{- Tock: a compiler for parallel languages Copyright (C) 2008 University of Kent This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . -} -- | The occam typechecker. module OccamTypes (checkTypes) where import Control.Monad.State import Data.Generics import Data.List import qualified AST as A import CompState import Errors import EvalConstants import EvalLiterals import Intrinsics import Metadata import Pass import ShowCode import Types -- | A successful check. ok :: PassM () ok = return () --{{{ type checks -- | Are two types the same? sameType :: A.Type -> A.Type -> PassM Bool sameType (A.Array (A.Dimension e1 : ds1) t1) (A.Array (A.Dimension e2 : ds2) t2) = do n1 <- evalIntExpression e1 n2 <- evalIntExpression e2 same <- sameType (A.Array ds1 t1) (A.Array ds2 t2) return $ (n1 == n2) && same sameType (A.Array (A.UnknownDimension : ds1) t1) (A.Array (A.UnknownDimension : ds2) t2) = sameType (A.Array ds1 t1) (A.Array ds2 t2) sameType a b = return $ a == b -- | Check that the second dimension can be used in a context where the first -- is expected. isValidDimension :: A.Dimension -> A.Dimension -> PassM Bool isValidDimension A.UnknownDimension A.UnknownDimension = return True isValidDimension A.UnknownDimension (A.Dimension _) = return True isValidDimension (A.Dimension e1) (A.Dimension e2) = do n1 <- evalIntExpression e1 n2 <- evalIntExpression e2 return $ n1 == n2 isValidDimension _ _ = return False -- | Check that the second second of dimensions can be used in a context where -- the first is expected. areValidDimensions :: [A.Dimension] -> [A.Dimension] -> PassM Bool areValidDimensions [] [] = return True areValidDimensions (d1:ds1) (d2:ds2) = do valid <- isValidDimension d1 d2 if valid then areValidDimensions ds1 ds2 else return False areValidDimensions _ _ = return False -- | Check that a type we've inferred matches the type we expected. checkType :: Meta -> A.Type -> A.Type -> PassM () checkType m et rt = case (et, rt) of ((A.Array ds t), (A.Array ds' t')) -> do valid <- areValidDimensions ds ds' if valid then checkType m t t' else bad _ -> do same <- sameType rt et when (not same) $ bad where bad :: PassM () bad = diePC m $ formatCode "Type mismatch: found %, expected %" rt et -- | Check a type against a predicate. checkTypeClass :: (A.Type -> Bool) -> String -> Meta -> A.Type -> PassM () checkTypeClass f adjective m rawT = do t <- underlyingType m rawT if f t then ok else diePC m $ formatCode ("Expected " ++ adjective ++ " type; found %") t -- | Check that a type is numeric. checkNumeric :: Meta -> A.Type -> PassM () checkNumeric = checkTypeClass isNumericType "numeric" -- | Check that a type is integral. checkInteger :: Meta -> A.Type -> PassM () checkInteger = checkTypeClass isIntegerType "integer" -- | Check that a type is case-selectable. checkCaseable :: Meta -> A.Type -> PassM () checkCaseable = checkTypeClass isCaseableType "case-selectable" -- | Check that a type is scalar. checkScalar :: Meta -> A.Type -> PassM () checkScalar = checkTypeClass isScalarType "scalar" -- | Check that a type is usable as a 'DataType' checkDataType :: Meta -> A.Type -> PassM () checkDataType = checkTypeClass isDataType "data" -- | Check that a type is communicable. checkCommunicable :: Meta -> A.Type -> PassM () checkCommunicable m (A.Counted ct rawAT) = do checkInteger m ct at <- underlyingType m rawAT case at of A.Array (A.UnknownDimension:ds) t -> do checkCommunicable m t mapM_ (checkFullDimension m) ds _ -> dieP m "Expected array type with unknown first dimension" checkCommunicable m t = checkTypeClass isCommunicableType "communicable" m t -- | Check that a type is a sequence. checkSequence :: Meta -> A.Type -> PassM () checkSequence = checkTypeClass isSequenceType "array or list" -- | Check that a type is an array. checkArray :: Meta -> A.Type -> PassM () checkArray m rawT = do t <- underlyingType m rawT case t of A.Array _ _ -> ok _ -> diePC m $ formatCode "Expected array type; found %" t -- | Check that a dimension isn't unknown. checkFullDimension :: Meta -> A.Dimension -> PassM () checkFullDimension m A.UnknownDimension = dieP m $ "Type contains unknown dimensions" checkFullDimension _ _ = ok -- | Check that a type is a list. checkList :: Meta -> A.Type -> PassM () checkList m rawT = do t <- underlyingType m rawT case t of A.List _ -> ok _ -> diePC m $ formatCode "Expected list type; found %" t -- | Check the type of an expression. checkExpressionType :: A.Type -> A.Expression -> PassM () checkExpressionType et e = typeOfExpression e >>= checkType (findMeta e) et -- | Check that an expression is of integer type. checkExpressionInt :: A.Expression -> PassM () checkExpressionInt e = checkExpressionType A.Int e -- | Check that an expression is of boolean type. checkExpressionBool :: A.Expression -> PassM () checkExpressionBool e = checkExpressionType A.Bool e --}}} --{{{ more complex checks -- | Check that an array literal's length matches its type. checkArraySize :: Meta -> A.Type -> Int -> PassM () checkArraySize m rawT want = do t <- underlyingType m rawT case t of A.Array (A.UnknownDimension:_) _ -> ok A.Array (A.Dimension e:_) _ -> do n <- evalIntExpression e when (n /= want) $ dieP m $ "Array literal has wrong number of elements: found " ++ show n ++ ", expected " ++ show want _ -> checkArray m t -- | Check that a record field name is valid. checkRecordField :: Meta -> A.Type -> A.Name -> PassM () checkRecordField m t n = do rfs <- recordFields m t let validNames = map fst rfs when (not $ n `elem` validNames) $ diePC m $ formatCode "Invalid field name % in record type %" n t -- | Check a subscript. checkSubscript :: Meta -> A.Subscript -> A.Type -> PassM () checkSubscript m s rawT = do -- Check the type of the thing being subscripted. t <- underlyingType m rawT case s of -- A record subscript. A.SubscriptField m n -> checkRecordField m t n -- A sequence subscript. A.Subscript _ _ _ -> checkSequence m t -- An array slice. _ -> checkArray m t -- Check the subscript itself. case s of A.Subscript m _ e -> checkExpressionInt e A.SubscriptFromFor m e f -> checkExpressionInt e >> checkExpressionInt f A.SubscriptFrom m e -> checkExpressionInt e A.SubscriptFor m e -> checkExpressionInt e _ -> ok -- | Classes of operators. data OpClass = NumericOp | IntegerOp | ShiftOp | BooleanOp | ComparisonOp | ListOp -- | Figure out the class of a monadic operator. classifyMOp :: A.MonadicOp -> OpClass classifyMOp A.MonadicSubtr = NumericOp classifyMOp A.MonadicMinus = NumericOp classifyMOp A.MonadicBitNot = IntegerOp classifyMOp A.MonadicNot = BooleanOp -- | Figure out the class of a dyadic operator. classifyOp :: A.DyadicOp -> OpClass classifyOp A.Add = NumericOp classifyOp