This makes it possible to mark a slice as not needing runtime
checking, which is immediately useful for _sizes arrays.
This fixes cgtest03, which was previously failing to compile because
the _sizes array for one of the constants in it contained a runtime
check and thus wasn't itself constant. I've added a testcase file for
the relevant bit of code.
This changes the Traversal API to the one that I've been working on in
the Polyplate branch, but implemented in terms of Data. The
performance isn't as good as the Polyplate version, but the code is a
lot simpler because it doesn't need all the type constraints (and it
doesn't make GHC struggle).
This also reworks all the passes in Tock to use the new API, including
those that previously used makeGeneric (which I've now removed) or
everywhereM. Most of the passes are simpler because of this, and I
suspect it's fixed a few subtle bugs resulting from missing recursion
in makeGeneric code.
I haven't yet profiled this, but subjectively it seems about the same
as the old Traversal (and thus faster for all the passes that didn't
yet use it).
This patch hides all the old typeOfExpression, typeOfName, typeOfVariable, etc, and unifies them into a single type-class with an "astTypeOf" function. The type-class is currently named Typed, but that can easily be changed (it's only explicitly referred to in the Types module). The patch is essentially the type-class with a giant find-and-replace on the other modules.
In particular, evalSimpleLiteral is now much nicer, and the error
messages should be a bit more comprehensible.
The signed types previously used a different version of fromRead that
passed an extra argument that it then didn't use; I've switched back to
the old version now, since it appears not to need it any more.
This makes sure that literals produced by the constant evaluator will never
contain UnknownDimension. The change looks a lot more complex than it really
is; it already carried the type "downwards", and most of this is just making it
carry it back up to where the A.Literal is being constructured.
This means you don't have to have folded constants throughout the tree/state in
order to evaluate them, which makes the early passes less awkward to manage.
The rendering code now takes the type it's aiming for, so it can produce a
value of exactly the same type as the expression that was being folded
originally (rather than trying to work it out for itself).
Subscripting Infer gives you Infer.
This also makes trivialSubscriptType handle user types in the same way as
subscriptType. (There probably isn't much reason to have both any more, since
subscriptType doesn't do the checks it used to do.)
It's redundant, since you can always compute them from the variable, and it
makes the code that deals with actuals rather cleaner.
On the other hand, it slightly complicates some of the tests, because any names
you use in an Actual need to be defined...
Various infrastructure too to support these.
Doing A.ForEach raised an interesting question: what does it work over? In
plain occam it'd just be arrays, but it should obviously work for lists too.
This suggests that Size and Subscript should work on lists as well, since
ForEach will be implemented in terms of them. I've therefore introduced the
idea of a "sequence" class of types.
This used not to be a problem, but there's now quite a lot of stuff predefined
in the state when testing the typechecker, so it tends to obscure the real
error...
This provides gmapMFor and gmapMFor2, which are like gmapM, but know what
they're looking for, and can therefore avoid going down branches of the tree
that won't contain any interesting types.
The basic approach is quite similar to Uniplate's PlateData: there's a function
(containsType) that'll tell you whether one type is contained somewhere within
another. However, unlike Uniplate, we build a static IntMap IntSet of the types
we need to know about, which allows rather quicker lookups. (I did try using
PlateData first.)
The result is that applyDepthM is now much quicker than it was before.
applyDepthM2 is a bit less impressive, which I assume is because it can't
really prune the tree much if it's looking for two types.
Future enhancements:
- convert more passes to use applyDepthM*;
- make gmapMFor* aware of constructors rather than just types, which should
allow a bit more pruning.
This touches an awful lot of code, but cgtest07/17 (arrays and retyping) pass.
This is useful because there are going to be places in the future where we'll
want to represent dimensions that are known at runtime but not at compile time
-- for example, mobile allocations, or dynamically-sized arrays. It simplifies
the code in a number of places.
However, we do now need to be careful that expressions containing variables do
not leak into the State, since they won't be affected by later passes.
Two caveats (marked as FIXMEs in the source):
- Retypes checking in the occam parser is disabled, since the plan is to move
it out to a pass anyway.
- There's some (now very obvious) duplication, particularly in the backend, of
bits of code that construct expressions for the total size of an array
(either in bytes or elements); this should be moved to a couple of helper
functions that everything can use.
This means all the tests now get run as part of one list, and HUnit keeps track
of the number of failures for us. (The reason I was doing this was so that
tocktest will exit non-zero on QuickCheck test failure too.)
As part of this, I've reworked TestMain's main function quite a bit. It'll now
filter QuickCheck tests into response to options too.
Most of this is mechanical: changing function names, and carrying the "wptr"
argument around. I've made the code for computing Expressions from Structureds
a bit more generic too.
The only complex bit is the handling of PAR processes, which I'm not very happy
with at the moment; they used to use the normal C calling convention, but now
you need to pack the arguments into the workspace. I'm handling this at the
moment by generating wrapper functions that do the unpacking, but it would be
better in the future to make the wrapper PROCs that we already generate have
the right interface.
This won't work for programs that use any of the top-level channels yet, since
there are no handlers for them.
This implements #DEFINE, #UNDEF, #IF, #ELSE and #ENDIF, macro expansion with
##, and TRUE, FALSE, AND, OR, NOT and DEFINED within #IF expressions, with the
same semantics as occ21.
The macro COMPILER.TOCK is always defined by default, so you can now say things
like "#IF NOT DEFINED (COMPILER.TOCK) ... #ENDIF".
Previously, most of the flow-graph building functions were inside the where clause of buildFlowGraph. They have been moved to the top-level (with only a few small changes to make this possible - the main one being to store the labelling functions in a reader monad, which only required changing a couple of lines) and used by an additional buildFlowGraphP function, that is now used by the tests to make them work simply. None of the new top-level functions except buildFlowGraphP are exported from FlowGraph.
This patch is actually an amalgam of multiple (already large) patches. Those patches conflicted (parameterised Structured vs. changes to usage checking and FlowGraph) and encountered a nasty bug in darcs 1 involving exponential time (see http://wiki.darcs.net/DarcsWiki/ConflictsFAQ for more details). Reasoning that half an hour (of 100% CPU use) was too long to apply patches, I opted to re-record the parameterised Structured changes as this new large patch. Here are the commit messages originally used for the patches (which, as mentioned, were already large patches):
A gigantic patch switching all the non-test modules over to using parameterised A.Structured
Changed the FlowGraph module again to handle any sort of Structured you want to pass to it (mainly for testing)
A further gigantic patch changing all the tests to work with the new parameterised Structured
Fixed a nasty bug involving functions being named incorrectly inside transformInputCase
Added a hand-written instance of Data for Structured that allows us to use ext1M properly
Fixed a few warnings in the code