag t) (map doInputItem is) (doProcess p)
doVariant n@(N.Node _ nt) = case nt of
N.Variant (N.Node _ (N.Tag t is)) p -> O.Only $ O.Variant (doTag t) (map doInputItem is) (doProcess p)
N.Decl s v -> doSpecifications s O.Spec (doVariant v)
doChoice :: N.Node -> O.Structured O.Choice
doChoice n = case n of
doChoice n@(N.Node _ nt) = case nt of
N.If cs -> O.Several $ map doChoice cs
N.IfRep r c -> O.Rep (doReplicator r) (doChoice c)
N.Choice b p -> O.Only $ O.Choice (doExpression b) (doProcess p)
N.Decl s c -> doSpecifications s O.Spec (doChoice c)
doOption :: N.Node -> O.Structured O.Option
doOption n = case n of
doOption n@(N.Node _ nt) = case nt of
N.CaseExps cs p -> O.Only $ O.Option (map doExpression cs) (doProcess p)
N.Else p -> O.Only $ O.Else (doProcess p)
N.Decl s o -> doSpecifications s O.Spec (doOption o)
doInputItem :: N.Node -> O.InputItem
doInputItem n = case n of
doInputItem n@(N.Node _ nt) = case nt of
N.Counted c d -> O.InCounted (doVariable c) (doVariable d)
otherwise -> O.InVariable (doVariable n)
doOutputItem :: N.Node -> O.OutputItem
doOutputItem n = case n of
doOutputItem n@(N.Node _ nt) = case nt of
N.Counted c d -> O.OutCounted (doExpression c) (doExpression d)
otherwise -> O.OutExpression (doExpression n)
doInputMode :: N.Node -> O.InputMode
doInputMode n = case n of
doInputMode n@(N.Node _ nt) = case nt of
N.InSimple is -> O.InputSimple (map doInputItem is)
N.InCase vs -> O.InputCase (O.Several $ map doVariant vs)
N.InTag (N.Tag t is) -> O.InputCase (O.Only $ O.Variant (doTag t) (map doInputItem is) O.Skip)
N.InTag (N.Node _ (N.Tag t is)) -> O.InputCase (O.Only $ O.Variant (doTag t) (map doInputItem is) O.Skip)
N.InAfter e -> O.InputAfter (doExpression e)
doSimpleSpec :: N.Node -> O.Specification
doSimpleSpec n = case n of
doSimpleSpec n@(N.Node _ nt) = case nt of
N.Is d v -> (doName d, O.Is O.Infer (doVariable v))
N.IsType t d v -> (doName d, O.Is (doType t) (doVariable v))
N.ValIs d e -> (doName d, O.ValIs O.Infer (doExpression e))
N.ValIsType t d e -> (doName d, O.ValIs (doType t) (doExpression e))
N.Place v e -> (doName v, O.Place (doExpression e))
N.DataType n (N.Record fs) -> (doName n, O.DataTypeRecord False (doFields fs))
N.DataType n (N.PackedRecord fs) -> (doName n, O.DataTypeRecord True (doFields fs))
N.DataType n (N.Node _ (N.Record fs)) -> (doName n, O.DataTypeRecord False (doFields fs))
N.DataType n (N.Node _ (N.PackedRecord fs)) -> (doName n, O.DataTypeRecord True (doFields fs))
N.DataType n t -> (doName n, O.DataTypeIs (doType t))
N.Protocol n is -> (doName n, O.ProtocolIs (map doType is))
N.TaggedProtocol n ts -> (doName n, O.ProtocolCase [(doTag tn, map doType tts) | (N.Tag tn tts) <- ts])
N.TaggedProtocol n ts -> (doName n, O.ProtocolCase [(doTag tn, map doType tts) | (N.Node _ (N.Tag tn tts)) <- ts])
N.Proc n fs p -> (doName n, O.Proc (doFormals fs) (doProcess p))
N.Func n rs fs vp -> (doName n, O.Function (map doType rs) (doFormals fs) (doValueProcess vp))
N.FuncIs n rs fs el -> (doName n, O.Function (map doType rs) (doFormals fs) (O.ValOf O.Skip (doExpressionList el)))
@ -180,24 +180,24 @@ doSimpleSpec n = case n of
N.ValReshapes t d s -> (doName d, O.ValReshapes (doType t) (doVariable s))
doSpecifications :: N.Node -> (O.Specification -> a -> a) -> a -> a
doSpecifications n comb arg = case n of
doSpecifications n@(N.Node m nt) comb arg = case nt of
N.Vars t [] -> arg
N.Vars t (v:vs) -> comb (doName v, O.Declaration (doType t)) (doSpecifications (N.Vars t vs) comb arg)
N.Vars t (v:vs) -> comb (doName v, O.Declaration (doType t)) (doSpecifications (N.Node m (N.Vars t vs)) comb arg)
otherwise -> comb (doSimpleSpec n) arg
doAlternative :: N.Node -> O.Alternative
doAlternative n = case n of
N.Guard (N.In c m) p -> O.Alternative (doVariable c) (doInputMode m) (doProcess p)
N.Guard (N.CondGuard b (N.In c m)) p -> O.AlternativeCond (doExpression b) (doVariable c) (doInputMode m) (doProcess p)
N.Guard (N.CondGuard b N.Skip) p -> O.AlternativeSkip (doExpression b) (doProcess p)
doAlternative n@(N.Node _ nt) = case nt of
N.Guard (N.Node _ (N.In c m)) p -> O.Alternative (doVariable c) (doInputMode m) (doProcess p)
N.Guard (N.Node _ (N.CondGuard b (N.Node _ (N.In c m)))) p -> O.AlternativeCond (doExpression b) (doVariable c) (doInputMode m) (doProcess p)
N.Guard (N.Node _ (N.CondGuard b (N.Node _ N.Skip))) p -> O.AlternativeSkip (doExpression b) (doProcess p)
-- ALT over "? CASE": the O.Skip that gets inserted here doesn't correspond
-- to anything in real occam; it's just there to let us handle these the same
-- way as the regular ALT inputs.
N.In c m@(N.InCase _) -> O.Alternative (doVariable c) (doInputMode m) O.Skip
N.CondGuard b (N.In c m@(N.InCase _)) -> O.AlternativeCond (doExpression b) (doVariable c) (doInputMode m) O.Skip
N.In c m@(N.Node _ (N.InCase _)) -> O.Alternative (doVariable c) (doInputMode m) O.Skip
N.CondGuard b (N.Node _ (N.In c m@(N.Node _ (N.InCase _)))) -> O.AlternativeCond (doExpression b) (doVariable c) (doInputMode m) O.Skip
doAlt :: N.Node -> O.Structured O.Alternative
doAlt n = case n of
doAlt n@(N.Node _ nt) = case nt of
N.Alt ns -> O.Several $ map doAlt ns
N.PriAlt ns -> O.Several $ map doAlt ns
N.AltRep r n -> O.Rep (doReplicator r) (doAlt n)
@ -206,19 +206,19 @@ doAlt n = case n of
otherwise -> O.Only $ doAlternative n
doValueProcess :: N.Node -> O.ValueProcess
doValueProcess n = case n of
doValueProcess n@(N.Node _ nt) = case nt of
N.Decl s n -> doSpecifications s O.ValOfSpec (doValueProcess n)
N.ValOf p el -> O.ValOf (doProcess p) (doExpressionList el)
doPlacedPar :: N.Node -> O.Structured O.Process
doPlacedPar n = case n of
doPlacedPar n@(N.Node _ nt) = case nt of
N.PlacedPar ps -> O.Several $ map doPlacedPar ps
N.PlacedParRep r p -> O.Rep (doReplicator r) (doPlacedPar p)
N.Processor e p -> O.Only $ O.Processor (doExpression e) (doProcess p)
N.Decl s p -> doSpecifications s O.Spec (doPlacedPar p)
doProcess :: N.Node -> O.Process
doProcess n = case n of
doProcess n@(N.Node _ nt) = case nt of
N.Decl s p -> doSpecifications s O.ProcSpec (doProcess p)
N.Assign vs el -> O.Assign (map doVariable vs) (doExpressionList el)
N.In c m -> O.Input (doVariable c) (doInputMode m)

View File

@ -9,6 +9,17 @@ import Text.ParserCombinators.Parsec.Language (emptyDef)
import qualified IO
import qualified PT as N
import Metadata
-- -------------------------------------------------------------
md :: Parser Meta
md = do
pos <- getPosition
return $ [SourcePos (sourceName pos) (sourceLine pos) (sourceColumn pos)]
nd :: Meta -> N.NodeType -> N.Node
nd = N.Node
-- -------------------------------------------------------------
@ -212,11 +223,11 @@ eol = symbol "@"
-- The way productions should work is that each production should only consume input if it's sure that it's unambiguous.
