{- Tock: a compiler for parallel languages Copyright (C) 2007, 2008, 2009 University of Kent This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . -} -- | Simplify communications. module SimplifyComms where import Control.Monad.State import Data.List import Data.Maybe import qualified AST as A import CompState import Metadata import Pass import qualified Properties as Prop import Traversal import Types import Utils simplifyComms :: [Pass A.AST] simplifyComms = [ outExprs , transformInputCase , transformProtocolInput ] outExprs :: PassOn A.Process outExprs = pass "Define temporary variables for outputting expressions" (Prop.agg_namesDone ++ Prop.agg_typesDone) [Prop.outExpressionRemoved] (applyBottomUpM doProcess) where doProcess :: A.Process -> PassM A.Process doProcess (A.Output m c ois) = do (ois', specs) <- mapAndUnzipM changeItem ois let foldedSpec = foldFuncs specs return $ A.Seq m (foldedSpec $ A.Only m $ A.Output m c ois') doProcess (A.OutputCase m c tag ois) = do (ois', specs) <- mapAndUnzipM changeItem ois let foldedSpec = foldFuncs specs return $ A.Seq m (foldedSpec $ A.Only m $ A.OutputCase m c tag ois') doProcess p = return p changeItem :: A.OutputItem -> PassM (A.OutputItem, A.Structured A.Process -> A.Structured A.Process) changeItem (A.OutExpression m e) = do (e', spec) <- transExpr m e return (A.OutExpression m e', spec) changeItem (A.OutCounted m ce ae) = do (ce', ceSpec) <- transExpr m ce (ae', aeSpec) <- transExpr m ae return (A.OutCounted m ce' ae', ceSpec . aeSpec) transExpr :: Meta -> A.Expression -> PassM (A.Expression, A.Structured A.Process -> A.Structured A.Process) -- If it's already an output direct from a variable, no need to change it: transExpr _ e@(A.ExprVariable {}) = return (e, id) transExpr m e = do (nm, spec) <- abbrevExpr m e return (A.ExprVariable m $ A.Variable m nm, spec) abbrevExpr :: Meta -> A.Expression -> PassM (A.Name, A.Structured A.Process -> A.Structured A.Process) abbrevExpr m e = do t <- astTypeOf e specification@(A.Specification _ nm _) <- defineNonce m "output_var" (A.Is m A.ValAbbrev t $ A.ActualExpression e) A.ValAbbrev return (nm, A.Spec m specification) {- The explanation for this pass is taken from my (Neil's) mailing list post "Case protocols" on tock-discuss, dated 10th October 2007: Currently in Tock (from occam) we have CASE statements, and inputs for variant protocols. They are parsed into separate AST entries, which is sensible. But then in the backend there is some duplicate code because both things get turned into some form of switch statement. It would be straightforward to unify the code in the C/C++ backends, but I was wondering about doing something which would be a bit cleaner; unifying them in an earlier pass (everything should be a pass in nanopass :). The idea would be to turn (example is from the occam 2 manual): from.dfs ? CASE record; rnumber; rlen::buffer -- process A error ; enumber; elen::buffer -- process B into: INT temp.var: SEQ from.dfs ? temp.var CASE temp.var 3 SEQ from.dfs ? rnumber ; rlen::buffer -- process A 4 SEQ from.dfs ? enumber ; elen::buffer -- process B Note that the tags are turned into integer literals, which is what happens in Tock already anyway. Note that in Tock each protocol item is already a separate communication, so splitting out the sequential inputs is fine. ALTs would have to be split as follows, by turning: ALT from.dfs ? CASE request ; query -- process C error ; enumber; elen::buffer -- process D into: ALT INT temp.var: from.dfs ? temp.var CASE temp.var 0 SEQ from.dfs ? query -- process C 1 SEQ from.dfs ? enumber ; elen::buffer -- process D -} transformInputCase :: PassOn A.Process transformInputCase = pass "Transform ? CASE statements/guards into plain CASE" (Prop.agg_namesDone ++ Prop.agg_typesDone) [Prop.inputCaseRemoved] (applyBottomUpM doProcess) where doProcess :: A.Process -> PassM A.Process doProcess (A.Input m v (A.InputCase m' ty s)) = do spec@(A.Specification _ n _) <- defineNonce m "input_tag" (A.Declaration m' A.Int) A.Original case ty of A.InputCaseNormal -> do s' <- doStructuredV Nothing v s return $ A.Seq m $ A.Spec m' spec $ A.Several m' [A.Only m $ A.Input m v (A.InputSimple m [A.InVariable m (A.Variable m