{- Tock: a compiler for parallel languages Copyright (C) 2007, 2008 University of Kent This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . -} {-| This TestUtil module contains useful helper functions for testing. Examples of their use can be found in "RainPassTest" and "RainParseTest". Unless otherwise stated, all functions use empty meta tags (see 'emptyMeta'). See also the 'TreeUtil.assertPatternMatch' function. The Tock test framework is built on top of HUnit. HUnit is a very simple test framework that is supplied by default with GHC: . The only useful things to know are that: > Assertion :: IO () > assertFailure :: String -> Assertion > assertEqual :: (Eq a, Show a) => String -> a -> a -> Assertion 'assertFailure' is an assertion that fails with the given text message. 'assertEqual' checks if two things of the same type are equal. If they are not equal, it shows them (using 'show') with the given message prefixed. -} module TestUtils where import Control.Monad.State import Control.Monad.Writer import Data.Generics (Data, Typeable) import qualified Data.Map as Map import System.Random import Test.HUnit hiding (State,Testable) import Test.QuickCheck import qualified AST as A import CompState import Errors import Metadata (emptyMeta) import Pass import Pattern import PrettyShow import TestFramework import TreeUtils import Types import Utils --{{{ utilities for QuickCheck tests data QuickCheckLevel = QC_Low | QC_Medium | QC_High | QC_Extensive deriving (Show, Eq, Ord) type QuickCheckTest = QuickCheckLevel -> Test type LabelledQuickCheckTest = (String, QuickCheckTest) -- | Adjust the size of a QuickCheck test depending on the check level. scaleQC :: Testable a => (Int,Int,Int,Int) -> a -> QuickCheckTest scaleQC (low,med,high,ext) test level = case level of QC_Low -> run low test QC_Medium -> run med test QC_High -> run high test QC_Extensive -> run ext test where run :: Testable a => Int -> a -> Test run n = testCheck $ defaultConfig { configMaxTest = n } -- | Run a QuickCheck test as an HUnit test. testCheck :: Testable a => Config -> a -> Test testCheck config property = TestCase $ do rnd <- newStdGen tests config (evaluate property) rnd 0 0 [] where -- | The 'tests' function from QuickCheck, modified to throw assertion -- failures when something goes wrong. (This is taken from MissingH.) tests :: Config -> Gen Result -> StdGen -> Int -> Int -> [[String]] -> IO () tests config gen rnd0 ntest nfail stamps | ntest == configMaxTest config = return () | nfail == configMaxFail config = assertFailure $ "Arguments exhausted after " ++ show ntest ++ " tests" | otherwise = case ok result of Nothing -> tests config gen rnd1 ntest (nfail+1) stamps Just True -> tests config gen rnd1 (ntest+1) nfail (stamp result:stamps) Just False -> assertFailure $ "Falsifiable, after " ++ show ntest ++ " tests:\n" ++ unlines (arguments result) where result = generate (configSize config ntest) rnd2 gen (rnd1,rnd2) = split rnd0 --}}} --{{{ building AST fragments and patterns -- | Wraps a structured process into a complete AST fragment. wrapProcSeq :: A.Structured A.Process -> A.AST wrapProcSeq x = A.Spec emptyMeta (A.Specification emptyMeta (simpleName "foo") $ A.Proc emptyMeta (A.PlainSpec, A.PlainRec) [] $ Just $ A.Seq emptyMeta x) (A.Several emptyMeta []) -- | Helper function to generate an array dimension. dimension :: Int -> A.Dimension dimension n = makeDimension emptyMeta n -- | Creates a 'A.Name' object with the given 'String' as 'A.nameName'. simpleName :: String -> A.Name simpleName s = A.Name { A.nameName = s, A.nameMeta = emptyMeta } -- | Creates a 'A.Name' object with the given 'String' as 'A.nameName'. procName :: String -> A.Name procName = simpleName -- | Creates a 'A.Name' object with the given 'String' as 'A.nameName'. typeName :: String -> A.Name typeName = simpleName -- | Creates a 'A.Name' object with the given 'String' as 