abbreviation
= try (do { n <- name ; sIS ; v <- variable ; sColon ; eol ; return $ N.Is n v })
<|> try (do { s <- specifier ; n <- name ; sIS ; v <- variable ; sColon ; eol ; return $ N.IsType s n v })
<|> do { sVAL ;
try (do { n <- name ; sIS ; e <- expression ; sColon ; eol ; return $ N.ValIs n e })
<|> do { s <- specifier ; n <- name ; sIS ; e <- expression ; sColon ; eol ; return $ N.ValIsType s n e } }
= try (do { m <- md ; n <- name ; sIS ; v <- variable ; sColon ; eol ; return $ nd m $ N.Is n v })
<|> try (do { m <- md ; s <- specifier ; n <- name ; sIS ; v <- variable ; sColon ; eol ; return $ nd m $ N.IsType s n v })
<|> do { m <- md ; sVAL ;
try (do { n <- name ; sIS ; e <- expression ; sColon ; eol ; return $ nd m $ N.ValIs n e })
<|> do { s <- specifier ; n <- name ; sIS ; e <- expression ; sColon ; eol ; return $ nd m $ N.ValIsType s n e } }
<?> "abbreviation"
actual
@ -226,16 +237,16 @@ actual
<?> "actual"
allocation
= do { sPLACE ; n <- name ; sAT ; e <- expression ; sColon ; eol ; return $ N.Place n e }
= do { m <- md ; sPLACE ; n <- name ; sAT ; e <- expression ; sColon ; eol ; return $ nd m $ N.Place n e }
<?> "allocation"
alternation
= do { sALT ;
do { eol ; indent ; as <- many1 alternative ; outdent ; return $ N.Alt as }
<|> do { r <- replicator ; eol ; indent ; a <- alternative ; outdent ; return $ N.AltRep r a } }
<|> do { sPRI ; sALT ;
do { eol ; indent ; as <- many1 alternative ; outdent ; return $ N.PriAlt as }
<|> do { r <- replicator ; eol ; indent ; a <- alternative ; outdent ; return $ N.PriAltRep r a } }
= do { m <- md ; sALT ;
do { eol ; indent ; as <- many1 alternative ; outdent ; return $ nd m $ N.Alt as }
<|> do { r <- replicator ; eol ; indent ; a <- alternative ; outdent ; return $ nd m $ N.AltRep r a } }
<|> do { m <- md ; sPRI ; sALT ;
do { eol ; indent ; as <- many1 alternative ; outdent ; return $ nd m $ N.PriAlt as }
<|> do { r <- replicator ; eol ; indent ; a <- alternative ; outdent ; return $ nd m $ N.PriAltRep r a } }
<?> "alternation"
-- The reason the CASE guards end up here is because they have to be handled
@ -244,13 +255,13 @@ alternation
alternative
= guardedAlternative
<|> alternation
<|> try (do { b <- boolean ; sAmp ; c <- channel ; sQuest ; sCASE ; eol ; indent ; vs <- many1 variant ; outdent ; return $ N.CondGuard b (N.In c (N.InCase vs)) })
<|> try (do { c <- channel ; sQuest ; sCASE ; eol ; indent ; vs <- many1 variant ; outdent ; return $ N.In c (N.InCase vs) })
<|> do { s <- specification ; a <- alternative ; return $ N.Decl s a }
<|> try (do { m <- md ; b <- boolean ; sAmp ; c <- channel ; sQuest ; sCASE ; eol ; indent ; vs <- many1 variant ; outdent ; return $ nd m $ N.CondGuard b (nd m $ N.In c (nd m $ N.InCase vs)) })
<|> try (do { m <- md ; c <- channel ; sQuest ; sCASE ; eol ; indent ; vs <- many1 variant ; outdent ; return $ nd m $ N.In c (nd m $ N.InCase vs) })
<|> do { m <- md ; s <- specification ; a <- alternative ; return $ nd m $ N.Decl s a }
<?> "alternative"
assignment
= do { vs <- variableList ; sAssign ; es <- expressionList ; eol ; return $ N.Assign vs es }
= do { m <- md ; vs <- variableList ; sAssign ; es <- expressionList ; eol ; return $ nd m $ N.Assign vs es }
<?> "assignment"
base
@ -262,7 +273,7 @@ boolean
<?> "boolean"
byte
= lexeme (do { char '\'' ; s <- character ; char '\'' ; return $ N.LitByte s })
= lexeme (do { m <- md ; char '\'' ; s <- character ; char '\'' ; return $ nd m $ N.LitByte s })
<?> "byte"
caseExpression
@ -270,26 +281,26 @@ caseExpression
<?> "caseExpression"
caseInput
= do { c <- channel ; sQuest ; sCASE ; eol ; indent ; vs <- many1 variant ; outdent ; return $ N.In c (N.InCase vs) }
= do { m <- md ; c <- channel ; sQuest ; sCASE ; eol ; indent ; vs <- many1 variant ; outdent ; return $ nd m $ N.In c (nd m $ N.InCase vs) }
<?> "caseInput"
-- This is also used for timers and ports, since the syntax is identical (and
-- the parser really can't tell at this stage which is which).
channel
= do { v <- channel' ; es <- many (do { sLeft ; e <- expression ; sRight ; return e }) ; return $ foldl (\e s -> N.Sub (N.SubPlain s) e) v es }
= do { m <- md ; v <- channel' ; es <- many (do { sLeft ; e <- expression ; sRight ; return e }) ; return $ foldl (\e s -> nd m $ N.Sub (nd m $ N.SubPlain s) e) v es }
<?> "channel"
channel'
= try name
<|> try (do { sLeft ; n <- channel ; sFROM ; e <- expression ; sFOR ; f <- expression ; sRight ; return $ N.Sub (N.SubFromFor e f) n })
<|> try (do { sLeft ; n <- channel ; sFROM ; e <- expression ; sRight ; return $ N.Sub (N.SubFrom e) n })
<|> do { sLeft ; n <- channel ; sFOR ; e <- expression ; sRight ; return $ N.Sub (N.SubFor e) n }
<|> try (do { m <- md ; sLeft ; n <- channel ; sFROM ; e <- expression ; sFOR ; f <- expression ; sRight ; return $ nd m $ N.Sub (nd m $ N.SubFromFor e f) n })
<|> try (do { m <- md ; sLeft ; n <- channel ; sFROM ; e <- expression ; sRight ; return $ nd m $ N.Sub (nd m $ N.SubFrom e) n })
<|> do { m <- md ; sLeft ; n <- channel ; sFOR ; e <- expression ; sRight ; return $ nd m $ N.Sub (nd m $ N.SubFor e) n }
<?> "channel'"
-- FIXME should probably make CHAN INT work, since that'd be trivial...
channelType
= do { sCHAN ; sOF ; p <- protocol ; return $ N.ChanOf p }
<|> try (do { sLeft ; s <- expression ; sRight ; t <- channelType ; return $ N.Array s t })
= do { m <- md ; sCHAN ; sOF ; p <- protocol ; return $ nd m $ N.ChanOf p }
<|> try (do { m <- md ; sLeft ; s <- expression ; sRight ; t <- channelType ; return $ nd m $ N.Array s t })
<?> "channelType"
-- FIXME this isn't at all the right way to return the character!
