{- Tock: a compiler for parallel languages Copyright (C) 2007, 2008 University of Kent This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . -} -- | Generate C code from the mangled AST. Most of the exports here are actually -- for GenerateCPPCSP to use module GenerateC ( cgenOps , cgenReplicatorLoop , cgetCType , cintroduceSpec , cPreReq , cremoveSpec , genCPasses , generate , generateC , genLeftB , genMeta , genName , genRightB , justOnly , withIf ) where import Data.Char import Data.Generics import Data.List import Data.Maybe import qualified Data.Set as Set import Control.Monad.State import System.IO import Text.Printf import qualified AST as A import BackendPasses import CompState import Errors import EvalConstants import EvalLiterals import Intrinsics import GenerateCBased import Metadata import Pass import qualified Properties as Prop import ShowCode import TLP import Types import TypeSizes import Utils --{{{ passes related to C generation genCPasses :: [Pass] genCPasses = [transformWaitFor] --}}} cPreReq :: [Property] cPreReq = cCppCommonPreReq ++ [Prop.parsIdentified, Prop.waitForRemoved] --{{{ generator ops -- | Operations for the C backend. cgenOps :: GenOps cgenOps = GenOps { declareFree = cdeclareFree, declareInit = cdeclareInit, genActual = cgenActual, genActuals = cgenActuals, genAlt = cgenAlt, genAllocMobile = cgenAllocMobile, genArrayLiteralElems = cgenArrayLiteralElems, genArrayStoreName = genName, genArraySubscript = cgenArraySubscript, genAssert = cgenAssert, genAssign = cgenAssign, genBytesIn = cgenBytesIn, genCase = cgenCase, genCheckedConversion = cgenCheckedConversion, genClearMobile = cgenClearMobile, genCloneMobile = cgenCloneMobile, genConversion = cgenConversion, genConversionSymbol = cgenConversionSymbol, getCType = cgetCType, genDecl = cgenDecl, genDeclaration = cgenDeclaration, genDirectedVariable = cgenDirectedVariable, genDyadic = cgenDyadic, genExpression = cgenExpression, genFlatArraySize = cgenFlatArraySize, genForwardDeclaration = cgenForwardDeclaration, genFuncDyadic = cgenFuncDyadic, genFuncMonadic = cgenFuncMonadic, genGetTime = cgenGetTime, genIf = cgenIf, genInput = cgenInput, genInputItem = cgenInputItem, genIntrinsicFunction = cgenIntrinsicFunction, genIntrinsicProc = cgenIntrinsicProc, genListAssign = cgenListAssign, genListConcat = cgenListConcat, genListLiteral = cgenListLiteral, genListSize = cgenListSize, genLiteral = cgenLiteral, genLiteralRepr = cgenLiteralRepr, genMissing = cgenMissing, genMissingC = (\x -> x >>= cgenMissing), genMonadic = cgenMonadic, genOutput = cgenOutput, genOutputCase = cgenOutputCase, genOutputItem = cgenOutputItem, genOverArray = cgenOverArray, genPar = cgenPar, genProcCall = cgenProcCall, genProcess = cgenProcess, genRecordTypeSpec = cgenRecordTypeSpec, genReplicatorStart = cgenReplicatorStart, genReplicatorEnd = cgenReplicatorEnd, genReplicatorLoop = cgenReplicatorLoop, genReschedule = cgenReschedule, genRetypeSizes = cgenRetypeSizes, genSeq = cgenSeq, genSimpleDyadic = cgenSimpleDyadic, genSimpleMonadic = cgenSimpleMonadic, genSizeSuffix = cgenSizeSuffix, genSpec = cgenSpec, genSpecMode = cgenSpecMode, genStop = cgenStop, genStructured = cgenStructured, genTimerRead = cgenTimerRead, genTimerWait = cgenTimerWait, genTopLevel = cgenTopLevel, genTypeSymbol = cgenTypeSymbol, genUnfoldedExpression = cgenUnfoldedExpression, genUnfoldedVariable = cgenUnfoldedVariable, genVariable = \v am -> cgenVariableWithAM True v am id, genVariable' = cgenVariableWithAM True, genVariableUnchecked = \v am -> cgenVariableWithAM False v am id, genWhile = cgenWhile, getScalarType = cgetScalarType, introduceSpec = cintroduceSpec, removeSpec = cremoveSpec } --}}} --{{{ top-level generateC :: Handle -> A.AST -> PassM () generateC = generate cgenOps cgenTopLevel :: A.AST -> CGen () cgenTopLevel s = do tell ["#define occam_INT_size ", show cIntSize,"\n"] tell ["#include \n"] cs <- getCompState (tlpName, tlpChans) <- tlpInterface chans <- sequence [csmLift $ makeNonce "tlp_channel" | _ <- tlpChans] killChans <- sequence [csmLift $ makeNonce "tlp_channel_kill" | _ <- tlpChans] workspaces <- sequence [csmLift $ makeNonce "tlp_channel_ws" | _ <- tlpChans] sequence_ $ map (call genForwardDeclaration) (listify (const True :: A.Specification -> Bool) s) sequence_ [tell ["extern int ", nameString n, "_stack_size;\n"] | n <- Set.toList $ csParProcs cs] tell ["extern int "] genName tlpName tell ["_stack_size;\n"] call genStructured s (\m _ -> tell ["\n#error Invalid top-level item: ", show m]) tell ["void tock_main (Workspace wptr) {\n"] sequence_ [do tell [" Channel ", c, ";\n"] tell [" ChanInit (wptr, &", c, ");\n"] | c <- chans ++ killChans] tell ["\n"] funcs <- sequence [genTLPHandler tc c kc ws | (tc, c, kc, ws) <- zip4 tlpChans chans killChans workspaces] tell [" LightProcBarrier bar;\n\ \ LightProcBarrierInit (wptr, &bar, ", show $ length chans, ");\n"] sequence_ [tell [" LightProcStart (wptr, &bar, ", ws, ", (Process) ", func, ");\n"] | (ws, func) <- zip workspaces funcs] tell ["\n\ \ "] genName tlpName tell [" (wptr"] sequence_ [tell [", &", c] | c <- chans] tell [");\n\ \\n"] sequence_ [tell [" ", func, "_kill (wptr, &", kc, ");\n"] | (func, kc) <- zip funcs killChans] let uses_stdin = if TLPIn `elem` (map snd tlpChans) then "true" else "false" tell [" LightProcBarrierWait (wptr, &bar);\n\ \\n\ \ Shutdown (wptr);\n\ \}\n\ \\n\ \int main (int argc, char *argv[]) {\n\ \ tock_init_ccsp (", uses_stdin, ");\n\ \\n\ \ Workspace p = ProcAllocInitial (0, "] genName tlpName tell ["_stack_size + 512);\n\ \ ProcStartInitial (p, tock_main);\n\ \\n\ \ // NOTREACHED\n\ \ return 0;\n\ \}\n"] where -- | Allocate a TLP channel handler process, and return the function that -- implements it. genTLPHandler :: (Maybe A.Direction, TLPChannel) -> String -> String -> String -> CGen String genTLPHandler (_, tc) c kc ws = do tell [" Workspace ", ws, " = ProcAlloc (wptr, 3, 1024);\n\ \ ProcParam (wptr, ", ws, ", 0, &", c, ");\n\ \ ProcParam (wptr, ", ws, ", 1, &", kc, ");\n\ \ ProcParam (wptr, ", ws, ", 2, ", fp, ");\n\ \\n"] return func where (fp, func) = case tc of TLPIn -> ("stdin", "tock_tlp_input") TLPOut -> ("stdout", "tock_tlp_output") TLPError -> ("stderr", "tock_tlp_output") --}}} --{{{ utilities cgenMissing :: String -> CGen () cgenMissing s = tell ["\n#error Unimplemented: ", s, "\n"] --{{{ simple punctuation genLeftB :: CGen () genLeftB = tell ["{"] genRightB :: CGen () genRightB = tell ["}"] --}}} -- | Map an operation over every item of an occam array. cgenOverArray :: Meta -> A.Variable -> (SubscripterFunction -> Maybe (CGen ())) -> CGen () cgenOverArray m var func = do A.Array ds _ <- astTypeOf var specs <- sequence [csmLift $ makeNonceVariable "i" m A.Int A.Original | _ <- ds] let indices = [A.Variable m n | A.Specification _ n _ <- specs] let arg = (\var -> foldl (\v s -> A.SubscriptedVariable m s v) var [A.Subscript m A.NoCheck $ A.ExprVariable m i | i <- indices]) case func arg of Just p -> do sequence_ [do tell ["for(int "] call genVariable i A.Original tell ["=0;"] call genVariable i A.Original tell ["<"] case d of A.UnknownDimension -> do call genVariable var A.Original call genSizeSuffix (show v) A.Dimension n -> call genExpression n tell [";"] call genVariable i A.Original tell ["++){"] | (v :: Integer, i, d) <- zip3 [0..] indices