'A.nameName'. funcName :: String -> A.Name funcName = simpleName -- | Creates a 'Pattern' to match a 'A.Name' instance. -- @'assertPatternMatch' ('simpleNamePattern' x) ('simpleName' x)@ will always succeed. -- All meta tags are ignored. simpleNamePattern :: String -> Pattern simpleNamePattern s = tag2 A.Name DontCare s -- | Creates a 'Pattern' to match a 'A.Name' instance. -- @'assertPatternMatch' ('procNamePattern' x) ('procName' x)@ will always succeed. -- All meta tags are ignored. procNamePattern :: String -> Pattern procNamePattern s = tag2 A.Name DontCare s -- | Creates a 'A.Variable' with the given 'String' as the name. variable :: String -> A.Variable variable e = A.Variable emptyMeta $ simpleName e -- | Creates a 'Pattern' to match a 'A.Variable' instance. -- @'assertPatternMatch' ('variablePattern' x) ('variable' x)@ will always succeed. -- All meta tags are ignored. variablePattern :: String -> Pattern variablePattern e = tag2 A.Variable DontCare (simpleNamePattern e) -- | Creates an 'A.Expression' that has the 'A.ExprVariable' constructor with the given 'String' as the variable name. exprVariable :: String -> A.Expression exprVariable e = A.ExprVariable emptyMeta $ variable e -- | Creates an 'A.Expression' that has the 'A.ExprVariable' constructor with the given 'String' as the variable name in a 'A.DirectedVariable' with the given direction. exprDirVariable :: A.Direction -> String -> A.Expression exprDirVariable dir e = A.ExprVariable emptyMeta $ A.DirectedVariable emptyMeta dir $ variable e -- | Creates a 'Pattern' to match an 'A.Expression' instance. -- @'assertPatternMatch' ('exprVariablePattern' x) ('exprVariable' x)@ will always succeed. -- All meta tags are ignored. exprVariablePattern :: String -> Pattern exprVariablePattern e = tag2 A.ExprVariable DontCare $ variablePattern e -- | Creates a char (Byte) literal with the given char charLiteral :: Char -> A.Expression charLiteral c = A.Literal emptyMeta A.Byte $ A.ByteLiteral emptyMeta [c] -- | Creates an integer literal 'A.Expression' with the given integer. integerLiteral :: A.Type -> Integer -> A.Expression integerLiteral t n = A.Literal emptyMeta t $ A.IntLiteral emptyMeta (show n) -- | Creates an 'A.Int' literal with the given integer. intLiteral :: Integer -> A.Expression intLiteral n = integerLiteral A.Int n -- | Creates an 'A.Byte' literal with the given integer. byteLiteral :: Integer -> A.Expression byteLiteral n = integerLiteral A.Byte n -- | Create an 'A.Bool' literal. boolLiteral :: Bool -> A.Expression boolLiteral b = if b then A.True emptyMeta else A.False emptyMeta -- | Creates a 'Pattern' to match an 'A.Expression' instance. -- @'assertPatternMatch' ('intLiteralPattern' x) ('intLiteral' x)@ will always succeed. -- All meta tags are ignored. intLiteralPattern :: Integer -> Pattern intLiteralPattern = (stopCaringPattern emptyMeta) . mkPattern . intLiteral -- | Creates an integer literal 'A.Expression' with the given integer. int64Literal :: Integer -> A.Expression int64Literal = integerLiteral A.Int64 int32Literal :: Integer -> A.Expression int32Literal = integerLiteral A.Int32 -- | Creates a 'Pattern' to match an 'A.Expression' instance. -- @'assertPatternMatch' ('intLiteralPattern' x) ('intLiteral' x)@ will always succeed. -- All meta tags are ignored. int64LiteralPattern :: Integer -> Pattern int64LiteralPattern = (stopCaringPattern emptyMeta) . mkPattern . int64Literal -- | Creates a pair of variable lists, given a pair of variable-name lists as input. makeNamesWR :: ([String],[String]) -> ([A.Variable],[A.Variable]) makeNamesWR (x,y) = (map variable x,map variable y) -- | Creates a simple assignment ('A.Assign') 'A.Process', given two variable names. makeSimpleAssign :: String -> String -> A.Process makeSimpleAssign dest src = A.Assign emptyMeta [A.Variable emptyMeta $ simpleName dest] (A.ExpressionList emptyMeta [exprVariable