@ -303,18 +314,19 @@ character
occamChoice
= guardedChoice
<|> conditional
<|> do { s <- try specification ; c <- occamChoice ; return $ N.Decl s c }
<|> do { m <- md ; s <- try specification ; c <- occamChoice ; return $ nd m $ N.Decl s c }
<?> "choice"
conditional
= do { sIF ;
do { eol ; indent ; cs <- many1 occamChoice ; outdent ; return $ N.If cs }
<|> do { r <- replicator ; eol ; indent ; c <- occamChoice ; outdent ; return $ N.IfRep r c } }
= do { m <- md ; sIF ;
do { eol ; indent ; cs <- many1 occamChoice ; outdent ; return $ nd m $ N.If cs }
<|> do { r <- replicator ; eol ; indent ; c <- occamChoice ; outdent ; return $ nd m $ N.IfRep r c } }
<?> "conditional"
conversion
= do t <- dataType
do { sROUND ; o <- operand ; return $ N.Round t o } <|> do { sTRUNC ; o <- operand ; return $ N.Trunc t o } <|> do { o <- operand ; return $ N.Conv t o }
= do m <- md
t <- dataType
do { sROUND ; o <- operand ; return $ nd m $ N.Round t o } <|> do { sTRUNC ; o <- operand ; return $ nd m $ N.Trunc t o } <|> do { o <- operand ; return $ nd m $ N.Conv t o }
<?> "conversion"
occamCount
@ -322,15 +334,15 @@ occamCount
<?> "count"
dataType
= do { sBOOL ; return $ N.Bool }
<|> do { sBYTE ; return $ N.Byte }
<|> do { sINT ; return $ N.Int }
<|> do { sINT16 ; return $ N.Int16 }
<|> do { sINT32 ; return $ N.Int32 }
<|> do { sINT64 ; return $ N.Int64 }
<|> do { sREAL32 ; return $ N.Real32 }
<|> do { sREAL64 ; return $ N.Real64 }
<|> try (do { sLeft ; s <- expression ; sRight ; t <- dataType ; return $ N.Array s t })
= do { m <- md ; sBOOL ; return $ nd m $ N.Bool }
<|> do { m <- md ; sBYTE ; return $ nd m $ N.Byte }
<|> do { m <- md ; sINT ; return $ nd m $ N.Int }
<|> do { m <- md ; sINT16 ; return $ nd m $ N.Int16 }
<|> do { m <- md ; sINT32 ; return $ nd m $ N.Int32 }
<|> do { m <- md ; sINT64 ; return $ nd m $ N.Int64 }
<|> do { m <- md ; sREAL32 ; return $ nd m $ N.Real32 }
<|> do { m <- md ; sREAL64 ; return $ nd m $ N.Real64 }
<|> try (do { m <- md ; sLeft ; s <- expression ; sRight ; t <- dataType ; return $ nd m $ N.Array s t })
<|> name
<?> "data type"
@ -341,28 +353,28 @@ declType
<|> portType
-- FIXME this originally had four lines like this, one for each of the above;
-- it might be nicer to generate a different N.Node for each type of declaration
-- it might be nicer to generate a different nd m $ N.Node for each type of declaration
declaration
= do { d <- declType ; ns <- sepBy1 name sComma ; sColon ; eol ; return $ N.Vars d ns }
= do { m <- md ; d <- declType ; ns <- sepBy1 name sComma ; sColon ; eol ; return $ nd m $ N.Vars d ns }
<?> "declaration"
definition
= do { sDATA ; sTYPE ; n <- name ;
do {sIS ; t <- dataType ; sColon ; eol ; return $ N.DataType n t }
<|> do { eol ; indent ; t <- structuredType ; outdent ; sColon ; eol ; return $ N.DataType n t } }
<|> do { sPROTOCOL ; n <- name ;
do { sIS ; p <- sequentialProtocol ; sColon ; eol ; return $ N.Protocol n p }
<|> do { eol ; indent ; sCASE ; eol ; indent ; ps <- many1 taggedProtocol ; outdent ; outdent ; sColon ; eol ; return $ N.TaggedProtocol n ps } }
<|> do { sPROC ; n <- name ; fs <- formalList ; eol ; indent ; p <- process ; outdent ; sColon ; eol ; return $ N.Proc n fs p }
<|> try (do { rs <- sepBy1 dataType sComma ; (n, fs) <- functionHeader ;
do { sIS ; el <- expressionList ; sColon ; eol ; return $ N.FuncIs n rs fs el }
<|> do { eol ; indent ; vp <- valueProcess ; outdent ; sColon ; eol ; return $ N.Func n rs fs vp } })
<|> try (do { s <- specifier ; n <- name ;
do { sRETYPES ; v <- variable ; sColon ; eol ; return $ N.Retypes s n v }
<|> do { try sRESHAPES ; v <- variable ; sColon ; eol ; return $ N.Reshapes s n v } })
<|> do { sVAL ; s <- specifier ; n <- name ;
do { sRETYPES ; v <- variable ; sColon ; eol ; return $ N.ValRetypes s n v }
<|> do { sRESHAPES ; v <- variable ; sColon ; eol ; return $ N.ValReshapes s n v } }
= do { m <- md ; sDATA ; sTYPE ; n <- name ;
do {sIS ; t <- dataType ; sColon ; eol ; return $ nd m $ N.DataType n t }
<|> do { eol ; indent ; t <- structuredType ; outdent ; sColon ; eol ; return $ nd m $ N.DataType n t } }
<|> do { m <- md ; sPROTOCOL ; n <- name ;
do { sIS ; p <- sequentialProtocol ; sColon ; eol ; return $ nd m $ N.Protocol n p }
<|> do { eol ; indent ; sCASE ; eol ; indent ; ps <- many1 taggedProtocol ; outdent ; outdent ; sColon ; eol ; return $ nd m $ N.TaggedProtocol n ps } }
<|> do { m <- md ; sPROC ; n <- name ; fs <- formalList ; eol ; indent ; p <- process ; outdent ; sColon ; eol ; return $ nd m $ N.Proc n fs p }
<|> try (do { m <- md ; rs <- sepBy1 dataType sComma ; (n, fs) <- functionHeader ;