A.Subtr = NumericOp classifyOp A.Mul = NumericOp classifyOp A.Div = NumericOp classifyOp A.Rem = NumericOp classifyOp A.Plus = NumericOp classifyOp A.Minus = NumericOp classifyOp A.Times = NumericOp classifyOp A.BitAnd = IntegerOp classifyOp A.BitOr = IntegerOp classifyOp A.BitXor = IntegerOp classifyOp A.LeftShift = ShiftOp classifyOp A.RightShift = ShiftOp classifyOp A.And = BooleanOp classifyOp A.Or = BooleanOp classifyOp A.Eq = ComparisonOp classifyOp A.NotEq = ComparisonOp classifyOp A.Less = ComparisonOp classifyOp A.More = ComparisonOp classifyOp A.LessEq = ComparisonOp classifyOp A.MoreEq = ComparisonOp classifyOp A.After = ComparisonOp classifyOp A.Concat = ListOp -- | Check a monadic operator. checkMonadicOp :: A.MonadicOp -> A.Expression -> PassM () checkMonadicOp op e = do t <- typeOfExpression e let m = findMeta e case classifyMOp op of NumericOp -> checkNumeric m t IntegerOp -> checkInteger m t BooleanOp -> checkType m A.Bool t -- | Check a dyadic operator. checkDyadicOp :: A.DyadicOp -> A.Expression -> A.Expression -> PassM () checkDyadicOp op l r = do lt <- typeOfExpression l let lm = findMeta l rt <- typeOfExpression r let rm = findMeta r case classifyOp op of NumericOp -> checkNumeric lm lt >> checkNumeric rm rt >> checkType rm lt rt IntegerOp -> checkInteger lm lt >> checkInteger rm rt >> checkType rm lt rt ShiftOp -> checkNumeric lm lt >> checkType rm A.Int rt BooleanOp -> checkType lm A.Bool lt >> checkType rm A.Bool rt ComparisonOp -> checkScalar lm lt >> checkScalar rm rt >> checkType rm lt rt ListOp -> checkList lm lt >> checkList rm rt >> checkType rm lt rt -- | Check an abbreviation. -- Is the second abbrev mode a valid abbreviation of the first? checkAbbrev :: Meta -> A.AbbrevMode -> A.AbbrevMode -> PassM () checkAbbrev m orig new = case (orig, new) of (_, A.Original) -> bad (A.ValAbbrev, A.ValAbbrev) -> ok (A.ValAbbrev, _) -> bad _ -> ok where bad = dieP m $ "You can't abbreviate " ++ showAM orig ++ " as " ++ showAM new showAM :: A.AbbrevMode -> String showAM A.Original = "an original declaration" showAM A.Abbrev = "a reference abbreviation" showAM A.ValAbbrev = "a value abbreviation" -- | Check a set of actuals against the formals they're meant to match. checkActuals :: Meta -> A.Name -> [A.Formal] -> [A.Actual] -> PassM () checkActuals m n fs as = do when (length fs /= length as) $ diePC m $ formatCode ("% called with wrong number of arguments; found " ++ (show $ length as) ++ ", expected " ++ (show $ length fs)) n sequence_ [checkActual f a | (f, a) <- zip fs as] -- | Check an actual against its matching formal. checkActual :: A.Formal -> A.Actual -> PassM () checkActual (A.Formal newAM et _) a = do rt <- case a of A.ActualVariable _ _ v -> typeOfVariable v A.ActualExpression _ e -> typeOfExpression e checkType (findMeta a) et rt origAM <- case a of A.ActualVariable _ _ v -> abbrevModeOfVariable v A.ActualExpression _ _ -> return A.ValAbbrev checkAbbrev (findMeta a) origAM newAM -- | Check a function call. checkFunctionCall :: Meta -> A.Name -> [A.Expression] -> PassM [A.Type] checkFunctionCall m n es = do st <- specTypeOfName n case st of A.Function _ _ rs fs _ -> do as <- sequence [do t <- typeOfExpression e return $ A.ActualExpression t e | e <- es] checkActuals m n fs as return rs _ -> diePC m $ formatCode "% is not a function" n -- | Check