src]) -- | Creates a 'Pattern' to match a 'A.Process' instance. -- @'assertPatternMatch' ('makeSimpleAssignPattern' x y) ('makeSimpleAssign' x y)@ will always succeed. -- All meta tags are ignored. makeSimpleAssignPattern :: String -> String -> Pattern makeSimpleAssignPattern lhs rhs = stopCaringPattern emptyMeta $ mkPattern $ makeSimpleAssign lhs rhs -- | Turns a list of 'A.Process' into a 'A.Seq' with those processes in order, with empty meta tags. makeSeq :: [A.Process] -> A.Process makeSeq procList = A.Seq emptyMeta $ A.Several emptyMeta (map (A.Only emptyMeta) procList) -- | Turns a list of 'A.Process' into a 'A.Par' with those processes in order (with type 'A.PlainPar'), with empty meta tags. makePar :: [A.Process] -> A.Process makePar procList = A.Par emptyMeta A.PlainPar $ A.Several emptyMeta (map (A.Only emptyMeta) procList) -- | Wraps the given process in a replicated 'A.Par' of the form PAR i = 0 FOR 3. makeRepPar :: A.Process -> A.Process makeRepPar proc = A.Par emptyMeta A.PlainPar $ A.Spec emptyMeta (A.Specification emptyMeta (simpleName "i") (A.Rep emptyMeta (A.For emptyMeta (intLiteral 0) (intLiteral 3) (intLiteral 1)))) (A.Only emptyMeta proc) -- | Creates an assignment to the given 'A.Variable' from the given 'A.Expression.' makeAssign :: A.Variable -> A.Expression -> A.Process makeAssign v e = A.Assign emptyMeta [v] $ A.ExpressionList emptyMeta [e] -- | Creates a 'Pattern' to match a 'A.Process' instance. -- @'assertPatternMatch' ('makeAssignPattern' (mkPattern x) (mkPattern y)) ('makeAssign' x y)@ will always succeed. -- All meta tags are ignored makeAssignPattern :: Pattern -> Pattern -> Pattern makeAssignPattern v e = tag3 A.Assign DontCare [v] $ tag2 A.ExpressionList DontCare [e] -- | Creates a literal string expression from the given 'String'. makeLiteralStringRain :: String -> A.Expression makeLiteralStringRain str = A.Literal emptyMeta (A.List A.Byte) (A.ArrayListLiteral emptyMeta $ A.Several emptyMeta (map (A.Only emptyMeta . makeLiteralChar) str)) where makeLiteralChar :: Char -> A.Expression makeLiteralChar c = A.Literal emptyMeta A.Byte (A.ByteLiteral emptyMeta [c] {-(show (fromEnum c))-}) -- | Creates a 'Pattern' to match an 'A.Expression' instance. -- @'assertPatternMatch' ('makeLiteralStringPattern' x) ('makeLiteralString' x)@ will always succeed. -- All meta tags are ignored makeLiteralStringRainPattern :: String -> Pattern makeLiteralStringRainPattern = (stopCaringPattern emptyMeta) . mkPattern . makeLiteralStringRain -- | Creates a 'Pattern' to match an 'A.Expression' instance. -- All meta tags are ignored makeLiteralCharPattern :: Char -> Pattern makeLiteralCharPattern c = tag3 A.Literal DontCare A.Byte (tag2 A.ByteLiteral DontCare [c]) data ExprHelper = Dy ExprHelper String ExprHelper | Mon (String, A.Type) ExprHelper | Cast A.Type ExprHelper | Var String | DirVar A.Direction String | Lit A.Expression | EHTrue | Func String [ExprHelper] buildExprPattern :: ExprHelper -> Pattern buildExprPattern = (stopCaringPattern emptyMeta) . mkPattern . buildExpr buildExpr :: ExprHelper -> A.Expression buildExpr (Dy lhs op rhs) = A.FunctionCall emptyMeta (A.Name emptyMeta $ occamDefaultOperator op [A.Int, A.Int]) [buildExpr lhs, buildExpr rhs] buildExpr (Mon (op, t) rhs) = A.FunctionCall emptyMeta (A.Name emptyMeta $ occamDefaultOperator op [t]) [buildExpr rhs] buildExpr (Cast ty rhs) = A.Conversion emptyMeta A.DefaultConversion ty (buildExpr rhs) buildExpr (Var n) = A.ExprVariable emptyMeta $ variable n buildExpr (DirVar dir n) = A.ExprVariable emptyMeta $ (A.DirectedVariable emptyMeta dir $ variable n) buildExpr (Lit e) = e buildExpr EHTrue = A.True emptyMeta buildExpr (Func f es) = A.FunctionCall emptyMeta (simpleName f) (map buildExpr es) -- | A simple definition of a variable simpleDef :: String -> A.SpecType -> A.NameDef simpleDef n sp = A.NameDef {A.ndMeta = emptyMeta, A.ndName = n, A.ndOrigName = n, A.ndNameSource = A.NameUser, A.ndSpecType = sp, A.ndAbbrevMode = A.Original, A.ndPlacement = A.Unplaced} -- | A simple definition of a declared variable simpleDefDecl :: String -> A.Type -> A.NameDef simpleDefDecl n t = simpleDef n (A.Declaration emptyMeta t) -- | A pattern that will match simpleDef, with a different abbreviation mode simpleDefPattern :: String -> A.AbbrevMode -> Pattern -> Pattern simpleDefPattern n am sp = tag6 A.NameDef DontCare n n sp am A.Unplaced --}}} --{{{ defining things -- | Define something in the initial state. defineThing :: CSM m => String -> A.SpecType -> A.AbbrevMode -> A.NameSource -> m () defineThing s st am ns = defineName (simpleName s) $ A.NameDef { A.ndMeta = emptyMeta, A.ndName = s, A.ndOrigName = s, A.ndSpecType = st, A.ndAbbrevMode = am, A.ndNameSource = ns, A.ndPlacement = A.Unplaced } -- | Define a @VAL IS@ constant. defineConst :: String -> A.Type -> A.Expression -> State CompState () defineConst s t e = defineThing s (A.Is emptyMeta A.ValAbbrev t $ A.ActualExpression e) A.ValAbbrev A.NameUser -- | Define an @IS@ abbreviation. defineIs :: String -> A.Type -> A.Variable -> State CompState () defineIs s t v = defineThing s (A.Is emptyMeta A.Abbrev t $ A.ActualVariable v) A.Abbrev A.NameUser -- | Define something original. defineOriginal :: CSM m => String -> A.Type -> m () defineOriginal s t = defineThing s (A.Declaration emptyMeta t) A.Original A.NameUser -- | Define a variable. defineVariable :: CSM m => String -> A.Type -> m () defineVariable = defineOriginal -- | Define a channel. defineChannel :: String -> A.Type -> State CompState () defineChannel = defineOriginal -- | Define a timer. defineTimer :: String -> A.Type -> State CompState () defineTimer = defineOriginal -- | Define a user data type. defineUserDataType :: String -> A.Type -> State CompState () defineUserDataType s t = defineThing s (A.DataType emptyMeta t) A.Original A.NameUser -- | Define a record type. -- (The fields are unscoped names, and thus don't need defining.) defineRecordType :: String -> [(String, A.Type)] -> State CompState () defineRecordType s fs = defineThing s st A.Original A.NameUser where st = A.RecordType emptyMeta (A.RecordAttr False False) [(simpleName s, t) | (s, t) <- fs] -- | Define a function. defineFunction :: String -> [A.Type] -> [(String, A.Type)] -> State CompState () defineFunction s rs as = defineThing s st A.Original A.NameUser where st = A.Function emptyMeta (A.PlainSpec, A.PlainRec) rs fs (Just $ Right $ A.Skip emptyMeta) fs = [A.Formal A.ValAbbrev t (simpleName s) | (s, t) <- as] -- | Define a proc. defineProc :: CSM m => String -> [(String, A.AbbrevMode, A.Type)] -> m () defineProc s as = defineThing s st A.Original A.NameUser where st = A.Proc emptyMeta (A.PlainSpec, A.PlainRec) fs $ Just $ A.Skip emptyMeta fs = [A.Formal am t (simpleName s) | (s, am, t) <- as] -- | Define a protocol. defineProtocol :: String -> [A.Type] -> State CompState () defineProtocol s ts = defineThing s (A.Protocol emptyMeta ts) A.Original A.NameUser -- | Define a variant protocol. defineProtocolCase :: String -> [(A.Name, [A.Type])] -> State CompState () defineProtocolCase s ntss = defineThing s (A.ProtocolCase emptyMeta ntss) A.Original A.NameUser --}}} --{{{ custom assertions -- | Asserts a comparison using a custom comparison function. -- @'assertCompareCustom' msg (==) x y@ will function the same (except for slightly different messages on failure) as @'assertEqual' msg x y@. assertCompareCustom :: Show a => String -- ^ The message\/test name to prefix on failure. -> (a -> a -> Bool) -- ^ The comparison function. A return of True means the Assertion will succeed, False means the Assertion will fail. -> a -- ^ The expected\/yardstick value. -> a -- ^ The actual value from running the test. -> Assertion assertCompareCustom preface cmp expected actual = unless (cmp actual