do { sIS ; el <- expressionList ; sColon ; eol ; return $ nd m $ N.FuncIs n rs fs el }
<|> do { eol ; indent ; vp <- valueProcess ; outdent ; sColon ; eol ; return $ nd m $ N.Func n rs fs vp } })
<|> try (do { m <- md ; s <- specifier ; n <- name ;
do { sRETYPES ; v <- variable ; sColon ; eol ; return $ nd m $ N.Retypes s n v }
<|> do { try sRESHAPES ; v <- variable ; sColon ; eol ; return $ nd m $ N.Reshapes s n v } })
<|> do { m <- md ; sVAL ; s <- specifier ; n <- name ;
do { sRETYPES ; v <- variable ; sColon ; eol ; return $ nd m $ N.ValRetypes s n v }
<|> do { sRESHAPES ; v <- variable ; sColon ; eol ; return $ nd m $ N.ValReshapes s n v } }
<?> "definition"
digits
@ -370,49 +382,48 @@ digits
<?> "digits"
dyadicOperator
= do { reservedOp "+" ; return $ N.Add }
<|> do { reservedOp "-" ; return $ N.Subtr }
<|> do { reservedOp "*" ; return $ N.Mul }
<|> do { reservedOp "/" ; return $ N.Div }
<|> do { reservedOp "\\" ; return $ N.Rem }
<|> do { sREM ; return $ N.Rem }
<|> do { sPLUS ; return $ N.Plus }
<|> do { sMINUS ; return $ N.Minus }
<|> do { sTIMES ; return $ N.Times }
<|> do { reservedOp "/\\" ; return $ N.BitAnd }
<|> do { reservedOp "\\/" ; return $ N.BitOr }
<|> do { reservedOp "><" ; return $ N.BitXor }
<|> do { sBITAND ; return $ N.BitAnd }
<|> do { sBITOR ; return $ N.BitOr }
<|> do { sAND ; return $ N.And }
<|> do { sOR ; return $ N.Or }
<|> do { reservedOp "=" ; return $ N.Eq }
<|> do { reservedOp "<>" ; return $ N.NEq }
<|> do { reservedOp "<" ; return $ N.Less }
<|> do { reservedOp ">" ; return $ N.More }
<|> do { reservedOp "<=" ; return $ N.LessEq }
<|> do { reservedOp ">=" ; return $ N.MoreEq }
<|> do { sAFTER ; return $ N.After }
= do { m <- md ; reservedOp "+" ; return $ nd m $ N.Add }
<|> do { m <- md ; reservedOp "-" ; return $ nd m $ N.Subtr }
<|> do { m <- md ; reservedOp "*" ; return $ nd m $ N.Mul }
<|> do { m <- md ; reservedOp "/" ; return $ nd m $ N.Div }
<|> do { m <- md ; reservedOp "\\" ; return $ nd m $ N.Rem }
<|> do { m <- md ; sREM ; return $ nd m $ N.Rem }
<|> do { m <- md ; sPLUS ; return $ nd m $ N.Plus }
<|> do { m <- md ; sMINUS ; return $ nd m $ N.Minus }
<|> do { m <- md ; sTIMES ; return $ nd m $ N.Times }
<|> do { m <- md ; reservedOp "/\\" ; return $ nd m $ N.BitAnd }
<|> do { m <- md ; reservedOp "\\/" ; return $ nd m $ N.BitOr }
<|> do { m <- md ; reservedOp "><" ; return $ nd m $ N.BitXor }
<|> do { m <- md ; sBITAND ; return $ nd m $ N.BitAnd }
<|> do { m <- md ; sBITOR ; return $ nd m $ N.BitOr }
<|> do { m <- md ; sAND ; return $ nd m $ N.And }
<|> do { m <- md ; sOR ; return $ nd m $ N.Or }
<|> do { m <- md ; reservedOp "=" ; return $ nd m $ N.Eq }
<|> do { m <- md ; reservedOp "<>" ; return $ nd m $ N.NEq }
<|> do { m <- md ; reservedOp "<" ; return $ nd m $ N.Less }
<|> do { m <- md ; reservedOp ">" ; return $ nd m $ N.More }
<|> do { m <- md ; reservedOp "<=" ; return $ nd m $ N.LessEq }
<|> do { m <- md ; reservedOp ">=" ; return $ nd m $ N.MoreEq }
<|> do { m <- md ; sAFTER ; return $ nd m $ N.After }
<?> "dyadicOperator"
occamExponent
= try (do { c <- oneOf "+-" ; d <- digits ; return $ c : d })
<?> "exponent"
expression :: Parser N.Node
expression
= try (do { o <- monadicOperator ; v <- operand ; return $ N.MonadicOp o v })
<|> do { a <- sMOSTPOS ; t <- dataType ; return $ N.MostPos t }
<|> do { a <- sMOSTNEG ; t <- dataType ; return $ N.MostNeg t }
<|> do { a <- sSIZE ; t <- dataType ; return $ N.Size t }
<|> try (do { a <- operand ; o <- dyadicOperator ; b <- operand ; return $ N.DyadicOp o a b })
= try (do { m <- md ; o <- monadicOperator ; v <- operand ; return $ nd m $ N.MonadicOp o v })
<|> do { m <- md ; a <- sMOSTPOS ; t <- dataType ; return $ nd m $ N.MostPos t }
<|> do { m <- md ; a <- sMOSTNEG ; t <- dataType ; return $ nd m $ N.MostNeg t }
<|> do { m <- md ; a <- sSIZE ; t <- dataType ; return $ nd m $ N.Size t }
<|> try (do { m <- md ; a <- operand ; o <- dyadicOperator ; b <- operand ; return $ nd m $ N.DyadicOp o a b })
<|> try conversion
<|> operand
<?> "expression"
expressionList
= try (do { n <- name ; sLeftR ; as <- sepBy expression sComma ; sRightR ; return $ N.Call n as })
<|> do { es <- sepBy1 expression sComma ; return $ N.ExpList es }
= try (do { m <- md ; n <- name ; sLeftR ; as <- sepBy expression sComma ; sRightR ; return $ nd m $ N.Call n as })
<|> do { m <- md ; es <- sepBy1 expression sComma ; return $ nd m $ N.ExpList es }
-- XXX value process
<?> "expressionList"
@ -423,23 +434,23 @@ fieldName
-- This is rather different from the grammar, since I had some difficulty
-- getting Parsec to parse it as a list of lists of arguments.