n)] Nothing) ,A.Only m' $ A.Case m' (A.ExprVariable m $ A.Variable m n) s'] A.InputCaseExtended -> do sA <- doStructuredV (Just A.InputCaseExtended) v s sB <- doStructuredV (Just A.InputCaseNormal) v s return $ A.Seq m $ A.Spec m' spec $ A.Several m' $ map (A.Only m') [A.Input m v (A.InputSimple m [A.InVariable m (A.Variable m n)] $ Just (A.Case m' (A.ExprVariable m $ A.Variable m n) sA)) ,A.Case m' (A.ExprVariable m $ A.Variable m n) sB ] doProcess (A.Alt m pri s) = do s' <- doStructuredA s return (A.Alt m pri s') doProcess p = return p -- Convert Structured Variant into the equivalent Structured Option. -- -- For extended inputs, if there are no extra inputs after the tag, we must -- perform the extended action during the extended input on the tag. This -- is when (Just A.InputCaseExtended) is passed. If there are extra inputs -- after the tag, we perform SKIP for the extended action, and then do our -- real extended action on the further inputs doStructuredV :: (Maybe A.InputCaseType) -> A.Variable -> A.Structured A.Variant -> PassM (A.Structured A.Option) doStructuredV mty chanVar = transformOnly transform where transform m (A.Variant m' n iis p mp) = do (Right items) <- protocolItems m' chanVar let (Just idx) = elemIndex n (fst $ unzip items) return $ A.Only m $ A.Option m' [makeConstant m' idx] $ case (mty, null iis) of -- Normal input, no extra inputs: (Nothing, True) -> p -- Extended phase, no extra inputs, so do extended process now: (Just A.InputCaseExtended, True) -> p -- After extended, no extra inputs, do after process: (Just A.InputCaseNormal, True) -> fromMaybe (A.Skip m) mp -- Normal input, extra inputs to do: (Nothing, False) -> A.Seq m' $ A.Several m' [A.Only m' $ A.Input m' chanVar (A.InputSimple m' iis Nothing), A.Only (findMeta p) p] -- Extended phase, extra inputs to do: (Just A.InputCaseExtended, False) -> A.Skip m -- After extended, extra inputs to do: (Just A.InputCaseNormal, False) -> A.Seq m' $ A.Several m' $ map (A.Only m') $ [A.Input m' chanVar (A.InputSimple m' iis $ Just p) ] ++ maybeToList mp -- Transform alt guards. doStructuredA :: A.Structured A.Alternative -> PassM (A.Structured A.Alternative) doStructuredA = transformOnly doAlternative where -- The processes that are the body of input-case guards are always -- skip, so we can discard them. doAlternative m (A.Alternative m' e v (A.InputCase m'' ty s) _) = do spec@(A.Specification _ n _) <- defineNonce m "input_tag" (A.Declaration m' A.Int) A.Original case ty of A.InputCaseNormal -> do s' <- doStructuredV Nothing v s return $ A.Spec m' spec $ A.Only m $ A.Alternative m' e v (A.InputSimple m [A.InVariable m (A.Variable m n)] Nothing) $ A.Case m'' (A.ExprVariable m'' $ A.Variable m n) s' A.InputCaseExtended -> do sA <- doStructuredV (Just A.InputCaseExtended) v s sB <- doStructuredV (Just A.InputCaseNormal) v s return $ A.Spec m' spec $ A.Only m $ A.Alternative m' e v (A.InputSimple m [A.InVariable m (A.Variable m n)] $ Just $ A.Case m'' (A.ExprVariable m'' $ A.Variable m n) sA) (A.Case m'' (A.ExprVariable m'' $ A.Variable m n) sB) -- Leave other guards untouched. doAlternative m a = return $ A.Only m a transformProtocolInput :: PassOn2 A.Process A.Alternative transformProtocolInput = pass "Flatten sequential protocol inputs into multiple inputs" (Prop.agg_namesDone ++ Prop.agg_typesDone ++ [Prop.inputCaseRemoved]) [Prop.seqInputsFlattened] (applyBottomUpM2 doProcess doAlternative) where doProcess :: A.Process -> PassM A.Process doProcess (A.Input m v (A.InputSimple m' iis@(_:_:_) mp)) = return $ A.Seq m $ A.Several m $ map (A.Only m . A.Input m v) $ flatten m' iis mp doProcess p = return p -- We put the extended input on the final input: flatten :: Meta -> [A.InputItem] -> Maybe A.Process -> [A.InputMode] flatten m [ii] mp = [A.InputSimple m [ii] mp] flatten m (ii:iis) mp = A.InputSimple m [ii] Nothing : flatten m iis mp doAlternative :: A.Alternative -> PassM A.Alternative doAlternative (A.Alternative m cond v (A.InputSimple m' (firstII:(otherIIS@(_:_))) mp) body) = return $ A.Alternative m cond v (A.InputSimple m' [firstII] Nothing) $ A.Seq m' $ A.Several m' $ (map (A.Only m' . A.Input m' v) $ flatten m' otherIIS mp) ++ [A.Only m' body] doAlternative s = return s