expected) (assertFailure msg) where msg = (if null preface then "" else preface ++ "\n") ++ "expected: " ++ show expected ++ "\n*** got: " ++ show actual -- | Asserts that the two given items are not equal. -- Similar to assertEqual, but with the condition reversed. assertNotEqual :: (Show a,Eq a) => String -- ^ The message\/test name to prefix on failure. -> a -- ^ The expected\/yardstick value that the actual value should not equal. -> a -- ^ The actual value from running the test. -> Assertion assertNotEqual msg = assertCompareCustom msg (/=) -- | Asserts that two items in the Items set (by two given keys) are not the same, typically checking that an item has been transformed somehow. -- This function is often used with 'testPassGetItems' or 'testPassWithCheck' or 'testPassWithItemsStateCheck'. assertItemNotSame :: String -- ^ The message\/test name to prefix on failur -> Items -- ^ The set of items after running the test. -> String -- ^ The key of the untransformed original item -> String -- ^ The key of the new transformed item -> Assertion assertItemNotSame msg items key0 key1 = assertNotEqual msg ((Map.lookup key0 items) :: Maybe AnyDataItem) ((Map.lookup key1 items) :: Maybe AnyDataItem) -- | Asserts that a particular variable is defined in the given 'CompState'. assertVarDef :: String -- ^ The message\/test name to prefix on failure. -> CompState -- ^ The 'CompState' in which to check for the variable being defined -> String -- ^ The name of the variable to check for. -> Pattern -- ^ The expected value of the definition. Expected to be a 'Pattern' that will match a 'A.NameDef'. -> Assertion assertVarDef prefix state varName varDef = case (Map.lookup varName (csNames state)) of Nothing -> assertFailure $ prefix ++ " variable was not recorded: " ++ varName Just actVarDef -> assertPatternMatch (prefix ++ " variable definition not as expected for " ++ varName) varDef actVarDef checkTempVarTypes :: String -> [(String, A.Type)] -> (Items, CompState) -> Assertion checkTempVarTypes testName vars is = mapM_ (checkTempVarType testName is) vars where checkTempVarType :: String -> (Items, CompState) -> (String, A.Type) -> Assertion checkTempVarType testName (items, state) (key, t) = do (A.Name _ nm) <- castOrFail testName key items case Map.lookup nm (csNames state) of Nothing -> assertFailure (testName ++ ": item with key \"" ++ key ++ "\" was not recorded in the state") Just nd -> evalStateT ( do mtSpec <- typeOfSpec (A.ndSpecType nd) case mtSpec of Just tSpec -> liftIO $ assertEqual (testName ++ ": type not as expected for key \"" ++ key ++ "\"") t tSpec Nothing -> liftIO $ assertFailure (testName ++ ": spec does not have identifiable type for key \"" ++ key ++ "\": " ++ show (A.ndSpecType nd)) ) state assertEither :: (Eq a, Eq e, Show a, Show e, TestMonad m r) => String -> a -> Either e a -> m () assertEither testName exp = testEqual testName (Right exp) assertEitherFail :: String -> Either String a -> Assertion assertEitherFail testName result = case result of Left _ -> return () Right _ -> assertFailure $ testName ++ "; test expected to fail but passed" checkRight :: (Show a, TestMonad m r) => Either a b -> m b checkRight (Left err) = testFailure ("Not Right: " ++ show err) >> return undefined checkRight (Right x) = return x --}}} --{{{ canned tests -- | Tests a given AST pass. This function is primarily intended for internal use by this module. -- It takes an expected value, a transformed value (wrapped in the 'PassM' monad), an initial state-changing function, and returns the subsequent -- state, with either an assertion (if the pass failed) or the 'Items' (if the pass succeeded) testPassGetItems :: (Data a, Data b, TestMonad m r) => String -- ^ The message\/test name to prefix on failure. -> a -- ^ The expected outcome of the pass. Will be used as a 'Pattern', to find the named items in the result of the pass. -> Pass