formalList
= do { sLeftR ; fs <- sepBy formalArg sComma ; sRightR ; return $ markTypes fs }
= do { m <- md ; sLeftR ; fs <- sepBy formalArg sComma ; sRightR ; return $ markTypes m fs }
<?> "formalList"
where
formalArg :: Parser (Maybe N.Node, N.Node)
formalArg = try (do { sVAL ; s <- specifier ; n <- name ; return $ (Just (N.Val s), n) })
formalArg = try (do { m <- md ; sVAL ; s <- specifier ; n <- name ; return $ (Just (nd m $ N.Val s), n) })
<|> try (do { s <- specifier ; n <- name ; return $ (Just s, n) })
<|> try (do { n <- name ; return $ (Nothing, n) })
markTypes :: [(Maybe N.Node, N.Node)] -> [N.Node]
markTypes [] = []
markTypes ((Nothing, _):_) = error "Formal list must start with a type"
markTypes ((Just ft, fn):is) = markRest ft [fn] is
markTypes :: Meta -> [(Maybe N.Node, N.Node)] -> [N.Node]
markTypes _ [] = []
markTypes _ ((Nothing, _):_) = error "Formal list must start with a type"
markTypes m ((Just ft, fn):is) = markRest m ft [fn] is
markRest :: N.Node -> [N.Node] -> [(Maybe N.Node, N.Node)] -> [N.Node]
markRest lt ns [] = [N.Formals lt ns]
markRest lt ns ((Nothing, n):is) = markRest lt (ns ++ [n]) is
markRest lt ns ((Just t, n):is) = (markRest lt ns []) ++ (markRest t [n] is)
markRest :: Meta -> N.Node -> [N.Node] -> [(Maybe N.Node, N.Node)] -> [N.Node]
markRest m lt ns [] = [nd m $ N.Formals lt ns]
markRest m lt ns ((Nothing, n):is) = markRest m lt (ns ++ [n]) is
markRest m lt ns ((Just t, n):is) = (markRest m lt ns []) ++ (markRest m t [n] is)
functionHeader
= do { sFUNCTION ; n <- name ; fs <- formalList ; return $ (n, fs) }
@ -447,37 +458,38 @@ functionHeader
guard
= try input
<|> try (do { b <- boolean ; sAmp ; i <- input ; return $ N.CondGuard b i })
<|> try (do { b <- boolean ; sAmp ; sSKIP ; eol ; return $ N.CondGuard b N.Skip })
<|> try (do { m <- md ; b <- boolean ; sAmp ; i <- input ; return $ nd m $ N.CondGuard b i })
<|> try (do { m <- md ; b <- boolean ; sAmp ; sSKIP ; eol ; return $ nd m $ N.CondGuard b (nd m $ N.Skip) })
<?> "guard"
guardedAlternative
= do { g <- guard ; indent ; p <- process ; outdent ; return $ N.Guard g p }
= do { m <- md ; g <- guard ; indent ; p <- process ; outdent ; return $ nd m $ N.Guard g p }
<?> "guardedAlternative"
guardedChoice
= do { b <- boolean ; eol ; indent ; p <- process ; outdent ; return $ N.Choice b p }
= do { m <- md ; b <- boolean ; eol ; indent ; p <- process ; outdent ; return $ nd m $ N.Choice b p }
<?> "guardedChoice"
hexDigits
= do { d <- many1 hexDigit ; return $ N.LitHex d }
= do { m <- md ; d <- many1 hexDigit ; return $ nd m $ N.LitHex d }
<?> "hexDigits"
input
= do c <- channel
= do m <- md
c <- channel
sQuest
(do { sCASE ; tl <- taggedList ; eol ; return $ N.In c (N.InTag tl) }
<|> do { sAFTER ; e <- expression ; eol ; return $ N.In c (N.InAfter e) }
<|> do { is <- sepBy1 inputItem sSemi ; eol ; return $ N.In c (N.InSimple is) })
(do { sCASE ; tl <- taggedList ; eol ; return $ nd m $ N.In c (nd m $ N.InTag tl) }
<|> do { sAFTER ; e <- expression ; eol ; return $ nd m $ N.In c (nd m $ N.InAfter e) }
<|> do { is <- sepBy1 inputItem sSemi ; eol ; return $ nd m $ N.In c (nd m $ N.InSimple is) })
<?> "input"
inputItem
= try (do { v <- variable ; sColons ; w <- variable ; return $ N.Counted v w })
= try (do { m <- md ; v <- variable ; sColons ; w <- variable ; return $ nd m $ N.Counted v w })
<|> variable
<?> "inputItem"
integer
= try (do { d <- lexeme digits ; return $ N.LitInt d })
= try (do { m <- md ; d <- lexeme digits ; return $ nd m $ N.LitInt d })
<|> do { char '#' ; d <- lexeme hexDigits ; return $ d }
<?> "integer"
@ -485,35 +497,35 @@ literal
= try real
<|> try integer
<|> try byte
<|> try (do { v <- real ; sLeftR ; t <- dataType ; sRightR ; return $ N.TypedLit t v })
<|> try (do { v <- integer ; sLeftR ; t <- dataType ; sRightR ; return $ N.TypedLit t v })
<|> try (do { v <- byte ; sLeftR ; t <- dataType ; sRightR ; return $ N.TypedLit t v })
<|> try (do { sTRUE ; return $ N.True })
<|> do { sFALSE ; return $ N.False }
<|> try (do { m <- md ; v <- real ; sLeftR ; t <- dataType ; sRightR ; return $ nd m $ N.TypedLit t v })
<|> try (do { m <- md ; v <- integer ; sLeftR ; t <- dataType ; sRightR ; return $ nd m $ N.TypedLit t v })
<|> try (do { m <- md ; v <- byte ; sLeftR ; t <- dataType ; sRightR ; return $ nd m $ N.TypedLit t v })
<|> try (do { m <- md ; sTRUE ; return $ nd m $ N.True })
<|> do { m <- md ; sFALSE ; return $ nd m $ N.False }
<?> "literal"
loop
= do { sWHILE ; b <- boolean ; eol ; indent ; p <- process ; outdent ; return $ N.While b p }
= do { m <- md ; sWHILE ; b <- boolean ; eol ; indent ; p <- process ; outdent ; return $ nd m $ N.While b p }
monadicOperator
= do { reservedOp "-" ; return $ N.MonSub }
<|> do { sMINUS ; return $ N.MonSub }
<|> do { reservedOp "~" ; return $ N.MonBitNot }
<|> do { sBITNOT ; return $ N.MonBitNot }
<|> do { sNOT ; return $ N.MonNot }
<|> do { sSIZE ; return $ N.MonSize }
= do { m <- md ; reservedOp "-" ; return $ nd m $ N.MonSub }
<|> do { m <- md ; sMINUS ; return $ nd m $ N.MonSub }
<|> do { m <- md ; reservedOp "~" ; return $ nd m $ N.MonBitNot }
<|> do { m <- md ; sBITNOT ; return $ nd m $ N.MonBitNot }
<|> do { m <- md ; sNOT ; return $ nd m $ N.MonNot }
<|> do { m <- md ; sSIZE ; return $ nd m $ N.MonSize }
<?> "monadicOperator"
name
= do { s <- identifier ; return $ N.Name s }
= do { m <- md ; s <- identifier ; return $ nd m $ N.Name s }
<?> "name"
occamString
= lexeme (do { char '"' ; s <- many (noneOf "\"") ; char '"' ; return $ N.LitString s })
= lexeme (do { m <- md ; char '"' ; s <- many (noneOf "\"") ; char '"' ; return $ nd m $ N.LitString s })
<?> "string"
operand
= do { v <- operand' ; es <- many (do { sLeft ; e <- expression ; sRight ; return e }) ; return $ foldl (\e s -> N.Sub (N.SubPlain s) e) v es }
= do { m <- md ; v <- operand' ; es <- many (do { sLeft ; e <- expression ; sRight ; return e }) ; return $ foldl (\e s -> nd m $ N.Sub (nd m $ N.SubPlain s) e) v es }
<?> "operand"
operand'
@ -522,61 +534,62 @@ operand'
<|> try table
<|> try (do { sLeftR ; e <- expression ; sRightR ; return e })
-- XXX value process
<|> try (do { n <- name ; sLeftR ; as <- sepBy expression sComma ; sRightR ; return $ N.Call n as })
<|> try (do { sBYTESIN ; sLeftR ; o <- operand ; sRightR ; return $ N.BytesIn o })
<|> try (do { sBYTESIN ; sLeftR ; o <- dataType ; sRightR ; return $ N.BytesIn o })
<|> try (do { sOFFSETOF ; sLeftR ; n <- name ; sComma ; f <- fieldName ; sRightR ; return $ N.OffsetOf n f })
<|> try (do { m <- md ; n <- name ; sLeftR ; as <- sepBy expression sComma ; sRightR ; return $ nd m $ N.Call n as })
<|> try (do { m <- md ; sBYTESIN ; sLeftR ; o <- operand ; sRightR ; return $ nd m $ N.BytesIn o })
<|> try (do { m <- md ; sBYTESIN ; sLeftR ; o <- dataType ; sRightR ; return $ nd m $ N.BytesIn o })
<|> try (do { m <- md ; sOFFSETOF ; sLeftR ; n <- name ; sComma ; f <- fieldName ; sRightR ; return $ nd m $ N.OffsetOf n f })
<?> "operand'"
occamOption
= try (do { ces <- sepBy caseExpression sComma ; eol ; indent ; p <- process ; outdent ; return $ N.CaseExps ces p })
<|> try (do { sELSE ; eol ; indent ; p <- process ; outdent ; return $ N.Else p })
<|> do { s <- specification ; o <- occamOption ; return $ N.Decl s o }
= try (do { m <- md ; ces <- sepBy caseExpression sComma ; eol ; indent ; p <- process ; outdent ; return $ nd m $ N.CaseExps ces p })
<|> try (do { m <- md ; sELSE ; eol ; indent ; p <- process ; outdent ; return $ nd m $ N.Else p })
<|> do { m <- md ; s <- specification ; o <- occamOption ; return $ nd m $ N.Decl s o }
<?> "option"
-- XXX This can't tell at parse time in "c ! x; y" whether x is a variable or a tag...