an intrinsic function call. checkIntrinsicFunctionCall :: Meta -> String -> [A.Expression] -> PassM () checkIntrinsicFunctionCall m n es = case lookup n intrinsicFunctions of Just (rs, args) -> do when (length rs /= 1) $ dieP m $ "Function " ++ n ++ " used in an expression returns more than one value" as <- sequence [do t <- typeOfExpression e return $ A.ActualExpression t e | e <- es] let fs = [A.Formal A.ValAbbrev t (A.Name m A.VariableName s) | (t, s) <- args] checkActuals m (A.Name m A.ProcName n) fs as Nothing -> dieP m $ n ++ " is not an intrinsic function" -- | Check a mobile allocation. checkAllocMobile :: Meta -> A.Type -> Maybe A.Expression -> PassM () checkAllocMobile m rawT me = do t <- underlyingType m rawT case t of A.Mobile innerT -> do case innerT of A.Array ds _ -> mapM_ (checkFullDimension m) ds _ -> ok case me of Just e -> do et <- typeOfExpression e checkType (findMeta e) innerT et Nothing -> ok _ -> diePC m $ formatCode "Expected mobile type in allocation; found %" t -- | Check that a variable is writable. checkWritable :: A.Variable -> PassM () checkWritable v = do am <- abbrevModeOfVariable v case am of A.ValAbbrev -> dieP (findMeta v) $ "Expected a writable variable" _ -> ok -- | Check that is a variable is a channel that can be used in the given -- direction. -- If the direction passed is 'DirUnknown', no direction or sharedness checks -- will be performed. -- Return the type carried by the channel. checkChannel :: A.Direction -> A.Variable -> PassM A.Type checkChannel wantDir c = do -- Check it's a channel. t <- typeOfVariable c >>= underlyingType m case t of A.Chan dir (A.ChanAttributes ws rs) innerT -> do -- Check the direction is appropriate case (wantDir, dir) of (A.DirUnknown, _) -> ok (_, A.DirUnknown) -> ok (a, b) -> when (a /= b) $ dieP m $ "Channel directions do not match" -- Check it's not shared in the direction we're using. case (ws, rs, wantDir) of (False, _, A.DirOutput) -> ok (_, False, A.DirInput) -> ok (_, _, A.DirUnknown) -> ok _ -> dieP m $ "Shared channel must be claimed before use" return innerT _ -> diePC m $ formatCode "Expected channel; found %" t where m = findMeta c -- | Check that a variable is a timer. -- Return the type of the timer's value. checkTimer :: A.Variable -> PassM A.Type checkTimer tim = do t <- typeOfVariable tim >>= underlyingType m case t of A.Timer A.OccamTimer -> return A.Int A.Timer A.RainTimer -> return A.Time _ -> diePC m $ formatCode "Expected timer; found %" t where m = findMeta tim -- | Return the list of types carried by a protocol. -- For a variant protocol, the second argument should be 'Just' the tag. -- For a non-variant protocol, the second argument should be 'Nothing'. protocolTypes :: Meta -> A.Type -> Maybe A.Name -> PassM [A.Type] protocolTypes m t tag = case t of -- A user-defined protocol. A.UserProtocol n -> do st <- specTypeOfName n case (st, tag) of -- A simple protocol. (A.Protocol _ ts, Nothing) -> return ts (A.Protocol _ _, Just tagName) -> diePC m $ formatCode "Tag % specified for non-variant protocol %" tagName n -- A variant protocol. (A.ProtocolCase _ ntss, Just tagName) -> case lookup tagName ntss of Just ts -> return ts Nothing -> diePC m $ formatCode "Tag % not found in protocol %; expected one of %" tagName n (map fst ntss) (A.ProtocolCase _ _, Nothing) -> diePC m $ formatCode "No