b -> b -> (State CompState ()) -- ^ A function to transform a 'CompState'. Will be used on the 'emptyState' to get the initial state for the pass. -> m (CompState, Either (m ()) Items) -- ^ Returns the state, along with either an 'Assertion' (if the pass fails) or the 'Items' (if the pass succeeds). testPassGetItems testName expected actualPass src startStateTrans = --passResult :: Either String b do passResult <- runPass actualPass src startState case passResult of (st, Left (_, err)) -> return (st, Left $ testFailure (prefixErr $ "pass actually failed: " ++ err)) (st, Right resultItem) -> return (st, transformEither (mapM_ (testFailure . prefixErr)) (id) $ getMatchedItems expected resultItem) where startState :: CompState startState = execState startStateTrans emptyState prefixErr :: String -> String prefixErr err = testName ++ ": " ++ err -- | Runs a given AST pass and returns the subsequent state, along with either an error or the result. This function is primarily intended for internal use by this module. runPass :: (Data b, TestMonad m r) => Pass b -> b -- ^ The actual pass. -> CompState -- ^ The state to use to run the pass. -> m (CompState, Either ErrorReport b) -- ^ The resultant state, and either an error or the successful outcome of the pass. runPass actualPass src startState = liftM revPair $ runIO (runPassM startState $ passCode actualPass src) runPass' :: TestMonad m r => PassM b -> CompState -> m (CompState, Either ErrorReport b) runPass' actualPass startState = runIO (runPassM startState actualPass) >>* revPair -- | A test that runs a given AST pass and checks that it succeeds. testPass :: (Data a, Data b, TestMonad m r) => String -- ^ The test name. -> a -- ^ The expected value. Can either be an actual AST, or a 'Pattern' to match an AST. -> Pass b -- ^ The actual pass. -> b -- ^ The source for the actual pass -> (State CompState ()) -- ^ A function to transform a 'CompState'. Will be used on the 'emptyState' to get the initial state for the pass. -> m () --If Items are returned by testPassGetItems we return () [i.e. give an empty assertion], otherwise give back the assertion: testPass w x x' y z = join $ testPassGetItems w x x' y z >>* (either id (const $ return ()) . snd) testPass' :: (Data a, Show a, Eq a, Data b, TestMonad m r) => String -> a -> PassM b -> State CompState () -> m () testPass' name exp act st = runPass' act (execState st emptyState) >>= \x -> case snd x of Left err -> testFailure $ name ++ " expected to pass but failed: " ++ show err Right x' -> testPatternMatch name exp x' -- | A test that runs a given AST pass and checks that it succeeds, and performs an additional check on the result testPassWithCheck :: (Data a, Data b, TestMonad m r) => String -- ^ The test name. -> a -- ^ The expected value. Can either be an actual AST, or a 'Pattern' to match an AST. -> Pass b -- ^ The actual pass. -> b -- ^ The source for the actual pass -> (State CompState ()) -- ^ A function to transform a 'CompState'. Will be used on the 'emptyState' to get the initial state for the pass. -> (b -> m ()) -> m () testPassWithCheck testName expected actualPass src startStateTrans checkFunc = do passResult <- runPass actualPass src (execState startStateTrans emptyState) case snd passResult of Left (_,err) -> testFailure (testName ++ "; pass actually failed: " ++ err) Right result -> (testPatternMatch testName expected result) >> (checkFunc result) -- | A test that runs a given AST pass, checks that it succeeds, and checks the resulting 'Items' with a given function. testPassWithItemsCheck :: (Data a, Data b, TestMonad m r) => String -- ^ The test name. -> a -- ^ The expected value. Can either be an actual AST, or a 'Pattern' to match an AST. -> Pass b -- ^ The actual pass. -> b -- ^ The source for the actual pass -> (State CompState ()) -- ^ A function to transform a 'CompState'. Will be used on the 