Now that we support separate compilation, some of the stack sizes for PROCs depend on the stack sizes of other PROCs that were compiled in different files. We can't just assume the default 512 bytes for these "foreign" PROCs, because that often won't be enough. So instead, we must make the stack sizes for the current PROCs depend on (i.e. use in the calculation) the stack sizes of the foreign PROCs.
This dependence adds some issues though. We cannot declare in one C file a const int that depends on the value of an extern const int from another C file (not valid C, it seems). So instead, we move all the stack size declarations to header files, and use #includes and the preprocessor to make sure that the stack sizes are statically determined.
This in turn simplifies the build process in some ways. These headers only need to be compiled by the .occ file that has the main process, by including them all into a C file and compiling that as before. It means that each .occ file only has one .o file resulting (plus two C headers*, and a .inc file) so linking is a bit less confusing.
* I am keeping the two C headers for now, rather than appending the sizes one to the normal header, because I'm not entirely sure whether having one header that the C file depends on may trigger a recompilation that we don't want in some build systems. I can always merge them later if that's not a valid worry.
This just about works, but it allocates the usual 512 bytes for all external PROCs being called, rather than using the actual stack_size for those external PROCs (this causes popcorn to overflow the stack if left with the default 512 bytes)
The separately compiled occam PROCs now use #PRAGMA OCCAMEXTERNAL, which also discards the "= number" thing at the end. These PROCs then need to be processed differently when adding on the sizes (C externals have one size per dimension, occam externals have the normal array of sizes).
We also now record which processes were originally at the top-level, and keep their original names (i.e. minus the _u43 suffixes) plus an "occam_" prefix to avoid collisions.
This shows that my current scheme is a bit of a hack; if an occam programmer starts a normal PROC with B or C, it will be treated funny during separate compilation. In future I probably need some new form of #PRAGMA to support separate compilation, different from that used to interface with C.
I changed a little bit of the code, but mainly the tests. Several of the remaining failures are actually real failures, so I need to dig through the rest carefully. A lot are failing because the C++ backend is broken.
This is quite a big patch, as it reworks a large pass. The three backend passes dealing with sizes stuff have now been merged into one (because the traversal order is important).
Instead of generating sizes arrays by blindly appending "_sizes", we now create nonces and store them in the csArraySizes map in CompState, which is a bit less hacky.
Added to that, we also generate constant-size arrays (e.g. for [8]) -- which are needed in case we pass the array to a PROC that has a flexible dimension -- at the top of the whole program, and use that array for every variable with that size (so if foo and bar have the same size, we use the same sizes array from the top of the program).
All the changes in this patch should be undone as soon as possible (building the list of workspaces, and how we sort out the enrollment counts -- that should be done by pulling up PAR replicator counts outside the whole PAR), but for now, it works.