tag specified for variant protocol %" n -- Not actually a protocol. _ -> diePC m $ formatCode "% is not a protocol" n -- Not a protocol (e.g. CHAN INT); just return it. _ -> return [t] -- | Check a protocol communication. -- Figure out the types of the items that should be involved in a protocol -- communication, and run the supplied check against each item with its type. checkProtocol :: Meta -> A.Type -> Maybe A.Name -> [t] -> (A.Type -> t -> PassM ()) -> PassM () checkProtocol m t tag items doItem = do its <- protocolTypes m t tag when (length its /= length items) $ dieP m $ "Wrong number of items in protocol communication; found " ++ (show $ length items) ++ ", expected " ++ (show $ length its) sequence_ [doItem it item | (it, item) <- zip its items] -- | Check an 'ExpressionList' matches a set of types. checkExpressionList :: [A.Type] -> A.ExpressionList -> PassM () checkExpressionList ets el = case el of A.FunctionCallList m n es -> do rs <- checkFunctionCall m n es when (length ets /= length rs) $ diePC m $ formatCode ("Function % has wrong number of return values; found " ++ (show $ length rs) ++ ", expected " ++ (show $ length ets)) n sequence_ [checkType m et rt | (et, rt) <- zip ets rs] A.ExpressionList m es -> do when (length ets /= length es) $ dieP m $ "Wrong number of items in expression list; found " ++ (show $ length es) ++ ", expected " ++ (show $ length ets) sequence_ [do rt <- typeOfExpression e checkType (findMeta e) et rt | (e, et) <- zip es ets] -- | Check a set of names are distinct. checkNamesDistinct :: Meta -> [A.Name] -> PassM () checkNamesDistinct m ns = when (dupes /= []) $ diePC m $ formatCode "List contains duplicate names: %" dupes where dupes :: [A.Name] dupes = nub (ns \\ nub ns) -- | Check a 'Replicator'. checkReplicator :: A.Replicator -> PassM () checkReplicator (A.For _ _ start count) = do checkExpressionInt start checkExpressionInt count checkReplicator (A.ForEach _ _ e) = do t <- typeOfExpression e checkSequence (findMeta e) t -- | Check a 'Structured', applying the given check to each item found inside -- it. This assumes that processes and specifications will be checked -- elsewhere. checkStructured :: Data t => (t -> PassM ()) -> A.Structured t -> PassM () checkStructured doInner (A.Rep _ rep s) = checkReplicator rep >> checkStructured doInner s checkStructured doInner (A.Spec _ spec s) = checkStructured doInner s checkStructured doInner (A.ProcThen _ p s) = checkStructured doInner s checkStructured doInner (A.Only _ i) = doInner i checkStructured doInner (A.Several _ ss) = mapM_ (checkStructured doInner) ss --}}} --{{{ retyping checks -- | Check that one type can be retyped to another. checkRetypes :: Meta -> A.Type -> A.Type -> PassM () checkRetypes m fromT toT = do (fromBI, fromN) <- evalBytesInType fromT (toBI, toN) <- evalBytesInType toT case (fromBI, toBI, fromN, toN) of (_, BIManyFree, _, _) -> dieP m "Multiple free dimensions in retype destination type" (BIJust _, BIJust _, Just a, Just b) -> when (a /= b) $ dieP m "Sizes do not match in retype" (BIJust _, BIOneFree _ _, Just a, Just b) -> when (not ((b <= a) && (a `mod` b == 0))) $ dieP m "Sizes do not match in retype" (BIOneFree _ _, BIJust _, Just a, Just b) -> when (not ((a <= b) && (b `mod` a == 0))) $ dieP m "Sizes do not match in retype" -- Otherwise we must do a runtime