-- ... so this now wants "c ! CASE x" if it's a tag, to match input.
-- We can fix this with a pass later...
output
= do c <- channel
= do m <- md
c <- channel
sBang
(do { sCASE ; t <- tag ; sSemi ; os <- sepBy1 outputItem sSemi ; eol ; return $ N.OutCase c t os }
<|> do { sCASE ; t <- tag ; eol ; return $ N.OutCase c t [] }
<|> do { os <- sepBy1 outputItem sSemi ; eol ; return $ N.Out c os })
(do { sCASE ; t <- tag ; sSemi ; os <- sepBy1 outputItem sSemi ; eol ; return $ nd m $ N.OutCase c t os }
<|> do { sCASE ; t <- tag ; eol ; return $ nd m $ N.OutCase c t [] }
<|> do { os <- sepBy1 outputItem sSemi ; eol ; return $ nd m $ N.Out c os })
<?> "output"
outputItem
= try (do { a <- expression ; sColons ; b <- expression ; return $ N.Counted a b })
= try (do { m <- md ; a <- expression ; sColons ; b <- expression ; return $ nd m $ N.Counted a b })
<|> expression
<?> "outputItem"
parallel
= do { sPAR ; do { eol ; indent ; ps <- many1 process ; outdent ; return $ N.Par ps } <|> do { r <- replicator ; eol ; indent ; p <- process ; outdent ; return $ N.ParRep r p } }
<|> do { sPRI ; sPAR ; do { eol ; indent ; ps <- many1 process ; outdent ; return $ N.PriPar ps } <|> do { r <- replicator ; eol ; indent ; p <- process ; outdent ; return $ N.PriParRep r p } }
= do { m <- md ; sPAR ; do { eol ; indent ; ps <- many1 process ; outdent ; return $ nd m $ N.Par ps } <|> do { r <- replicator ; eol ; indent ; p <- process ; outdent ; return $ nd m $ N.ParRep r p } }
<|> do { m <- md ; sPRI ; sPAR ; do { eol ; indent ; ps <- many1 process ; outdent ; return $ nd m $ N.PriPar ps } <|> do { r <- replicator ; eol ; indent ; p <- process ; outdent ; return $ nd m $ N.PriParRep r p } }
<|> placedpar
<?> "parallel"
-- XXX PROCESSOR as a process isn't really legal, surely?
placedpar
= do { sPLACED ; sPAR ; do { eol ; indent ; ps <- many1 placedpar ; outdent ; return $ N.PlacedPar ps } <|> do { r <- replicator ; eol ; indent ; p <- placedpar ; outdent ; return $ N.PlacedParRep r p } }
<|> do { sPROCESSOR ; e <- expression ; eol ; indent ; p <- process ; outdent ; return $ N.Processor e p }
= do { m <- md ; sPLACED ; sPAR ; do { eol ; indent ; ps <- many1 placedpar ; outdent ; return $ nd m $ N.PlacedPar ps } <|> do { r <- replicator ; eol ; indent ; p <- placedpar ; outdent ; return $ nd m $ N.PlacedParRep r p } }
<|> do { m <- md ; sPROCESSOR ; e <- expression ; eol ; indent ; p <- process ; outdent ; return $ nd m $ N.Processor e p }
<?> "placedpar"
portType
= do { sPORT ; sOF ; p <- protocol ; return $ N.PortOf p }
<|> do { try sLeft ; s <- try expression ; try sRight ; t <- portType ; return $ N.Array s t }
= do { m <- md ; sPORT ; sOF ; p <- protocol ; return $ nd m $ N.PortOf p }
<|> do { m <- md ; try sLeft ; s <- try expression ; try sRight ; t <- portType ; return $ nd m $ N.Array s t }
<?> "portType"
procInstance
= do { n <- name ; sLeftR ; as <- sepBy actual sComma ; sRightR ; eol ; return $ N.ProcCall n as }
= do { m <- md ; n <- name ; sLeftR ; as <- sepBy actual sComma ; sRightR ; eol ; return $ nd m $ N.ProcCall n as }
<?> "procInstance"
process
= try assignment
<|> try input
<|> try output
<|> do { sSKIP ; eol ; return $ N.Skip }
<|> do { sSTOP ; eol ; return $ N.Stop }
<|> do { m <- md ; sSKIP ; eol ; return $ nd m $ N.Skip }
<|> do { m <- md ; sSTOP ; eol ; return $ nd m $ N.Stop }
<|> occamSequence
<|> conditional
<|> selection
@ -585,9 +598,9 @@ process
<|> alternation
<|> try caseInput
<|> try procInstance
<|> do { sMainMarker ; eol ; return $ N.MainProcess }
<|> do { a <- allocation ; p <- process ; return $ N.Decl a p }
<|> do { s <- specification ; p <- process ; return $ N.Decl s p }
<|> do { m <- md ; sMainMarker ; eol ; return $ nd m $ N.MainProcess }
<|> do { m <- md ; a <- allocation ; p <- process ; return $ nd m $ N.Decl a p }
<|> do { m <- md ; s <- specification ; p <- process ; return $ nd m $ N.Decl s p }
<?> "process"
protocol
@ -596,16 +609,16 @@ protocol
<?> "protocol"
real
= try (do { l <- digits ; char '.' ; r <- digits ; char 'e' ; e <- lexeme occamExponent ; return $ N.LitReal (l ++ "." ++ r ++ "e" ++ e) })
<|> do { l <- digits ; char '.' ; r <- lexeme digits ; return $ N.LitReal (l ++ "." ++ r) }
= try (do { m <- md ; l <- digits ; char '.' ; r <- digits ; char 'e' ; e <- lexeme occamExponent ; return $ nd m $ N.LitReal (l ++ "." ++ r ++ "e" ++ e) })
<|> do { m <- md ; l <- digits ; char '.' ; r <- lexeme digits ; return $ nd m $ N.LitReal (l ++ "." ++ r) }
<?> "real"
replicator
= do { n <- name ; sEq ; b <- base ; sFOR ; c <- occamCount ; return $ N.For n b c }
= do { m <- md ; n <- name ; sEq ; b <- base ; sFOR ; c <- occamCount ; return $ nd m $ N.For n b c }
<?> "replicator"
selection
= do { sCASE ; s <- selector ; eol ; indent ; os <- many1 occamOption ; outdent ; return $ N.Case s os }
= do { m <- md ; sCASE ; s <- selector ; eol ; indent ; os <- many1 occamOption ; outdent ; return $ nd m $ N.Case s os }
<?> "selection"
selector
@ -613,9 +626,10 @@ selector
<?> "selector"
occamSequence
= do sSEQ
(do { eol ; indent ; ps <- many1 process ; outdent ; return $ N.Seq ps }
<|> do { r <- replicator ; eol ; indent ; p <- process ; outdent ; return $ N.SeqRep r p })
= do m <- md
sSEQ
(do { eol ; indent ; ps <- many1 process ; outdent ; return $ nd m $ N.Seq ps }
<|> do { r <- replicator ; eol ; indent ; p <- process ; outdent ; return $ nd m $ N.SeqRep r p })
<?> "sequence"
sequentialProtocol
@ -623,9 +637,9 @@ sequentialProtocol
<?> "sequentialProtocol"
simpleProtocol