'emptyState' to get the initial state for the pass. -> (Items -> m ()) -- ^ A function to check the 'Items' once the pass succeeds. -> m () testPassWithItemsCheck testName expected actualPass src startStateTrans checkFunc = ((liftM snd) (testPassGetItems testName expected actualPass src startStateTrans)) >>= (\res -> case res of Left assert -> assert Right items -> checkFunc items ) -- | A test that runs a given AST pass, checks that it succeeds, and checks the resulting 'CompState' with a given function. testPassWithStateCheck :: (Data a, Data b, TestMonad m r) => String -- ^ The test name. -> a -- ^ The expected value. Can either be an actual AST, or a 'Pattern' to match an AST. -> Pass b -- ^ The actual pass. -> b -- ^ The source for the actual pass -> (State CompState ()) -- ^ A function to transform a 'CompState'. Will be used on the 'emptyState' to get the initial state for the pass. -> (CompState -> m ()) -- ^ A function to check the 'CompState' once the pass succeeds. -> m () testPassWithStateCheck testName expected actualPass src startStateTrans checkFunc = (testPassGetItems testName expected actualPass src startStateTrans) >>= (\x -> case x of (_,Left assert) -> assert (st,Right _) -> checkFunc st ) -- | A test that runs a given AST pass, checks that it succeeds, and checks the resulting 'CompState' and 'Items' with a given function. testPassWithItemsStateCheck :: (Data a, Data b, TestMonad m r) => String -- ^ The test name. -> a -- ^ The expected value. Can either be an actual AST, or a 'Pattern' to match an AST. -> Pass b -- ^ The actual pass. -> b -- ^ The source for the actual pass -> (State CompState ()) -- ^ A function to transform a 'CompState'. Will be used on the 'emptyState' to get the initial state for the pass. -> ((Items,CompState) -> m ()) -- ^ A function to check the 'Items' and 'CompState' once the pass succeeds. -> m () testPassWithItemsStateCheck testName expected actualPass src startStateTrans checkFunc = (testPassGetItems testName expected actualPass src startStateTrans) >>= (\x -> case x of (_,Left assert) -> assert (st,Right items) -> checkFunc (items,st) ) -- | A test that checks that a given AST pass fails. If the pass fails, the test succeeds. If the pass succeeds, the test fails. testPassShouldFail :: (Show b, Data b, TestMonad m r) => String -- ^ The test name. -> Pass b -- ^ The actual pass. -> b -- ^ The source for the actual pass -> (State CompState ()) -- ^ A function to transform a 'CompState'. Will be used on the 'emptyState' to get the initial state for the pass. -> m () testPassShouldFail testName actualPass src startStateTrans = do ret <- runPass actualPass src (execState startStateTrans emptyState) case ret of (_,Left err) -> return () (state, Right output) -> testFailure $ testName ++ " pass succeeded when expected to fail; output: " ++ pshow output testPassShouldFail' :: (Show b, Data b, TestMonad m r) => String -- ^ The test name. -> PassM b -- ^ The actual pass. -> (State CompState ()) -- ^ A function to transform a 'CompState'. Will be used on the 'emptyState' to get the initial state for the pass. -> m () testPassShouldFail' testName actualPass startStateTrans = do ret <- runPass' actualPass (execState startStateTrans emptyState) case ret of (_,Left err) -> return () (state, Right output) -> testFailure $ testName ++ " pass succeeded when expected to fail; output: " ++ pshow output --}}} --{{{ miscellaneous utilities markRainTest :: State CompState () markRainTest = modify (\cs -> cs { csFrontend = FrontendRain }) castOrFail :: (Typeable b) => String -> String -> Items -> IO b castOrFail testName key items = case castADI (Map.lookup key items) of Just y -> return y Nothing -> do assertFailure (testName ++ ": could not find item") -- Need this line so the types match: fail "" instance Die (StateT CompState IO) where dieReport (_,s) = liftIO $ do assertFailure s fail s --}}}