check. _ -> return () -- | Evaluate 'BytesIn' for a type. -- If the size isn't known at compile type, return 'Nothing'. evalBytesInType :: A.Type -> PassM (BytesInResult, Maybe Int) evalBytesInType t = do bi <- bytesInType t n <- case bi of BIJust e -> maybeEvalIntExpression e BIOneFree e _ -> maybeEvalIntExpression e _ -> return Nothing return (bi, n) --}}} -- | Check the AST for type consistency. -- This is actually a series of smaller passes that check particular types -- inside the AST, but it doesn't really make sense to split it up. checkTypes :: Data t => t -> PassM t checkTypes t = checkVariables t >>= checkExpressions >>= checkSpecTypes >>= checkProcesses --{{{ checkVariables checkVariables :: Data t => t -> PassM t checkVariables = checkDepthM doVariable where doVariable :: A.Variable -> PassM () doVariable (A.SubscriptedVariable m s v) = do t <- typeOfVariable v checkSubscript m s t doVariable (A.DirectedVariable m _ v) = do t <- typeOfVariable v >>= underlyingType m case t of A.Chan _ _ _ -> ok _ -> dieP m $ "Direction applied to non-channel variable" doVariable (A.DerefVariable m v) = do t <- typeOfVariable v >>= underlyingType m case t of A.Mobile _ -> ok _ -> dieP m $ "Dereference applied to non-mobile variable" doVariable _ = ok --}}} --{{{ checkExpressions checkExpressions :: Data t => t -> PassM t checkExpressions = checkDepthM doExpression where doExpression :: A.Expression -> PassM () doExpression (A.Monadic _ op e) = checkMonadicOp op e doExpression (A.Dyadic _ op le re) = checkDyadicOp op le re doExpression (A.MostPos m t) = checkNumeric m t doExpression (A.MostNeg m t) = checkNumeric m t doExpression (A.SizeType m t) = checkSequence m t doExpression (A.SizeExpr m e) = do t <- typeOfExpression e checkSequence m t doExpression (A.SizeVariable m v) = do t <- typeOfVariable v checkSequence m t doExpression (A.Conversion m _ t e) = do et <- typeOfExpression e checkScalar m t >> checkScalar (findMeta e) et doExpression (A.Literal m t lr) = doLiteralRepr t lr doExpression (A.FunctionCall m n es) = do rs <- checkFunctionCall m n es when (length rs /= 1) $ diePC m $ formatCode "Function % used in an expression returns more than one value" n doExpression (A.IntrinsicFunctionCall m s es) = checkIntrinsicFunctionCall m s es doExpression (A.SubscriptedExpr m s e) = do t <- typeOfExpression e checkSubscript m s t doExpression (A.OffsetOf m rawT n) = do t <- underlyingType m rawT checkRecordField m t n doExpression (A.AllocMobile m t me) = checkAllocMobile m t me doExpression _ = ok doLiteralRepr :: A.Type -> A.LiteralRepr -> PassM () doLiteralRepr t (A.ArrayLiteral m aes) = doArrayElem m t (A.ArrayElemArray aes) doLiteralRepr t (A.RecordLiteral m es) = do rfs <- underlyingType m t >>= recordFields m when (length es /= length rfs) $ dieP m $ "Record literal has wrong number of fields: found " ++ (show $ length es) ++ ", expected " ++ (show $ length rfs) sequence_ [checkExpressionType ft fe | ((_, ft), fe) <- zip rfs es] doLiteralRepr _ _ = ok doArrayElem :: Meta -> A.Type -> A.ArrayElem -> PassM () doArrayElem m t (A.ArrayElemArray aes) = do checkArraySize m t (length aes) t' <- subscriptType (A.Subscript m A.NoCheck undefined) t sequence_ $ map (doArrayElem m t') aes doArrayElem _ t (A.ArrayElemExpr e) = checkExpressionType t e --}}} --{{{ checkSpecTypes checkSpecTypes :: Data