= try (do { l <- dataType ; sColons ; sLeft ; sRight ; r <- dataType ; return $ N.Counted l r })
= try (do { m <- md ; l <- dataType ; sColons ; sLeft ; sRight ; r <- dataType ; return $ nd m $ N.Counted l r })
<|> dataType
<|> do { sANY ; return $ N.Any }
<|> do { m <- md ; sANY ; return $ nd m $ N.Any }
<?> "simpleProtocol"
specification
@ -634,39 +648,38 @@ specification
<|> definition
<?> "specification"
specifier :: Parser N.Node
specifier
= try dataType
<|> try channelType
<|> try timerType
<|> try portType
<|> try (do { sLeft ; sRight ; s <- specifier ; return $ N.ArrayUnsized s })
<|> do { sLeft ; e <- expression ; sRight ; s <- specifier ; return $ N.Array e s }
<|> try (do { m <- md ; sLeft ; sRight ; s <- specifier ; return $ nd m $ N.ArrayUnsized s })
<|> do { m <- md ; sLeft ; e <- expression ; sRight ; s <- specifier ; return $ nd m $ N.Array e s }
<?> "specifier"
structuredType
= try (do { sRECORD ; eol ; indent ; fs <- many1 structuredTypeField ; outdent ; return $ N.Record fs })
<|> do { sPACKED ; sRECORD ; eol ; indent ; fs <- many1 structuredTypeField ; outdent ; return $ N.PackedRecord fs }
= try (do { m <- md ; sRECORD ; eol ; indent ; fs <- many1 structuredTypeField ; outdent ; return $ nd m $ N.Record fs })
<|> do { m <- md ; sPACKED ; sRECORD ; eol ; indent ; fs <- many1 structuredTypeField ; outdent ; return $ nd m $ N.PackedRecord fs }
<?> "structuredType"
-- FIXME this should use the same type-folding code as proc/func definitions
structuredTypeField
= do { t <- dataType ; fs <- many1 fieldName ; sColon ; eol ; return $ N.Fields t fs }
= do { m <- md ; t <- dataType ; fs <- many1 fieldName ; sColon ; eol ; return $ nd m $ N.Fields t fs }
<?> "structuredTypeField"
-- i.e. array literal
table
= do { v <- table' ; es <- many (do { sLeft ; e <- expression ; sRight ; return e }) ; return $ foldl (\e s -> N.Sub (N.SubPlain s) e) v es }
= do { m <- md ; v <- table' ; es <- many (do { sLeft ; e <- expression ; sRight ; return e }) ; return $ foldl (\e s -> nd m $ N.Sub (nd m $ N.SubPlain s) e) v es }
<?> "table"
table'
= try occamString
<|> try (do { s <- occamString ; sLeftR ; n <- name ; sRightR ; return $ N.TypedLit n s })
<|> try (do { m <- md ; s <- occamString ; sLeftR ; n <- name ; sRightR ; return $ nd m $ N.TypedLit n s })
<|> do { sLeft ;
try (do { es <- sepBy1 expression sComma ; sRight ; return $ N.LitArray es })
<|> try (do { n <- table ; sFROM ; e <- expression ; sFOR ; f <- expression ; sRight ; return $ N.Sub (N.SubFromFor e f) n })
<|> try (do { n <- table ; sFROM ; e <- expression ; sRight ; return $ N.Sub (N.SubFrom e) n })
<|> do { n <- table ; sFOR ; e <- expression ; sRight ; return $ N.Sub (N.SubFor e) n } }
try (do { m <- md ; es <- sepBy1 expression sComma ; sRight ; return $ nd m $ N.LitArray es })
<|> try (do { m <- md ; n <- table ; sFROM ; e <- expression ; sFOR ; f <- expression ; sRight ; return $ nd m $ N.Sub (nd m $ N.SubFromFor e f) n })
<|> try (do { m <- md ; n <- table ; sFROM ; e <- expression ; sRight ; return $ nd m $ N.Sub (nd m $ N.SubFrom e) n })
<|> do { m <- md ; n <- table ; sFOR ; e <- expression ; sRight ; return $ nd m $ N.Sub (nd m $ N.SubFor e) n } }
<?> "table'"
tag
@ -674,32 +687,32 @@ tag
<?> "tag"
taggedList
= try (do { t <- tag ; sSemi ; is <- sepBy1 inputItem sSemi ; return $ N.Tag t is })
<|> do { t <- tag ; return $ N.Tag t [] }
= try (do { m <- md ; t <- tag ; sSemi ; is <- sepBy1 inputItem sSemi ; return $ nd m $ N.Tag t is })
<|> do { m <- md ; t <- tag ; return $ nd m $ N.Tag t [] }
<?> "taggedList"
taggedProtocol
= try (do { t <- tag ; eol ; return $ N.Tag t [] })
<|> try (do { t <- tag ; sSemi ; sp <- sequentialProtocol ; eol ; return $ N.Tag t sp })
= try (do { m <- md ; t <- tag ; eol ; return $ nd m $ N.Tag t [] })
<|> try (do { m <- md ; t <- tag ; sSemi ; sp <- sequentialProtocol ; eol ; return $ nd m $ N.Tag t sp })
timerType
= do { sTIMER ; return $ N.Timer }
<|> do { try sLeft ; s <- try expression ; try sRight ; t <- timerType ; return $ N.Array s t }
= do { m <- md ; sTIMER ; return $ nd m $ N.Timer }
<|> do { m <- md ; try sLeft ; s <- try expression ; try sRight ; t <- timerType ; return $ nd m $ N.Array s t }
<?> "timerType"
valueProcess
= try (do { sVALOF ; eol ; indent ; p <- process ; sRESULT ; el <- expressionList ; eol ; outdent ; return $ N.ValOf p el })
<|> do { s <- specification ; v <- valueProcess ; return $ N.Decl s v }
= try (do { m <- md ; sVALOF ; eol ; indent ; p <- process ; sRESULT ; el <- expressionList ; eol ; outdent ; return $ nd m $ N.ValOf p el })
<|> do { m <- md ; s <- specification ; v <- valueProcess ; return $ nd m $ N.Decl s v }
variable
= do { v <- variable' ; es <- many (do { sLeft ; e <- expression ; sRight ; return e }) ; return $ foldl (\e s -> N.Sub (N.SubPlain s) e) v es }
= do { m <- md ; v <- variable' ; es <- many (do { sLeft ; e <- expression ; sRight ; return e }) ; return $ foldl (\e s -> nd m $ N.Sub (nd m $ N.SubPlain s) e) v es }
<?> "variable"
variable'
= try name
<|> try (do { sLeft ; n <- variable ; sFROM ; e <- expression ; sFOR ; f <- expression ; sRight ; return $ N.Sub (N.SubFromFor e f) n })
<|> try (do { sLeft ; n <- variable ; sFROM ; e <- expression ; sRight ; return $ N.Sub (N.SubFrom e) n })
<|> do { sLeft ; n <- variable ; sFOR ; e <- expression ; sRight ; return $ N.Sub (N.SubFor e) n }
<|> try (do { m <- md ; sLeft ; n <- variable ; sFROM ; e <- expression ; sFOR ; f <- expression ; sRight ; return $ nd m $ N.Sub (nd m $ N.SubFromFor e f) n })