ds] p sequence_ [tell ["}"] | _ <- indices] Nothing -> return () -- | Generate code for one of the Structured types. cgenStructured :: Data a => A.Structured a -> (Meta -> a -> CGen b) -> CGen [b] cgenStructured (A.Spec _ spec s) def = call genSpec spec (call genStructured s def) cgenStructured (A.ProcThen _ p s) def = call genProcess p >> call genStructured s def cgenStructured (A.Several _ ss) def = sequence [call genStructured s def | s <- ss] >>* concat cgenStructured (A.Only m s) def = def m s >>* singleton --}}} --{{{ metadata -- | Turn a Meta into a string literal that can be passed to a function -- expecting a const char * argument. genMeta :: Meta -> CGen () genMeta m = tell ["\"", show m, "\""] --}}} --{{{ names nameString :: A.Name -> String nameString n = [if c == '.' then '_' else c | c <- A.nameName n] genName :: A.Name -> CGen () genName n = tell [nameString n] --}}} --{{{ types -- | If a type maps to a simple C type, return Just that; else return Nothing. cgetScalarType :: A.Type -> Maybe String cgetScalarType A.Bool = Just "bool" cgetScalarType A.Byte = Just "uint8_t" cgetScalarType A.UInt16 = Just "uint16_t" cgetScalarType A.UInt32 = Just "uint32_t" cgetScalarType A.UInt64 = Just "uint64_t" cgetScalarType A.Int8 = Just "int8_t" cgetScalarType A.Int = cgetScalarType cIntReplacement cgetScalarType A.Int16 = Just "int16_t" cgetScalarType A.Int32 = Just "int32_t" cgetScalarType A.Int64 = Just "int64_t" cgetScalarType A.Real32 = Just "float" cgetScalarType A.Real64 = Just "double" cgetScalarType (A.Timer A.OccamTimer) = Just "Time" cgetScalarType A.Time = Just "Time" cgetScalarType _ = Nothing indexOfFreeDimensions :: [A.Dimension] -> [Int] indexOfFreeDimensions = (mapMaybe indexOfFreeDimensions') . (zip [0..]) where indexOfFreeDimensions' :: (Int,A.Dimension) -> Maybe Int indexOfFreeDimensions' (_, A.Dimension _) = Nothing indexOfFreeDimensions' (n, A.UnknownDimension) = Just n -- | Generate the number of bytes in a type. cgenBytesIn :: Meta -> A.Type -> Either Bool A.Variable -> CGen () cgenBytesIn m t v = do case (t, v) of (A.Array ds _, Left freeDimensionAllowed) -> case (length (indexOfFreeDimensions ds), freeDimensionAllowed) of (0,_) -> return () (1,False) -> dieP m "genBytesIn type with unknown dimension, when unknown dimensions are not allowed" (1,True) -> return () (_,_) -> dieP m "genBytesIn type with more than one free dimension" _ -> return () genBytesIn' t where genBytesIn' :: A.Type -> CGen () genBytesIn' (A.Array ds t) = do mapM_ genBytesInArrayDim (reverse $ zip ds [0..]) --The reverse is simply to match the existing tests genBytesIn' t genBytesIn' (A.Record n) = do tell ["sizeof("] genName n tell [")"] -- This is so that we can do RETYPES checks on channels; we don't actually -- allow retyping between channels and other things. genBytesIn' t@(A.Chan {}) = do tell ["sizeof("] genType t tell [")"] genBytesIn' t@(A.ChanEnd {}) = do tell ["sizeof("] genType t tell [")"] genBytesIn' (A.Mobile _) = tell ["sizeof(void*)"] genBytesIn' (A.List _) = tell ["sizeof(void*)"] genBytesIn' t = do f <- fget getScalarType case f t of Just s -> tell ["sizeof(", s, ")"] Nothing -> diePC m $ formatCode "genBytesIn' %" t -- FIXME: This could be done by generating an expression for the size, -- which is what declareSizesPass has to do -- they should share a helper -- function. genBytesInArrayDim :: (A.Dimension,Int) -> CGen () genBytesInArrayDim (A.Dimension n, _) = do call genExpression n tell ["*"] genBytesInArrayDim (A.UnknownDimension, i) = case v of Right rv -> do call genVariable rv A.Original call genSizeSuffix (show i) tell ["*"] _ -> return () --}}} --{{{ declarations cgenDecl :: A.AbbrevMode -> A.Type -> A.Name -> CGen () cgenDecl am t n = do genCType (A.nameMeta n) t am tell [" "] genName n --}}} --{{{ conversions cgenCheckedConversion :: Meta -> A.Type -> A.Type -> CGen () -> CGen () cgenCheckedConversion m fromT toT exp = do tell ["(("] genType toT tell [") "] if isSafeConversion fromT toT then exp else do call genTypeSymbol "range_check" fromT tell [" ("] call genTypeSymbol "mostneg" toT tell [", "] call genTypeSymbol "mostpos" toT tell [", "] exp tell [", "] genMeta m tell [")"] tell [")"] cgenConversion :: Meta -> A.ConversionMode -> A.Type -> A.Expression -> CGen () cgenConversion m A.DefaultConversion toT e = do fromT <- astTypeOf e call genCheckedConversion m fromT toT (call genExpression e) cgenConversion m cm toT e = do fromT <- astTypeOf e case (isSafeConversion fromT toT, isRealType fromT, isRealType toT) of (True, _, _) -> -- A safe conversion -- no need for a check. call genCheckedConversion m fromT toT (call genExpression e) (_, True, True) -> -- Real to real. do call genConversionSymbol fromT toT cm tell [" ("] call genExpression e tell [", "] genMeta m tell [")"] (_, True, False) -> -- Real to integer -- do real -> int64_t -> int. do let exp = do call genConversionSymbol fromT A.Int64 cm tell [" ("] call genExpression e tell [", "] genMeta m tell [")"] call genCheckedConversion m A.Int64 toT exp (_, False, True) -> -- Integer to real -- do int -> int64_t -> real. do call genConversionSymbol A.Int64 toT cm tell [" ("] call genCheckedConversion m fromT A.Int64 (call genExpression e) tell [", "] genMeta m tell [")"] _ -> call genMissing $ "genConversion " ++ show cm cgenConversionSymbol :: A.Type -> A.Type -> A.ConversionMode -> CGen () cgenConversionSymbol fromT toT cm = do tell ["occam_convert_"] genType fromT tell ["_"] genType toT tell ["_"] case cm of A.Round -> tell ["round"] A.Trunc -> tell ["trunc"] --}}} --{{{ literals cgenLiteral :: A.LiteralRepr -> A.Type -> CGen () cgenLiteral lr t = if isStringLiteral lr then do tell ["\""] let A.ArrayListLiteral _ (A.Several _ aes) = lr sequence_ [genByteLiteral m s | A.Only _ (A.Literal _ _ (A.ByteLiteral m s)) <- aes] tell ["\""] else call genLiteralRepr lr t -- | Does a LiteralRepr represent something that can be a plain string literal? isStringLiteral :: A.LiteralRepr -> Bool isStringLiteral (A.ArrayListLiteral _ (A.Several _ aes)) = and [case ae of A.Only _ (A.Literal _ _ (A.ByteLiteral _ _)) -> True _ -> False | ae <- aes] isStringLiteral _ = False genLitSuffix :: A.Type -> CGen () genLitSuffix A.UInt32 = tell ["U"] genLitSuffix A.Int64 = tell ["LL"] genLitSuffix A.UInt64 = tell ["ULL"] genLitSuffix A.Real32 = tell ["F"] genLitSuffix _ = return () -- TODO don't allocate for things less than 64-bits in size cgenListLiteral :: A.Structured A.Expression -> A.Type -> CGen () cgenListLiteral (A.Several _ es) t = foldl addItem (tell ["g_queue_new()"]) [e | A.Only _ e <- es] where addItem :: CGen () -> A.Expression -> CGen () addItem prev add = do tell ["g_queue_push_head("] prev tell [","] call genExpression add tell [")"] cgenListSize :: A.Variable -> CGen () cgenListSize v = do tell ["g_queue_get_length("] call genVariable v A.Original tell [")"] cgenListAssign :: A.Variable -> A.Expression -> CGen () cgenListAssign v e = do tell ["tock_free_queue("] call genVariable v A.Original tell [");"] call genVariable v A.Original tell ["="] call genExpression e tell [";"] cgenLiteralRepr :: A.LiteralRepr -> A.Type -> CGen () cgenLiteralRepr (A.RealLiteral m s) t = tell [s] >> genLitSuffix t cgenLiteralRepr (A.IntLiteral m s) t = do genDecimal s genLitSuffix t cgenLiteralRepr (A.HexLiteral m s) t = do f <- fget getScalarType ct <- case f t of Just ct -> return ct Nothing -> diePC m $ formatCode "Non-scalar type for hex literal: " t tell ["((",ct,")0x", s] genLitSuffix t tell [")"] cgenLiteralRepr (A.ByteLiteral m s) _ = tell ["'"] >> genByteLiteral m s >> tell ["'"] cgenLiteralRepr (A.RecordLiteral _ es) _ = do genLeftB seqComma $ map (call genUnfoldedExpression) es genRightB cgenLiteralRepr (A.ArrayListLiteral m aes) (A.Array {}) = genLeftB >> call genArrayLiteralElems aes >> genRightB cgenLiteralRepr (A.ArrayListLiteral _ es) t@(A.List {}) = call genListLiteral es t cgenLiteralRepr (A.ArrayListLiteral m _) t = diePC m $ formatCode "Unknown type for array/list literal: %" t -- | Generate an expression inside a record literal. -- -- This is awkward: the sort of literal that this produces when there's a -- variable in here cannot always be compiled at the top level of a C99 program -- -- because in C99, an array subscript is not a constant, even if it's a -- constant subscript of a constant array. So we need to be sure that when we -- use this at the top level, the thing we're unfolding only contains literals. -- Yuck! cgenUnfoldedExpression :: A.Expression -> CGen () cgenUnfoldedExpression (A.Literal _ t lr) = do call genLiteralRepr lr t cgenUnfoldedExpression (A.ExprVariable m var) = call genUnfoldedVariable m var cgenUnfoldedExpression e = call genExpression e -- | Generate a variable inside a record literal. cgenUnfoldedVariable :: Meta -> A.Variable -> CGen () cgenUnfoldedVariable m var = do t <- astTypeOf var case t of A.Array ds _ -> do genLeftB unfoldArray ds var genRightB A.Record _ -> do genLeftB fs <- recordFields m t seqComma [call genUnfoldedVariable m (A.SubscriptedVariable m (A.SubscriptField m n) var) | (n, t) <- fs] genRightB -- We can defeat the usage check here because we know it's safe; *we're* -- generating the subscripts. -- FIXME Is that actually true for something like [a[x]]? _ -> call genVariableUnchecked var A.Original where unfoldArray :: [A.Dimension] -> A.Variable -> CGen () unfoldArray [] v = call genUnfoldedVariable m v unfoldArray (A.Dimension e:ds) v = do n <- evalIntExpression e seqComma $ [unfoldArray ds (A.SubscriptedVariable m (A.Subscript m A.NoCheck $ makeConstant m i) v) | i <- [0..(n - 1)]] unfoldArray _ _ = dieP m "trying to unfold array with unknown dimension" -- | Generate a decimal literal -- removing leading zeroes to avoid producing -- an octal literal! genDecimal :: String -> CGen () genDecimal "0" = tell ["0"] genDecimal ('0':s) = genDecimal s genDecimal ('-':s) = tell ["-"] >> genDecimal s genDecimal s = tell [s] cgenArrayLiteralElems :: A.Structured A.Expression -> CGen () cgenArrayLiteralElems (A.Only _ e) = call genUnfoldedExpression e cgenArrayLiteralElems (A.Several _ aes) = seqComma $ map cgenArrayLiteralElems aes cgenArrayLiteralElems x = call genMissingC $ formatCode "Missing cgenArrayLiteralElems for %" x genByteLiteral :: Meta -> String -> CGen () genByteLiteral m s = do c <- evalByte m s tell [convByte c] convByte :: Char -> String convByte '\'' = "\\'" convByte '"' = "\\\"" convByte '\\' = "\\\\" convByte '\r' = "\\r" convByte '\n' = "\\n" convByte '\t' = "\\t" convByte c | o == 0 = "\\0" | (o < 32 || o > 127) = printf "\\%03o" o | otherwise = [c] where o = ord c --}}} --{{{ variables cgenVariableWithAM :: Bool -> A.Variable -> A.AbbrevMode -> (CType -> CType) -> CGen () cgenVariableWithAM checkValid v am fct = do iv <- inner v t <- astTypeOf v ct <- call getCType m t am >>* fct -- Temporary, for debugging: tell ["/* ", show (snd iv), " , trying to get: ", show ct, " */"] dressUp m iv ct where m = findMeta v details :: A.Variable -> CGen CType details v = do t <- astTypeOf v am <- abbrevModeOfVariable v call getCType m t am inner :: A.Variable -> CGen (CGen (), CType) inner v@(A.Variable m n) = do ct <- details v return (genName n, ct) inner (A.DerefVariable m v) = do (A.Mobile t) <- astTypeOf v case t of A.Array _ innerT -> do (cg, ct) <- inner v innerCT <- call getCType m innerT A.Original let cast = tell ["("] >> genType innerT >> tell ["*)"] return (tell ["("] >> cast >> tell ["(("] >> cg >> tell [")->data))"] , Pointer $ innerCT) _ -> inner v inner (A.DirectedVariable _ dir v) = do (cg, ct) <- inner v t <- astTypeOf v return (call genDirectedVariable m t cg dir, ct) inner sv@(A.SubscriptedVariable m sub v) = case sub of A.Subscript _ subCheck _ -> do (es, iv, _) <- collectSubs sv Pointer ct <- details iv let check = if checkValid then subCheck else A.NoCheck -- Arrays should be pointers to the inner element: return (do cgenVariableWithAM checkValid iv A.Original id call genArraySubscript check iv (map (\e -> (findMeta e, call genExpression e)) es) , ct) A.SubscriptField _ fieldName -> do vt <- astTypeOf v fs <- recordFields m vt ct <- case lookup fieldName fs of Just x -> call getCType m x A.Original Nothing -> dieP m $ "Could not find type of field name: " ++ show fieldName -- For records, we expect it to be a pointer to a record: return (do tell ["("] call genVariable' v A.Original stripPointers tell [")."] genName fieldName , ct) A.SubscriptFromFor m' subCheck start count -> do ct <- details v return (do let check = if checkValid then subCheck else A.NoCheck tell ["(&"] cgenVariableWithAM checkValid v A.Original id call genArraySubscript A.NoCheck v [(m', case check of A.NoCheck -> call genExpression start _ -> do tell ["occam_check_slice("] call genExpression start genComma call genExpression count genComma call genExpression (A.SizeVariable m' v) genComma genMeta m' tell [")"] )] tell [")"] , ct) -- | Collect all the plain subscripts on a variable, so we can combine them. collectSubs :: A.Variable -> CGen ([A.Expression], A.Variable, A.Type) collectSubs (A.SubscriptedVariable m (A.Subscript _ _ e) v) = do (es', v', t') <- collectSubs v t <- trivialSubscriptType m t' return (es' ++ [e], v', t) collectSubs v = do t <- astTypeOf v return ([], v, t) unwrapMobileType :: A.Type -> CGen (Bool, A.Type) unwrapMobileType (A.Mobile t) = return (True, t) unwrapMobileType t@(A.Record n) = do isMobile <- recordAttr (A.nameMeta n) t >>* A.mobileRecord return (isMobile, t) unwrapMobileType t = return (False, t) cgetCType :: Meta -> A.Type -> A.AbbrevMode -> CGen CType cgetCType m origT am = do (isMobile, t) <- unwrapMobileType origT sc <- fget getScalarType >>* ($ t) case (t, sc, isMobile, am) of -- Channel arrays are a special case, because they are arrays of pointers -- to channels (so that an abbreviated array of channels, and an array -- of abbreviations of channels, both look the same) (A.Array _ (A.Chan {}), _, False, _) -> return $ Pointer $ Pointer $ Plain "Channel" (A.Array _ (A.ChanEnd {}), _, False, _) -> return $ Pointer $ Pointer $ Plain "Channel" -- All abbrev modes: (A.Array _ t, _, False, _) -> call getCType m t A.Original >>* (Pointer . const) (A.Array {}, _, True, A.Abbrev) -> return $ Pointer $ Pointer $ Plain "mt_array_t" (A.Array {}, _, True, _) -> return $ Pointer $ Plain "mt_array_t" (A.Record n, _, False, A.Original) -> return $ Plain $ nameString n -- Abbrev and ValAbbrev, and mobile: (A.Record n, _, _, _) -> return $ Pointer $ const $ Plain $ nameString n (A.Chan {}, _, False, A.Original) -> return $ Plain "Channel" (A.Chan {}, _, False, A.Abbrev) -> return $ Pointer $ Plain "Channel" (A.ChanEnd {}, _, False, _) -> return $ Pointer $ Plain "Channel" -- Scalar types: (_, Just pl, False, A.Original) -> return $ Plain pl (_, Just pl, False, A.Abbrev) -> return $ Pointer $ Plain pl (_, Just pl, False, A.ValAbbrev) -> return $ Const $ Plain pl -- Mobile scalar types: (_, Just pl, True, A.Original) -> return $ Pointer $ Plain pl (_, Just pl, True, A.Abbrev) -> return $ Pointer $ Pointer $ Plain pl (_, Just pl, True, A.ValAbbrev) -> return $ Pointer $ Const $ Plain pl -- Must have missed one: _ -> diePC m $ formatCode "Cannot work out the C type for: %" origT where const = if am == A.ValAbbrev then Const else id -- | Return whether a type is one that is declared as a structure, but -- abbreviated as a pointer. indirectedType :: Meta -> A.Type -> CGen Bool indirectedType m t@(A.Record _) = recordAttr m t >>* (not . A.mobileRecord) indirectedType _ (A.Chan _ _) = return True indirectedType _ _ = return False cgenDirectedVariable :: Meta -> A.Type -> CGen () -> A.Direction -> CGen () cgenDirectedVariable _ _ var _ = var cgenArraySubscript :: A.SubscriptCheck -> A.Variable -> [(Meta, CGen ())] -> CGen () cgenArraySubscript check v es = do t <- astTypeOf v let numDims = case t of A.Array ds _ -> length ds A.Mobile (A.Array ds _) -> length ds tell ["["] sequence_ $ intersperse (tell ["+"]) $ genPlainSub (genDynamicDim v) es [0..(numDims - 1)] tell ["]"] where genDynamicDim :: A.Variable -> Int -> CGen () genDynamicDim v i = do t <- astTypeOf v case (t, v) of (A.Mobile {}, _) -> do call genVariable v A.Original tell ["->dimensions[", show i, "]"] (_, A.DerefVariable _ v') -> do call genVariable v' A.Original tell ["->dimensions[", show i, "]"] (_, A.SubscriptedVariable _ (A.SubscriptField _ fn) v) -> do A.Record n <- astTypeOf v genName n genName fn tell ["[", show i, "]"] _ -> call genVariable v A.Original >> call genSizeSuffix (show i) -- | Generate the individual offsets that need adding together to find the -- right place in the array. -- FIXME This is obviously not the best way to factor this, but I figure a -- smart C compiler should be able to work it out... genPlainSub :: (Int -> CGen ()) -> [(Meta, CGen ())] -> [Int] -> [CGen ()] genPlainSub _ [] _ = [] genPlainSub genDim ((m,e):es) (sub:subs) = gen : genPlainSub genDim es subs where gen = sequence_ $ intersperse (tell ["*"]) $ genSub : genChunks genSub = case check of A.NoCheck -> e A.CheckBoth -> do tell ["occam_check_index("] e tell [","] genDim sub tell [","] genMeta m tell [")"] A.CheckUpper -> do tell ["occam_check_index_upper("] e tell [","] genDim sub tell [","] genMeta m tell [")"] A.CheckLower -> do tell ["occam_check_index_lower("] e tell [","] genMeta m tell [")"] genChunks = map genDim subs --}}} countSubscripts :: A.Variable -> (Int, A.Variable) countSubscripts (A.SubscriptedVariable _ (A.Subscript {}) v) = let (n, v') = countSubscripts v in (1+n, v') countSubscripts (A.SubscriptedVariable _ _ v) = countSubscripts v countSubscripts (A.DirectedVariable _ _ v) = countSubscripts v countSubscripts v@(A.Variable _ _) = (0, v) --{{{ expressions cgenExpression :: A.Expression -> CGen () cgenExpression (A.Monadic m op e) = call genMonadic m op e cgenExpression (A.Dyadic m op e f) = call genDyadic m op e f cgenExpression (A.MostPos m t) = call genTypeSymbol "mostpos" t cgenExpression (A.MostNeg m t) = call genTypeSymbol "mostneg" t --cgenExpression (A.SizeType m t) cgenExpression (A.SizeExpr m e) = do call genExpression e call genSizeSuffix "0" cgenExpression (A.SizeVariable m v) = do t <- astTypeOf v case t of A.Array (d:_) _ -> case d of A.Dimension n -> call genExpression n A.UnknownDimension -> let (n, v') = countSubscripts v in do call genVariable v' A.Original call genSizeSuffix (show n) A.List _ -> call genListSize v cgenExpression e@(A.AllSizesVariable m v) = case v of A.SubscriptedVariable {} -> call genMissing $ "genExpression" ++ show e A.DirectedVariable _ _ v' -> call genExpression $ A.AllSizesVariable m v' A.DerefVariable _ v' -> do call genVariable v' A.Original tell ["->dimensions"] A.Variable _ n -> do t <- astTypeOf v case t of A.Array {} -> do call genVariable v A.Original tell ["_sizes"] A.Mobile (A.Array {}) -> do call genVariable v A.Original tell ["->dimensions"] _ -> call genMissing $ "genExpression" ++ show e cgenExpression (A.Conversion m cm t e) = call genConversion m cm t e cgenExpression (A.ExprVariable m v) = call genVariable v A.Original cgenExpression (A.Literal _ t lr) = call genLiteral lr t cgenExpression (A.True m) = tell ["true"] cgenExpression (A.False m) = tell ["false"] --cgenExpression (A.FunctionCall m n es) cgenExpression (A.IntrinsicFunctionCall m s es) = call genIntrinsicFunction m s es --cgenExpression (A.SubscriptedExpr m s e) --cgenExpression (A.BytesInExpr m e) cgenExpression (A.BytesInType m t) = call genBytesIn m t (Left False) --cgenExpression (A.OffsetOf m t n) --cgenExpression (A.ExprConstr {}) cgenExpression (A.AllocMobile m t me) = call genAllocMobile m t me cgenExpression (A.CloneMobile m e) = call genCloneMobile m e cgenExpression t = call genMissing $ "genExpression " ++ show t cgenSizeSuffix :: String -> CGen () cgenSizeSuffix dim = tell ["_sizes[", dim, "]"] cgenTypeSymbol :: String -> A.Type -> CGen () cgenTypeSymbol s t = do f <- fget getScalarType case (t, f t) of (A.Time, _) -> tell ["occam_", s, "_time"] (_, Just ct) -> tell ["occam_", s, "_", ct] (_, Nothing) -> call genMissingC $ formatCode "genTypeSymbol %" t cgenIntrinsicFunction :: Meta -> String -> [A.Expression] -> CGen () cgenIntrinsicFunction m s es = do let (funcName, giveMeta) = case lookup s simpleFloatIntrinsics of Just (_,cName) -> (cName, False) Nothing -> ("occam_" ++ [if c == '.' then '_' else c | c <- s], True) tell [funcName, "("] seqComma [call genExpression e | e <- es] when (giveMeta) $ genComma >> genMeta m tell [")"] --}}} --{{{ operators cgenSimpleMonadic :: String -> A.Expression -> CGen () cgenSimpleMonadic s e = do tell ["(", s] call genExpression e tell [")"] cgenFuncMonadic :: Meta -> String -> A.Expression -> CGen () cgenFuncMonadic m s e = do t <- astTypeOf e call genTypeSymbol s t tell [" ("] call genExpression e tell [", "] genMeta m tell [")"] cgenMonadic :: Meta -> A.MonadicOp -> A.Expression -> CGen () cgenMonadic m A.MonadicSubtr e = call genFuncMonadic m "negate" e cgenMonadic _ A.MonadicMinus e = call genSimpleMonadic "-" e cgenMonadic _ A.MonadicBitNot e = call genSimpleMonadic "~" e cgenMonadic _ A.MonadicNot e = call genSimpleMonadic "!" e cgenSimpleDyadic :: String -> A.Expression -> A.Expression -> CGen () cgenSimpleDyadic s e f = do tell ["("] call genExpression e tell [" ", s, " "] call genExpression f tell [")"] cgenFuncDyadic :: Meta -> String -> A.Expression -> A.Expression -> CGen () cgenFuncDyadic m s e f = do t <- astTypeOf e call genTypeSymbol s t tell [" ("] call genExpression e tell [", "] call genExpression f tell [", "] genMeta m tell [")"] cgenDyadic :: Meta -> A.DyadicOp -> A.Expression -> A.Expression -> CGen () cgenDyadic m A.Add e f = call genFuncDyadic m "add" e f cgenDyadic m A.Subtr e f = call genFuncDyadic m "subtr" e f cgenDyadic m A.Mul e f = call genFuncDyadic m "mul" e f cgenDyadic m A.Div e f = call genFuncDyadic m "div" e f cgenDyadic m A.Rem e f = call genFuncDyadic m "rem" e f cgenDyadic m A.Plus e f = call genFuncDyadic m "plus" e f cgenDyadic m A.Minus e f = call genFuncDyadic m "minus" e f cgenDyadic m A.Times e f = call genFuncDyadic m "times" e f cgenDyadic m A.LeftShift e f = call genFuncDyadic m "lshift" e f cgenDyadic m A.RightShift e f = call genFuncDyadic m "rshift" e f cgenDyadic _ A.BitAnd e f = call genSimpleDyadic "&" e f cgenDyadic _ A.BitOr e f = call genSimpleDyadic "|" e f cgenDyadic _ A.BitXor e f = call genSimpleDyadic "^" e f cgenDyadic _ A.And e f = call genSimpleDyadic "&&" e f cgenDyadic _ A.Or e f = call genSimpleDyadic "||" e f cgenDyadic _ A.Eq e f = call genSimpleDyadic "==" e f cgenDyadic _ A.NotEq e f = call genSimpleDyadic "!