t => t -> PassM t checkSpecTypes = checkDepthM doSpecType where doSpecType :: A.SpecType -> PassM () doSpecType (A.Place _ e) = checkExpressionInt e doSpecType (A.Declaration _ _) = ok doSpecType (A.Is m am t v) = do tv <- typeOfVariable v checkType (findMeta v) t tv when (am /= A.Abbrev) $ unexpectedAM m amv <- abbrevModeOfVariable v checkAbbrev m amv am doSpecType (A.IsExpr m am t e) = do te <- typeOfExpression e checkType (findMeta e) t te when (am /= A.ValAbbrev) $ unexpectedAM m checkAbbrev m A.ValAbbrev am doSpecType (A.IsChannelArray m rawT cs) = do t <- underlyingType m rawT case t of A.Array [d] et@(A.Chan _ _ _) -> do sequence_ [do rt <- typeOfVariable c checkType (findMeta c) et rt am <- abbrevModeOfVariable c checkAbbrev m am A.Abbrev | c <- cs] case d of A.UnknownDimension -> ok A.Dimension e -> do v <- evalIntExpression e when (v /= length cs) $ dieP m $ "Wrong number of elements in channel array abbreviation: found " ++ (show $ length cs) ++ ", expected " ++ show v _ -> dieP m "Expected 1D channel array type" doSpecType (A.DataType m rawT) = do t <- underlyingType m rawT checkDataType m t doSpecType (A.RecordType m _ nts) = do sequence_ [checkDataType (findMeta n) t | (n, t) <- nts] checkNamesDistinct m (map fst nts) doSpecType (A.Protocol m ts) = do when (length ts == 0) $ dieP m "A protocol cannot be empty" mapM_ (checkCommunicable m) ts doSpecType (A.ProtocolCase m ntss) = do sequence_ [mapM_ (checkCommunicable (findMeta n)) ts | (n, ts) <- ntss] checkNamesDistinct m (map fst ntss) doSpecType (A.Proc m _ fs _) = sequence_ [when (am == A.Original) $ unexpectedAM m | A.Formal am _ n <- fs] doSpecType (A.Function m _ rs fs body) = do when (length rs == 0) $ dieP m "A function must have at least one return type" sequence_ [do when (am /= A.ValAbbrev) $ diePC (findMeta n) $ formatCode "Argument % is not a value abbreviation" n checkDataType (findMeta n) t | A.Formal am t n <- fs] -- FIXME: Run this test again after free name removal doFunctionBody rs body where doFunctionBody :: [A.Type] -> Either (A.Structured A.ExpressionList) A.Process -> PassM () doFunctionBody rs (Left s) = checkStructured (checkExpressionList rs) s -- FIXME: Need to know the name of the function to do this doFunctionBody rs (Right p) = dieP m "Cannot check function process body" doSpecType (A.Retypes m _ t v) = do fromT <- typeOfVariable v checkRetypes m fromT t doSpecType (A.RetypesExpr m _ t e) = do fromT <- typeOfExpression e checkRetypes m fromT t unexpectedAM :: Meta -> PassM () unexpectedAM m = dieP m "Unexpected abbreviation mode" --}}} --{{{ checkProcesses checkProcesses :: Data t => t -> PassM t checkProcesses = checkDepthM doProcess where doProcess :: A.Process -> PassM () doProcess (A.Assign m vs el) = do vts <- mapM (typeOfVariable) vs mapM_ checkWritable vs checkExpressionList vts el doProcess (A.Input _ v im) = doInput v im doProcess (A.Output m v ois) = doOutput m v ois doProcess (A.OutputCase m v tag ois) = doOutputCase m v tag ois doProcess (A.ClearMobile _ v) = do t <- typeOfVariable v case t of A.Mobile _ -> ok _ -> diePC (findMeta v) $ formatCode "Expected mobile type; found %" t checkWritable v doProcess (A.Skip _) = ok doProcess (A.Stop _) = ok doProcess (A.Seq _ s) = checkStructured (\p -> ok) s doProcess (A.If _ s) = checkStructured doChoice s doProcess (A.Case _ e s) = do