<|> try (do { m <- md ; sLeft ; n <- variable ; sFROM ; e <- expression ; sRight ; return $ nd m $ N.Sub (nd m $ N.SubFrom e) n })
<|> do { m <- md ; sLeft ; n <- variable ; sFOR ; e <- expression ; sRight ; return $ nd m $ N.Sub (nd m $ N.SubFor e) n }
<?> "variable'"
variableList
@ -707,8 +720,8 @@ variableList
<?> "variableList"
variant
= try (do { t <- taggedList ; eol ; indent ; p <- process ; outdent ; return $ N.Variant t p })
<|> do { s <- specification ; v <- variant ; return $ N.Decl s v }
= try (do { m <- md ; t <- taggedList ; eol ; indent ; p <- process ; outdent ; return $ nd m $ N.Variant t p })
<|> do { m <- md ; s <- specification ; v <- variant ; return $ nd m $ N.Decl s v }
<?> "variant"
-- -------------------------------------------------------------
@ -775,9 +788,9 @@ readSource fn = do
-- -------------------------------------------------------------
parseSource :: String -> N.Node
parseSource prep
= case (parse sourceFile "occam" prep) of
parseSource :: String -> String -> N.Node
parseSource prep sourceFileName
= case (parse sourceFile sourceFileName prep) of
Left err -> error ("Parsing error: " ++ (show err))
Right defs -> defs

View File

@ -16,7 +16,7 @@ instance Show SExp where
show s = render $ sexpToDoc s
dyadicName :: N.Node -> String
dyadicName n = case n of
dyadicName (N.Node meta node) = case node of
N.Add -> "+"
N.Subtr -> "-"
N.Mul -> "*"
@ -39,25 +39,25 @@ dyadicName n = case n of
N.After -> "after"
monadicName :: N.Node -> String
monadicName n = case n of
monadicName (N.Node meta node) = case node of
N.MonSub -> "-"
N.MonBitNot -> "bitnot"
N.MonNot -> "not"
N.MonSize -> "size"
nodeToSExp :: N.Node -> SExp
nodeToSExp node
nodeToSExp (N.Node meta node)
= case node of
N.Decl a b -> wrap2 ":" (top a) (top b)
N.Alt a -> wrapl "alt" (map top a)
N.AltRep a b -> wrap2 "alt-rep" (top a) (top b)
N.PriAlt a -> wrapl "pri-alt" (map top a)
N.PriAltRep a b -> wrap2 "pri-alt-rep" (top a) (top b)
N.In a (N.InSimple b) -> wrapl1 "?" (top a) (map top b)
N.In a (N.Node _ (N.InSimple b)) -> wrapl1 "?" (top a) (map top b)
N.Variant a b -> wrap2 "variant" (top a) (top b)
N.In a (N.InCase b) -> wrapl1 "?case" (top a) (map top b)
N.In a (N.InTag b) -> wrap2 "?case-tag" (top a) (top b)
N.In a (N.InAfter b) -> wrap2 "?after" (top a) (top b)
N.In a (N.Node _ (N.InCase b)) -> wrapl1 "?case" (top a) (map top b)
N.In a (N.Node _ (N.InTag b)) -> wrap2 "?case-tag" (top a) (top b)
N.In a (N.Node _ (N.InAfter b)) -> wrap2 "?after" (top a) (top b)
N.Out a b -> wrapl1 "!" (top a) (map top b)
N.OutCase a b c -> wrapl2 "!case" (top a) (top b) (map top c)
N.ExpList a -> wrapl "exp-list" (map top a)
@ -101,10 +101,10 @@ nodeToSExp node
N.Reshapes a b c -> wrap3 "reshapes" (top a) (top b) (top c)
N.ValReshapes a b c -> wrap3 "val-reshapes" (top a) (top b) (top c)
N.ValOf a b -> wrap2 "valof" (top a) (top b)
N.Sub (N.SubPlain b) a -> wrap2 "sub" (top a) (top b)
N.Sub (N.SubFromFor b c) a -> wrap3 "sub-from-for" (top a) (top b) (top c)
N.Sub (N.SubFrom b) a -> wrap2 "sub-from" (top a) (top b)
N.Sub (N.SubFor b) a -> wrap2 "sub-for" (top a) (top b)
N.Sub (N.Node _ (N.SubPlain b)) a -> wrap2 "sub" (top a) (top b)
N.Sub (N.Node _ (N.SubFromFor b c)) a -> wrap3 "sub-from-for" (top a) (top b) (top c)
N.Sub (N.Node _ (N.SubFrom b)) a -> wrap2 "sub-from" (top a) (top b)
N.Sub (N.Node _ (N.SubFor b)) a -> wrap2 "sub-for" (top a) (top b)
N.CaseExps a b -> wrap2 "case-exps" (List $ map top a) (top b)
N.Else a -> wrap "else" (top a)
N.For a b c -> wrap3 "for" (top a) (top b) (top c)
@ -159,18 +159,18 @@ nodeToSExp node
wrapl2 name arg1 arg2 args = List ((Item name) : arg1 : arg2 : args)
nodeToSOccam :: N.Node -> SExp
nodeToSOccam node
nodeToSOccam (N.Node meta node)
= case node of
N.Decl a b -> wrap2 ":" (top a) (top b)
N.Alt a -> wrapl "alt" (map top a)
N.AltRep a b -> wrap2 "alt" (top a) (top b)
N.PriAlt a -> wrapl "pri-alt" (map top a)
N.PriAltRep a b -> wrap2 "pri-alt" (top a) (top b)
N.In a (N.InSimple b) -> wrapl1 "?" (top a) (map top b)
N.In a (N.Node _ (N.InSimple b)) -> wrapl1 "?" (top a) (map top b)
N.Variant a b -> wrap2 "variant" (top a) (top b)
N.In a (N.InCase b) -> wrapl1 "?case" (top a) (map top b)
N.In a (N.InTag b) -> wrap2 "?case-tag" (top a) (top b)
N.In a (N.InAfter b) -> wrap2 "?after" (top a) (top b)
N.In a (N.Node _ (N.InCase b)) -> wrapl1 "?case" (top a) (map top b)
N.In a (N.Node _ (N.InTag b)) -> wrap2 "?case-tag" (top a) (top b)
N.In a (N.Node _ (N.InAfter b)) -> wrap2 "?after" (top a) (top b)
N.Out a b -> wrapl1 "!" (top a) (map top b)
N.OutCase a b c -> wrapl2 "!case" (top a) (top b) (map top c)
N.ExpList a -> List (map top a)
@ -214,10 +214,10 @@ nodeToSOccam node
N.Reshapes a b c -> wrap3 "reshapes" (top a) (top b) (top c)
N.ValReshapes a b c -> wrap3 "val-reshapes" (top a) (top b) (top c)
N.ValOf a b -> wrap2 "valof" (top a) (top b)
N.Sub (N.SubPlain b) a -> wrap2 "sub" (top a) (top b)
N.Sub (N.SubFromFor b c) a -> wrap3 "sub-from-for" (top a) (top b) (top c)
N.Sub (N.SubFrom b) a -> wrap2 "sub-from" (top a) (top b)
N.Sub (N.SubFor b) a -> wrap2 "sub-for" (top a) (top b)
N.Sub (N.Node _ (N.SubPlain b)) a -> wrap2 "sub" (top a) (top b)
N.Sub (N.Node _ (N.SubFromFor b c)) a -> wrap3 "sub-from-for" (top a) (top b) (top c)
N.Sub (N.Node _ (N.SubFrom b)) a -> wrap2 "sub-from" (top a) (top b)
N.Sub (N.Node _ (N.SubFor b)) a -> wrap2 "sub-for" (top a) (top b)
N.CaseExps a b -> l2 (List $ map top a) (top b)
N.Else a -> wrap "else" (top a)
N.For a b c -> wrap3 "for" (top a) (top b) (top c)