=" e f cgenDyadic _ A.Less e f = call genSimpleDyadic "<" e f cgenDyadic _ A.More e f = call genSimpleDyadic ">" e f cgenDyadic _ A.LessEq e f = call genSimpleDyadic "<=" e f cgenDyadic _ A.MoreEq e f = call genSimpleDyadic ">=" e f cgenDyadic _ A.Concat e f = call genListConcat e f --}}} cgenListConcat :: A.Expression -> A.Expression -> CGen () cgenListConcat a b = do tell ["tock_queue_concat("] call genExpression a tell [","] call genExpression b tell [")"] --{{{ input/output items genChan, genDest :: A.Variable -> CGen () genDest v = call genVariable' v A.Original Pointer genChan c = call genVariable' c A.Original (const $ Pointer $ Plain "Channel") cgenInputItem :: A.Variable -> A.InputItem -> CGen () cgenInputItem c (A.InCounted m cv av) = do call genInputItem c (A.InVariable m cv) t <- astTypeOf av tell ["ChanIn(wptr,"] genChan c tell [","] genDest av tell [","] subT <- trivialSubscriptType m t call genVariable cv A.Original tell ["*"] call genBytesIn m subT (Right av) tell [");"] cgenInputItem c (A.InVariable m v) = do case v of -- If we are reading into a dereferenced mobile, we must make sure -- that something is in that mobile first: A.DerefVariable _ v' -> do tell ["if ("] call genVariable v' A.Original tell ["==NULL){"] call genVariable v' A.Original tell ["="] t <- astTypeOf v' call genAllocMobile m t Nothing tell [";}"] _ -> return () t <- astTypeOf v isMobile <- isMobileType t let rhs = genDest v case (t, isMobile) of (A.Int, _) -> do tell ["ChanInInt(wptr,"] genChan c tell [","] rhs tell [");"] (_, True) -> do call genClearMobile m v -- TODO insert this via a pass tell ["MTChanIn(wptr,"] genChan c tell [",(void**)"] rhs tell [");"] _ -> do tell ["ChanIn(wptr,"] genChan c tell [","] rhs tell [","] call genBytesIn m t (Right v) tell [");"] cgenOutputItem :: A.Type -> A.Variable -> A.OutputItem -> CGen () cgenOutputItem _ c (A.OutCounted m ce ae) = do tce <- astTypeOf ce call genOutputItem tce c (A.OutExpression m ce) t <- astTypeOf ae case ae of A.ExprVariable m v -> do tell ["ChanOut(wptr,"] genChan c tell [","] call genVariable v A.Abbrev tell [","] subT <- trivialSubscriptType m t call genExpression ce tell ["*"] call genBytesIn m subT (Right v) tell [");"] cgenOutputItem innerT c (A.OutExpression m e) = do isMobile <- isMobileType innerT case (innerT, isMobile, e) of (A.Int, _, _) -> do tell ["ChanOutInt(wptr,"] genChan c tell [","] call genExpression e tell [");"] (_, True, A.ExprVariable _ v) -> do tell ["MTChanOut(wptr,"] genChan c tell [",(void*)"] call genVariable' v A.Original Pointer tell [");"] (_, _, A.ExprVariable _ v) -> do tell ["ChanOut(wptr,"] genChan c tell [","] call genVariable v A.Abbrev tell [","] te <- astTypeOf e call genBytesIn m te (Right v) tell [");"] --}}} --{{{ replicators cgenReplicatorStart :: A.Name -> A.Replicator -> CGen () cgenReplicatorStart n rep = do tell ["for("] call genReplicatorLoop n rep tell ["){"] cgenReplicatorEnd :: A.Replicator -> CGen () cgenReplicatorEnd rep = tell ["}"] cgenReplicatorLoop :: A.Name -> A.Replicator -> CGen () cgenReplicatorLoop index (A.For m base count step) -- It is now too hard to work out statically if we could make this a -- simple loop (without an additional counter), because step may be -- negative (and that may be determined at run-time. So we will generate the -- most general loop, and let the C compiler optimise if possibe: = do counter <- csmLift $ makeNonce "replicator_count" tell ["int ", counter, "="] call genExpression count tell [","] genName index tell ["="] call genExpression base tell [";", counter, ">0;", counter, "--,"] genName index tell ["+="] call genExpression step cgenReplicatorLoop _ _ = cgenMissing "ForEach loops not yet supported in the C backend" --}}} --{{{ abbreviations -- | Generate the size part of a RETYPES\/RESHAPES abbrevation of a variable. cgenRetypeSizes :: Meta -> A.Type -> A.Name -> A.Type -> A.Variable -> CGen () cgenRetypeSizes _ (A.Chan {}) _ (A.Chan {}) _ = return () cgenRetypeSizes _ (A.ChanEnd {}) _ (A.ChanEnd {}) _ = return () cgenRetypeSizes m destT destN srcT srcV = let size = do tell ["occam_check_retype("] call genBytesIn m srcT (Right srcV) tell [","] call genBytesIn m destT (Left True) tell [","] genMeta m tell [")"] isVarArray = case destT of A.Array ds _ -> A.UnknownDimension `elem` ds _ -> False in if isVarArray then size >> tell [";"] else do tell ["if("] size tell ["!=1){"] call genStop m "size mismatch in RETYPES" tell ["}"] -- | Generate the right-hand side of an abbreviation of an expression. abbrevExpression :: A.AbbrevMode -> A.Type -> A.Expression -> CGen () abbrevExpression am t@(A.Array _ _) e = case e of A.ExprVariable _ v -> call genVariable v am A.Literal _ t@(A.Array _ _) r -> call genExpression e _ -> call genMissing "array expression abbreviation" abbrevExpression am t@(A.Record _) (A.ExprVariable _ v) = call genVariable v am abbrevExpression am _ e = call genExpression e --}}} --{{{ specifications cgenSpec :: A.Specification -> CGen b -> CGen b cgenSpec spec body = do call introduceSpec spec x <- body call removeSpec spec return x -- | Generate a declaration of a new variable. cgenDeclaration :: A.Type -> A.Name -> Bool -> CGen () cgenDeclaration at@(A.Array ds t) n False = do genType t tell [" "] case t of A.Chan _ _ -> do genName n tell ["_storage"] call genFlatArraySize ds tell [";"] genType t tell ["* "] _ -> return () call genArrayStoreName n call genFlatArraySize ds tell [";"] cgenDeclaration (A.Array ds t) n True = do genType t tell [" "] call genArrayStoreName n call genFlatArraySize ds tell [";"] cgenDeclaration t n _ = do genType t tell [" "] genName n tell [";"] -- | Generate the size of the C array that an occam array of the given -- dimensions maps to. cgenFlatArraySize :: [A.Dimension] -> CGen () cgenFlatArraySize ds = do tell ["["] sequence $ intersperse (tell ["*"]) [call genExpression n | A.Dimension n <- ds] tell ["]"] -- FIXME: genBytesInArrayDim could share with this -- | Initialise an item being declared. cdeclareInit :: Meta -> A.Type -> A.Variable -> Maybe (CGen ()) cdeclareInit _ (A.Chan _ _) var = Just $ do tell ["ChanInit(wptr,"] call genVariableUnchecked var A.Abbrev tell [");"] cdeclareInit m t@(A.Array ds t') var = Just $ do case t' of A.Chan _ _ -> do tell ["tock_init_chan_array("] call genVariableUnchecked var A.Original tell ["_storage,"] call genVariableUnchecked var A.Original tell [","] sequence_ $ intersperse (tell ["*"]) [call genExpression n | A.Dimension n <- ds] -- FIXME: and again tell [");"] _ -> return () fdeclareInit <- fget declareInit init <- return (\sub -> fdeclareInit m t' (sub var)) call genOverArray m var init cdeclareInit m rt@(A.Record _) var = Just $ do fs <- recordFields m rt sequence_ [initField t (A.SubscriptedVariable m (A.SubscriptField m n) var) | (n, t) <- fs] isMobile <- recordAttr m rt >>* A.mobileRecord when isMobile $ do call genVariableUnchecked var A.Original tell ["=NULL;"] call genAssign m [var] $ A.ExpressionList m [A.AllocMobile m rt Nothing] where initField :: A.Type -> A.Variable -> CGen () initField t v = do fdeclareInit <- fget declareInit doMaybe $ fdeclareInit m t v cdeclareInit m t@(A.Mobile _) var = Just $ do call genVariableUnchecked var A.Original tell ["=NULL;"] call genAssign m [var] $ A.ExpressionList m [A.AllocMobile m t Nothing] cdeclareInit _ _ _ = Nothing -- | Free a declared item that's going out of scope. cdeclareFree :: Meta -> A.Type -> A.Variable -> Maybe (CGen ()) cdeclareFree m (A.Mobile {}) v = Just $ call genClearMobile m v cdeclareFree _ _ _ = Nothing {- Original Abbrev INT x IS y: int *x = &y; int *x = &(*y); []INT xs IS ys: int *xs = ys; int *xs = ys; const int xs_sizes[] = ys_sizes; CHAN OF INT c IS d: Channel *c = d; [10]CHAN OF INT cs: Channel tmp[10]; Channel *cs[10]; for (...) { cs[i] = &tmp[i]; ChanInit(cs[i]); } const int cs_sizes[] = { 10 }; []CHAN OF INT ds IS cs: Channel **ds = cs; const int *ds_sizes = cs_sizes; -} cintroduceSpec :: A.Specification -> CGen () cintroduceSpec (A.Specification m n (A.Declaration _ t)) = do call genDeclaration t n False fdeclareInit <- fget declareInit case fdeclareInit m t (A.Variable m n) of Just p -> p Nothing -> return () cintroduceSpec (A.Specification _ n (A.Is _ am t v)) = do let rhs = call genVariable v am call genDecl am t n tell ["="] rhs tell [";"] cintroduceSpec (A.Specification _ n (A.IsExpr _ am t e)) = do let rhs = abbrevExpression am t e case (am, t, e) of (A.ValAbbrev, A.Array _ ts, A.Literal _ _ _) -> -- For "VAL []T a IS [vs]:", we have to use [] rather than * in the -- declaration, since you can't say "int *foo = {vs};" in C. do tell ["const "] genType ts tell [" "] genName n tell ["[] = "] rhs tell [";\n"] (A.ValAbbrev, A.Record _, A.Literal _ _ _) -> -- Record literals are even trickier, because there's no way of -- directly writing a struct literal in C that you can use -> on. do tmp <- csmLift $ makeNonce "record_literal" tell ["const "] genType t tell [" ", tmp, " = "] rhs tell [";\n"] call genDecl am t n tell [" = &", tmp, ";\n"] _ -> do call genDecl am t n tell [" = "] rhs tell [";\n"] cintroduceSpec (A.Specification _ n (A.IsChannelArray _ (A.Array _ c) cs)) = do genType c case c of A.Chan _ _ -> tell ["* "] -- Channel ends don't need an extra indirection; in C++ they are not -- pointers, and in C they are already pointers _ -> tell [" "] call genArrayStoreName n tell ["[]={"] seqComma (map (\v -> call genVariable v A.Abbrev) cs) tell ["};"] cintroduceSpec (A.Specification _ _ (A.DataType _ _)) = return () cintroduceSpec (A.Specification _ _ (A.RecordType _ _ _)) = return () cintroduceSpec (A.Specification _ n (A.Protocol _ _)) = return () cintroduceSpec (A.Specification _ n (A.ProtocolCase _ ts)) = do tell ["typedef enum{"] seqComma [genName tag >> tell ["_"] >> genName n | (tag, _) <- ts] -- You aren't allowed to have an empty enum. when (ts == []) $ tell ["empty_protocol_"] >> genName n tell ["}"] genName n tell [";"] cintroduceSpec (A.Specification _ n st@(A.Proc _ _ _ _)) = genProcSpec n st False cintroduceSpec (A.Specification _ n (A.Retypes m am t v)) = do origT <- astTypeOf v let rhs = call genVariable v A.Abbrev call genDecl am t n tell ["="] -- For scalar types that are VAL abbreviations (e.g. VAL INT64), -- we need to dereference the pointer that abbrevVariable gives us. let deref = case (am, t) of (_, A.Array _ _) -> False (_, A.Chan {}) -> False (_, A.ChanEnd {}) -> False (_, A.Record {}) -> False (A.ValAbbrev, _) -> True _ -> False when deref $ tell ["*"] tell ["("] genCType m t am when deref $ tell ["*"] tell [")"] rhs tell [";"] call genRetypeSizes m t n origT v cintroduceSpec (A.Specification _ n (A.Rep m rep)) = call genReplicatorStart n rep --cintroduceSpec (A.Specification _ n (A.RetypesExpr _ am t e)) cintroduceSpec n = call genMissing $ "introduceSpec " ++ show n cgenRecordTypeSpec :: A.Name -> A.RecordAttr -> [(A.Name, A.Type)] -> CGen () cgenRecordTypeSpec n attr fs = do tell ["typedef struct{"] sequence_ [call genDeclaration t n True | (n, t) <- fs] tell ["}"] when (A.packedRecord attr || A.mobileRecord attr) $ tell [" occam_struct_packed "] genName n tell [";"] if null [t | (_, A.Mobile t) <- fs] then do tell ["const word "] genName n tell ["_mttype = MT_SIMPLE | MT_MAKE_TYPE(MT_DATA);"] tell ["const int "] genName n tell ["_mtsize = sizeof("] genName n tell [");"] -- Not quite certain CCSP handles these descriptors: else do tell ["const word "] genName n tell ["_mttype[", show (length mtEntries), "] = {"] seqComma mtEntries tell ["};"] tell ["const int "] genName n tell ["_mtsize = ", show (length mtEntries), ";"] where mtEntries :: [CGen ()] mtEntries = concatMap (mt . snd) fs mt :: A.Type -> [CGen ()] mt (A.Array ds t) = [do tell ["MT_FARRAY|MT_FARRAY_LEN("] sequence_ $ intersperse (tell ["*"]) [call genExpression e | A.Dimension e <- ds] tell [")"] ] ++ mt t mt t = [mobileElemType False t] cgenForwardDeclaration :: A.Specification -> CGen () cgenForwardDeclaration (A.Specification _ n st@(A.Proc _ _ _ _)) = genProcSpec n st True cgenForwardDeclaration (A.Specification _ n (A.RecordType _ b fs)) = call genRecordTypeSpec n b fs cgenForwardDeclaration _ = return () cremoveSpec :: A.Specification -> CGen () cremoveSpec (A.Specification m n (A.Declaration _ t)) = do fdeclareFree <- fget declareFree case fdeclareFree m t var of Just p -> p Nothing -> return () where var = A.Variable m n cremoveSpec (A.Specification _ n (A.Rep _ rep)) = call genReplicatorEnd rep cremoveSpec (A.Specification m n (A.IsExpr _ am t e)) = do fdeclareFree <- fget declareFree case fdeclareFree m t var of Just p -> p Nothing -> return () where var = A.Variable m n cremoveSpec _ = return () cgenSpecMode :: A.SpecMode -> CGen () cgenSpecMode A.PlainSpec = return () cgenSpecMode A.InlineSpec = tell ["inline "] --}}} --{{{ formals, actuals, and calling conventions prefixComma :: [CGen ()] -> CGen () prefixComma cs = sequence_ [genComma >> c | c <- cs] cgenActuals :: [A.Formal] -> [A.Actual] -> CGen () cgenActuals fs as = prefixComma [call genActual f a | (f, a) <- zip fs as] cgenActual :: A.Formal -> A.Actual -> CGen () cgenActual f a = seqComma $ realActuals f a id -- | Return generators for all the real actuals corresponding to a single -- actual. realActuals :: A.Formal -> A.Actual -> (CType -> CType) -> [CGen ()] realActuals _ (A.ActualExpression e) _ = [call genExpression e] realActuals (A.Formal am _ _) (A.ActualVariable v) fct = [call genVariable' v am fct] -- | Return (type, name) generator pairs for all the real formals corresponding -- to a single formal. realFormals :: A.Formal -> [(CGen (), CGen ())] realFormals (A.Formal am t n) = [(genCType (A.nameMeta n) t am, genName n)] -- | Generate a Proc specification, which maps to a C function. -- This will use ProcGetParam if the Proc is in csParProcs, or the normal C -- calling convention otherwise. genProcSpec :: A.Name -> A.SpecType -> Bool -> CGen () genProcSpec n (A.Proc _ (sm, _) fs p) forwardDecl = do cs <- getCompState let (header, params) = if n `Set.member` csParProcs cs then (genParHeader, genParParams) else (genNormalHeader, return ()) header if forwardDecl then tell [";\n"] else do tell ["{\n"] params call genProcess p tell ["}\n"] where rfs = concatMap realFormals fs genParHeader :: CGen () genParHeader = do -- These can't be inlined, since they're only used as function -- pointers. tell ["void "] genName n tell [" (Workspace wptr)"] genParParams :: CGen () genParParams = sequence_ [do t tell [" "] n tell [" = ProcGetParam (wptr, " ++ show num ++ ", "] t tell [");\n"] | (num, (t, n)) <- zip [(0 :: Int) ..] rfs] genNormalHeader :: CGen () genNormalHeader = do call genSpecMode sm tell ["void "] genName n tell [" (Workspace wptr"] sequence_ [do tell [", "] t tell [" "] n | (t, n) <- rfs] tell [")"] -- | Generate a ProcAlloc for a PAR subprocess, returning a nonce for the -- workspace pointer and the name of the function to call. cgenProcAlloc :: A.Name -> [A.Formal] -> [A.Actual] -> CGen (String, CGen ()) cgenProcAlloc n fs as = do ras <- liftM concat $ sequence [do isMobile <- isMobileType t let (s, fct) = case (am, isMobile) of (A.ValAbbrev, _) -> ("ProcParam", id) (_, True) -> ("ProcMTMove", Pointer) _ -> ("ProcParam", id) return $ zip (repeat s) $ realActuals f a fct | (f@(A.Formal am t _), a) <- zip fs as] ws <- csmLift $ makeNonce "workspace" tell ["Workspace ", ws, " = ProcAlloc (wptr, ", show $ length ras, ", "] genName n tell ["_stack_size);\n"] sequence_ [do tell [pc, " (wptr, ", ws, ", ", show num, ", "] ra tell [");\n"] | (num, (pc, ra)) <- zip [(0 :: Int)..] ras] return (ws, genName n) --}}} --{{{ processes cgenProcess :: A.Process -> CGen () cgenProcess p = case p of A.Assign m vs es -> call genAssign m vs es A.Input m c im -> call genInput c im A.Output m c ois -> do Left ts <- protocolItems c call genOutput c $ zip ts ois A.OutputCase m c t ois -> call genOutputCase c t ois A.Skip m -> tell ["/* skip */\n"] A.Stop m -> call genStop m "STOP process" A.Seq _ s -> call genSeq s A.If m s -> call genIf m s A.Case m e s -> call genCase m e s A.While m e p -> call genWhile e p A.Par m pm s -> call genPar pm s -- PROCESSOR does nothing special. A.Processor m e p -> call genProcess p A.Alt m b s -> call genAlt b s A.InjectPoison m ch -> call genPoison m ch A.ProcCall m n as -> call genProcCall n as A.IntrinsicProcCall m s as -> call genIntrinsicProc m s as --{{{ assignment cgenAssign :: Meta -> [A.Variable] -> A.ExpressionList -> CGen () cgenAssign m [v] (A.ExpressionList _ [e]) = do t <- astTypeOf v f <- fget getScalarType isMobile <- isMobileType t case f t of Just _ -> doAssign v e Nothing -> case (t, isMobile) of -- Assignment of channel-ends, but not channels, is possible (at least in Rain): (A.ChanEnd A.DirInput _ _, _) -> doAssign v e (A.ChanEnd A.DirOutput _ _, _) -> doAssign v e (A.List _, _) -> call genListAssign v e (A.Mobile (A.List _), _) -> call genListAssign v e (_, True) -> do call genClearMobile m v case e of A.AllocMobile _ _ Nothing -> doAssign v e A.AllocMobile m t (Just init) -> do doAssign v $ A.AllocMobile m t Nothing call genAssign m [A.DerefVariable m v] $ A.ExpressionList m [init] A.CloneMobile {} -> doAssign v e A.ExprVariable _ vrhs -> do doAssign v e call genVariable vrhs A.Original tell ["=NULL;"] _ -> call genMissing $ "Mobile assignment from " ++ show e (A.Array ds innerT, _) | isPOD innerT && A.UnknownDimension `notElem` ds -> do tell ["memcpy("] call genVariable v A.Abbrev tell [","] call genExpression e tell [","] call genBytesIn m t (Left False) tell [");"] _ -> call genMissingC $ formatCode "assignment of type %" t where doAssign :: A.Variable -> A.Expression -> CGen () doAssign v e = do call genVariable v A.Original tell ["="] call genExpression e tell [";"] cgenAssign m (v:vs) (A.IntrinsicFunctionCallList _ n es) = do call genVariable v A.Original let (funcName, giveMeta) = case lookup n simpleFloatIntrinsics of Just (_,cName) -> (cName, False) Nothing -> ("occam_" ++ [if c == '.' then '_' else c | c <- n], True) tell ["=",funcName,"("] seqComma $ map (call genExpression) es mapM (\v -> tell [","] >> call genActual (A.Formal A.Abbrev A.Int (A.Name emptyMeta "dummy_intrinsic_param")) (A.ActualVariable v)) vs when giveMeta $ genComma >> genMeta m tell [");"] cgenAssign m _ _ = call genMissing "Cannot perform assignment with multiple destinations or multiple sources" isPOD :: A.Type -> Bool isPOD = isJust . cgetScalarType --}}} --{{{ input cgenInput :: A.Variable -> A.InputMode -> CGen () cgenInput c im = do case im of A.InputTimerRead m (A.InVariable m' v) -> call genTimerRead c v A.InputTimerAfter m e -> call genTimerWait e A.InputSimple m is -> sequence_ $ map (call genInputItem c) is _ -> call genMissing $ "genInput " ++ show im cgenTimerRead :: A.Variable -> A.Variable -> CGen () cgenTimerRead _ v = cgenGetTime v cgenTimerWait :: A.Expression -> CGen () cgenTimerWait e = do tell ["TimerWait(wptr,"] call genExpression e tell [");"] cgenGetTime :: A.Variable -> CGen () cgenGetTime v = do call genVariable v A.Original tell [" = TimerRead(wptr);"] --}}} --{{{ output cgenOutput :: A.Variable -> [(A.Type, A.OutputItem)] -> CGen () cgenOutput c tois = sequence_ [call genOutputItem t c oi | (t, oi) <- tois] cgenOutputCase :: A.Variable -> A.Name -> [A.OutputItem] -> CGen () cgenOutputCase c tag ois = do t <- astTypeOf c let proto = case t of A.Chan _ (A.UserProtocol n) -> n A.ChanEnd _ _ (A.UserProtocol n) -> n tell ["ChanOutInt(wptr,"] call genVariable c A.Abbrev tell [","] genName tag tell ["_"] genName proto tell [");"] Right ps <- protocolItems c let ts = fromMaybe (error "genOutputCase unknown tag") $ lookup tag ps call genOutput c $ zip ts ois --}}} --{{{ stop cgenStop :: Meta -> String -> CGen () cgenStop m s = do tell ["occam_stop("] genMeta m tell [",1,\"", s, "\");"] --}}} --{{{ seq cgenSeq :: A.Structured A.Process -> CGen () cgenSeq s = call genStructured s doP >> return () where doP _ p = call genProcess p --}}} --{{{ if cgenIf :: Meta -> A.Structured A.Choice -> CGen () cgenIf m s | justOnly s = do call genStructured s doCplain tell ["{"] call genStop m "no choice matched in IF process" tell ["}"] | otherwise = do label <- csmLift $ makeNonce "if_end" tell ["/*",label,"*/"] genIfBody label s call genStop m "no choice matched in IF process" tell [label, ":;"] where genIfBody :: String -> A.Structured A.Choice -> CGen () genIfBody label s = call genStructured s doC >> return () where doC m (A.Choice m' e p) = do tell ["if("] call genExpression e tell ["){"] call genProcess p tell ["goto ", label, ";"] tell ["}"] doCplain _ (A.Choice _ e p) = do tell ["if("] call genExpression e tell ["){"] call genProcess p tell ["}else "] justOnly :: Data a => A.Structured a -> Bool justOnly (A.Only {}) = True justOnly (A.Several _ ss) = all justOnly ss justOnly _ = False --}}} --{{{ case cgenCase :: Meta -> A.Expression -> A.Structured A.Option -> CGen () cgenCase m e s = do tell ["switch("] call genExpression e tell ["){"] seenDefault <- genCaseBody (return ()) s when (not seenDefault) $ do tell ["default:"] call genStop m "no option matched in CASE process" tell ["}"] where genCaseBody :: CGen () -> A.Structured A.Option -> CGen Bool genCaseBody coll (A.Spec _ spec s) = genCaseBody (call genSpec spec coll) s genCaseBody coll (A.Only _ (A.Option _ es p)) = do sequence_ [tell ["case "] >> call genExpression e >> tell [":"] | e <- es] tell ["{"] coll call genProcess p tell ["}break;"] return False genCaseBody coll (A.Only _ (A.Else _ p)) = do tell ["default:"] tell ["{"] coll call genProcess p tell ["}break;"] return True genCaseBody coll (A.Several _ ss) = do seens <- mapM (genCaseBody coll) ss return $ or seens --}}} --{{{ while cgenWhile :: A.Expression -> A.Process -> CGen () cgenWhile e p = do tell ["while("] call genExpression e tell ["){"] call genProcess p tell ["}"] --}}} --{{{ par -- FIXME: The ParMode is now ignored (as it is in occ21), so PRI PAR behaves -- the same as PAR. cgenPar :: A.ParMode -> A.Structured A.Process -> CGen () cgenPar pm s = do (count, _, _) <- constantFold $ countStructured s bar <- csmLift $ makeNonce "par_barrier" tell ["LightProcBarrier ", bar, ";\n"] tell ["LightProcBarrierInit (wptr, &", bar, ", "] call genExpression count tell [");\n"] after <- call genStructured s (startP bar) mapM_ (call genProcess) after tell ["LightProcBarrierWait (wptr, &", bar, ");\n"] where startP :: String -> Meta -> A.Process -> CGen A.Process startP bar _ (A.ProcCall _ n as) = do (A.Proc _ _ fs _) <- specTypeOfName n (ws, func) <- cgenProcAlloc n fs as tell ["LightProcStart (wptr, &", bar, ", ", ws, ", "] func tell [");\n"] return (A.Skip emptyMeta) -- When we need to receive mobiles back from the processes, we need to perform -- some actions after all the processes have started, but before we wait on -- the barrier, so this hack collects up all such receive operations and returns -- them: startP bar _ (A.Seq m s) = call genStructured s (startP bar) >>* (A.Seq m . A.Several m . map (A.Only m)) startP _ _ p = return p --}}} --{{{ alt cgenAlt :: Bool -> A.Structured A.Alternative -> CGen () cgenAlt isPri s = do id <- csmLift $ makeNonce "alt_id" tell ["int ", id, " = 0;\n"] let isTimerAlt = containsTimers s tell [if isTimerAlt then "TimerAlt" else "Alt", " (wptr);\n"] tell ["{\n"] genAltEnable id s tell ["}\n"] -- Like occ21, this is always a PRI ALT, so we can use it for both. tell [if isTimerAlt then "TimerAltWait" else "AltWait", " (wptr);\n"] tell [id, " = 0;\n"] tell ["{\n"] genAltDisable id s tell ["}\n"] fired <- csmLift $ makeNonce "alt_fired" tell ["int ", fired, " = AltEnd (wptr);\n"] tell [id, " = 0;\n"] label <- csmLift $ makeNonce "alt_end" tell ["{\n"] genAltProcesses id fired label s tell ["}\n"] tell [label, ":\n;\n"] where containsTimers :: A.Structured A.Alternative -> Bool containsTimers (A.Spec _ _ s) = containsTimers s containsTimers (A.ProcThen _ _ s) = containsTimers s containsTimers (A.Only _ a) = case a of A.Alternative _ _ _ (A.InputTimerRead _ _) _ -> True A.Alternative _ _ _ (A.InputTimerAfter _ _) _ -> True _ -> False containsTimers (A.Several _ ss) = or $ map containsTimers ss genAltEnable :: String -> A.Structured A.Alternative -> CGen () genAltEnable id s = call genStructured s doA >> return () where doA _ alt = case alt of A.Alternative _ e c im _ -> withIf e $ doIn c im A.AlternativeSkip _ e _ -> withIf e $ tell ["AltEnableSkip (wptr,", id, "++);\n"] doIn c im = do case im of A.InputTimerRead _ _ -> call genMissing "timer read in ALT" A.InputTimerAfter _ time -> do tell ["AltEnableTimer (wptr,", id, "++,"] call genExpression time tell [");\n"] _ -> do tell ["AltEnableChannel (wptr,", id, "++,"] call genVariable c A.Abbrev tell [");\n"] genAltDisable :: String -> A.Structured A.Alternative -> CGen () genAltDisable id s = call genStructured s doA >> return () where doA _ alt = case alt of A.Alternative _ e c im _ -> withIf e $ doIn c im A.AlternativeSkip _ e _ -> withIf e $ tell ["AltDisableSkip (wptr,", id, "++);\n"] doIn c im = do case im of A.InputTimerRead _ _ -> call genMissing "timer read in ALT" A.InputTimerAfter _ time -> do tell ["AltDisableTimer (wptr,", id, "++, "] call genExpression time tell [");\n"] _ -> do tell ["AltDisableChannel (wptr,", id, "++, "] call genVariable c A.Abbrev tell [");\n"] genAltProcesses :: String -> String -> String -> A.Structured A.Alternative -> CGen () genAltProcesses id fired label s = call genStructured s doA >> return () where doA _ alt = case alt of A.Alternative _ e c im p -> withIf e $ doIn c im p A.AlternativeSkip _ e p -> withIf e $ doCheck (call genProcess p) doIn c im p = do case im of A.InputTimerRead _ _ -> call genMissing "timer read in ALT" A.InputTimerAfter _ _ -> doCheck (call genProcess p) _ -> doCheck (call genInput c im >> call genProcess p) doCheck body = do tell ["if (", id, "++ == ", fired, ") {\n"] body tell ["goto ", label, ";\n"] tell ["}\n"] withIf :: A.Expression -> CGen () -> CGen () withIf cond body = do tell ["if ("] call genExpression cond tell [") {\n"] body tell ["}\n"] --}}} --{{{ proc call cgenProcCall :: A.Name -> [A.Actual] -> CGen () cgenProcCall n as = do genName n tell [" (wptr"] (A.Proc _ _ fs _) <- specTypeOfName n call genActuals fs as tell [");\n"] --}}} --{{{ intrinsic procs cgenIntrinsicProc :: Meta -> String -> [A.Actual] -> CGen () cgenIntrinsicProc m "ASSERT" [A.ActualExpression e] = call genAssert m e cgenIntrinsicProc _ "RESCHEDULE" [] = call genReschedule cgenIntrinsicProc m s as = case lookup s intrinsicProcs of Just amtns -> do tell ["occam_", s, "("] seqComma [call genActual (A.Formal am t (A.Name emptyMeta n)) a | ((am, t, n), a) <- zip amtns as] tell [");"] Nothing -> call genMissing $ "intrinsic PROC " ++ s cgenReschedule :: CGen () cgenReschedule = tell ["Reschedule (wptr);"] cgenAssert :: Meta -> A.Expression -> CGen () cgenAssert m e = do tell ["if (!"] call genExpression e tell [") {\n"] call genStop m "assertion failed" tell ["}\n"] --}}} --}}} --{{{ mobiles cgenAllocMobile :: Meta -> A.Type -> Maybe A.Expression -> CGen() cgenAllocMobile m (A.Mobile t@(A.Array ds innerT)) Nothing = do tell ["MTAllocArray(wptr,"] mobileElemType True innerT tell [",", show $ length ds] prefixComma $ [call genExpression e | A.Dimension e <- ds] tell [")"] cgenAllocMobile m (A.Mobile t) Nothing = do tell ["MTAlloc(wptr,"] mobileElemType False t tell [","] call genBytesIn m t (Left False) tell [")"] cgenAllocMobile m t@(A.Record n) Nothing = do isMobile <- recordAttr m t >>* A.mobileRecord if isMobile then do tell ["MTAlloc(wptr,"] mobileElemType False t tell [","] genName n tell ["_mtsize)"] else dieP m "Attempted to allocate a non-mobile record type" --TODO add a pass, just for C, that pulls out the initialisation expressions for mobiles -- into a subsequent assignment cgenAllocMobile _ _ _ = call genMissing "Mobile allocation with initialising-expression" -- The Bool is True if inside an array, False otherwise mobileElemType :: Bool -> A.Type -> CGen () mobileElemType _ (A.Record n) = do tell ["(word)"] genName n tell ["_mttype"] mobileElemType b A.Int = mobileElemType b cIntReplacement -- CCSP only supports NUM with MTAlloc inside arrays: mobileElemType True t = tell ["MT_MAKE_NUM(MT_NUM_", showOccam t,")"] mobileElemType False t = tell ["MT_SIMPLE|MT_MAKE_TYPE(MT_DATA)"] cgenClearMobile :: Meta -> A.Variable -> CGen () cgenClearMobile _ v = do tell ["if("] genVar tell ["!=NULL){MTRelease(wptr,(void*)"] genVar tell [");"] genVar tell ["=NULL;}"] where genVar = call genVariable v A.Original cgenCloneMobile :: Meta -> A.Expression -> CGen () cgenCloneMobile _ e = do tell ["MTClone(wptr,(void*)"] call genExpression e tell [")"] --}}}