t <- typeOfExpression e checkCaseable (findMeta e) t checkStructured (doOption t) s doProcess (A.While _ e _) = checkExpressionBool e doProcess (A.Par _ _ s) = checkStructured (\p -> ok) s doProcess (A.Processor _ e _) = checkExpressionInt e doProcess (A.Alt _ _ s) = checkStructured doAlternative s doProcess (A.ProcCall m n as) = do st <- specTypeOfName n case st of A.Proc _ _ fs _ -> checkActuals m n fs as _ -> diePC m $ formatCode "% is not a procedure" n doProcess (A.IntrinsicProcCall m n as) = case lookup n intrinsicProcs of Just args -> do let fs = [A.Formal am t (A.Name m A.VariableName s) | (am, t, s) <- args] checkActuals m (A.Name m A.ProcName n) fs as Nothing -> dieP m $ n ++ " is not an intrinsic procedure" doAlternative :: A.Alternative -> PassM () doAlternative (A.Alternative m v im _) = case im of A.InputTimerRead _ _ -> dieP m $ "Timer read not permitted as alternative" _ -> doInput v im doAlternative (A.AlternativeCond m e v im p) = do checkExpressionBool e doAlternative (A.Alternative m v im p) doAlternative (A.AlternativeSkip _ e _) = checkExpressionBool e doChoice :: A.Choice -> PassM () doChoice (A.Choice _ e _) = checkExpressionBool e doInput :: A.Variable -> A.InputMode -> PassM () doInput c (A.InputSimple m iis) = do t <- checkChannel A.DirInput c checkProtocol m t Nothing iis doInputItem doInput c (A.InputCase _ s) = do t <- checkChannel A.DirInput c checkStructured (doVariant t) s where doVariant :: A.Type -> A.Variant -> PassM () doVariant t (A.Variant m tag iis _) = checkProtocol m t (Just tag) iis doInputItem doInput c (A.InputTimerRead m ii) = do t <- checkTimer c doInputItem t ii doInput c (A.InputTimerAfter m e) = do t <- checkTimer c et <- typeOfExpression e checkType (findMeta e) t et doInput c (A.InputTimerFor m e) = do t <- checkTimer c et <- typeOfExpression e checkType (findMeta e) t et doInputItem :: A.Type -> A.InputItem -> PassM () doInputItem (A.Counted wantCT wantAT) (A.InCounted m cv av) = do ct <- typeOfVariable cv checkType (findMeta cv) wantCT ct checkWritable cv at <- typeOfVariable av checkType (findMeta cv) wantAT at checkWritable av doInputItem t@(A.Counted _ _) (A.InVariable m v) = diePC m $ formatCode "Expected counted item of type %; found %" t v doInputItem wantT (A.InVariable _ v) = do t <- typeOfVariable v checkType (findMeta v) wantT t checkWritable v doOption :: A.Type -> A.Option -> PassM () doOption et (A.Option _ es _) = sequence_ [do rt <- typeOfExpression e checkType (findMeta e) et rt | e <- es] doOption _ (A.Else _ _) = ok doOutput :: Meta -> A.Variable -> [A.OutputItem] -> PassM () doOutput m c ois = do t <- checkChannel A.DirOutput c checkProtocol m t Nothing ois doOutputItem doOutputCase :: Meta -> A.Variable -> A.Name -> [A.OutputItem] -> PassM () doOutputCase m c tag ois = do t <- checkChannel A.DirOutput c checkProtocol m t (Just tag) ois doOutputItem doOutputItem :: A.Type -> A.OutputItem -> PassM () doOutputItem (A.Counted wantCT wantAT) (A.OutCounted m ce ae) = do ct <- typeOfExpression ce checkType (findMeta ce) wantCT ct at <- typeOfExpression ae checkType (findMeta ae) wantAT at doOutputItem t@(A.Counted _ _) (A.OutExpression m e) = diePC m $ formatCode "Expected counted item of type %; found %" t e doOutputItem wantT (A.OutExpression _ e) = do t <- typeOfExpression e checkType (findMeta e) wantT t --}}}