{- Tock: a compiler for parallel languages Copyright (C) 2007 University of Kent This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . -} -- #ignore-exports -- | This file has tests for various Rain passes. The tests are quite nasty to look at. -- They usually consist of a hand-constructed AST fragment that is the input to the test. -- The expected output is either a resulting AST, or a check on the items matched in the pattern. -- This stuff is all built on top of the Pattern system, which you can find more about in the -- Pattern, TreeUtils and TestUtils module. Briefly, it is an easy way to match an actual test -- result against an expected pattern, that may have special features in it. See the other module -- documentation. -- -- TODO document each test in this file. module RainPassesTest (tests) where import Control.Monad.State import Control.Monad.Identity import Data.Generics (Data, Typeable) import qualified Data.Map as Map import Test.HUnit hiding (State) import qualified AST as A import CompState import Errors import Metadata import Pass import Pattern import RainPasses import RainTypes import TagAST import TestUtils import TreeUtils import Types import Utils m :: Meta m = emptyMeta -- | A helper function that returns a simple A.Structured A.Process item (A.Only m $ A.Skip m). skipP :: A.Structured A.Process skipP = A.Only m (A.Skip m) -- | A function that tries to cast a given value into the return type, and dies (using "dieInternal") -- if the cast isn't valid. castAssertADI :: (Typeable b) => Maybe AnyDataItem -> IO b castAssertADI x = case (castADI x) of Just y -> return y Nothing -> dieInternal (Nothing, "Pattern successfully matched but did not find item afterwards") makeRange :: Integer -> Integer -> A.Expression makeRange b e = addExprsInt (intLiteral 1) (subExprsInt (intLiteral e) (intLiteral b)) testEachRangePass0 :: Test testEachRangePass0 = TestCase $ testPass "testEachRangePass0" exp transformEachRange orig (return ()) where orig = A.Par m A.PlainPar $ A.Spec m (A.Specification m (simpleName "x") $ A.Rep m (A.ForEach m (A.Literal m (A.List A.Int) (A.RangeLiteral m (intLiteral 0) (intLiteral 9))))) (A.Only m (makeSimpleAssign "c" "x")) exp = A.Par m A.PlainPar $ A.Spec m (A.Specification m (simpleName "x") $ A.Rep m (A.For m (intLiteral 0) (makeRange 0 9) (intLiteral 1))) (A.Only m (makeSimpleAssign "c" "x")) testEachRangePass1 :: Test testEachRangePass1 = TestCase $ testPass "testEachRangePass1" exp transformEachRange orig (return ()) where orig = A.Par m A.PlainPar $ A.Spec m (A.Specification m (simpleName "x") $ A.Rep m (A.ForEach m (A.Literal m (A.List A.Int) (A.RangeLiteral m (intLiteral (-5)) (intLiteral (-2)))))) (A.Only m (makeSimpleAssign "c" "x")) exp = A.Par m A.PlainPar $ A.Spec m (A.Specification m (simpleName "x") $ A.Rep m (A.For m (intLiteral (-5)) (makeRange (-5) (-2)) (intLiteral 1))) (A.Only m (makeSimpleAssign "c" "x")) testEachRangePass2 :: Test testEachRangePass2 = TestCase $ testPass "testEachRangePass2" exp transformEachRange orig (return ()) where orig = A.Seq m $ A.Spec m (A.Specification m (simpleName "x") $ A.Rep m (A.ForEach m (A.Literal m (A.List A.Int) (A.RangeLiteral m (intLiteral 6) (intLiteral 6))))) (A.Only m (makeSimpleAssign "c" "x")) exp = A.Seq m $ A.Spec m (A.Specification m (simpleName "x") $ A.Rep m (A.For m (intLiteral 6) (makeRange 6 6) (intLiteral 1))) (A.Only m (makeSimpleAssign "c" "x")) testEachRangePass3 :: Test testEachRangePass3 = TestCase $ testPass "testEachRangePass3" exp transformEachRange orig (return ()) where orig = A.Seq m $ A.Spec m (A.Specification m (simpleName "x") $ A.Rep m (A.ForEach m (A.Literal m (A.List A.Int) (A.RangeLiteral m (intLiteral 6) (intLiteral 0))))) (A.Only m (makeSimpleAssign "c" "x")) exp = A.Seq m $ A.Spec m (A.Specification m (simpleName "x") $ A.Rep m (A.For m (intLiteral 6) (makeRange 6 0) (intLiteral 1))) (A.Only m (makeSimpleAssign "c" "x")) -- | Test variable is made unique in a declaration: testUnique0 :: Test testUnique0 = TestCase $ testPassWithItemsStateCheck "testUnique0" exp uniquifyAndResolveVars orig (return ()) check where orig = A.Spec m (A.Specification m (simpleName "c") $ A.Declaration m A.Byte) skipP exp = mSpecP (tag3 A.Specification DontCare ("newc"@@DontCare) $ A.Declaration m A.Byte) skipP check (items,state) = do newcName <- castAssertADI (Map.lookup "newc" items) assertNotEqual "testUnique0: Variable was not made unique" "c" (A.nameName newcName) assertVarDef "testUnique0: Variable was not recorded" state (A.nameName newcName) (tag7 A.NameDef DontCare (A.nameName newcName) "c" (A.Declaration m A.Byte) A.Original A.NameUser A.Unplaced) -- | Tests that two declarations of a variable with the same name are indeed made unique: testUnique1 :: Test testUnique1 = TestCase $ testPassWithItemsStateCheck "testUnique1" exp uniquifyAndResolveVars orig (return ()) check where orig = A.Several m [A.Spec m (A.Specification m (simpleName "c") $ A.Declaration m A.Byte ) skipP, A.Spec m (A.Specification m (simpleName "c") $ A.Declaration m A.Int64 ) skipP] exp = mSeveralP [mSpecP (tag3 A.Specification DontCare ("newc0"@@DontCare) $ A.Declaration m A.Byte ) skipP, mSpecP (tag3 A.Specification DontCare ("newc1"@@DontCare) $ A.Declaration m A.Int64 ) skipP] check (items,state) = do newc0Name <- castAssertADI (Map.lookup "newc0" items) newc1Name <- castAssertADI (Map.lookup "newc1" items) assertNotEqual "testUnique1: Variable was not made unique" "c" (A.nameName newc0Name) assertNotEqual "testUnique1: Variable was not made unique" "c" (A.nameName newc1Name) assertNotEqual "testUnique1: Variables were not made unique" (A.nameName newc0Name) (A.nameName newc1Name) assertVarDef "testUnique1: Variable was not recorded" state (A.nameName newc0Name) (tag7 A.NameDef DontCare (A.nameName newc0Name) "c" (A.Declaration m A.Byte) A.Original A.NameUser A.Unplaced) assertVarDef "testUnique1: Variable was not recorded" state (A.nameName newc1Name) (tag7 A.NameDef DontCare (A.nameName newc1Name) "c" (A.Declaration m A.Int64) A.Original A.NameUser A.Unplaced) -- | Tests that the unique pass does resolve the variables that are in scope testUnique2 :: Test testUnique2 = TestCase $ testPassWithItemsStateCheck "testUnique2" exp uniquifyAndResolveVars orig (return ()) check where orig = A.Spec m (A.Specification m (simpleName "c") $ A.Declaration m A.Byte ) (A.Only m $ makeSimpleAssign "c" "d") exp = mSpecP (tag3 A.Specification DontCare ("newc"@@DontCare) $ A.Declaration m A.Byte ) (mOnlyP' m $ tag3 A.Assign DontCare [tag2 A.Variable DontCare ("newc"@@DontCare)] (tag2 A.ExpressionList DontCare [(exprVariable "d")])) check (items,state) = do newcName <- castAssertADI (Map.lookup "newc" items) assertNotEqual "testUnique2: Variable was not made unique" "c" (A.nameName newcName) testUnique2b :: Test testUnique2b = TestCase $ testPassWithItemsStateCheck "testUnique2b" exp uniquifyAndResolveVars orig (return ()) check where orig = A.Spec m (A.Specification m (simpleName "c") $ A.Declaration m A.Byte ) $ A.Several m [(A.Only m $ makeSimpleAssign "c" "d"),(A.Only m $ makeSimpleAssign "c" "e")] exp = mSpecP (tag3 A.Specification DontCare ("newc"@@DontCare) $ A.Declaration m A.Byte ) $ mSeveralP [ (mOnlyP' m $ tag3 A.Assign DontCare [tag2 A.Variable DontCare ("newc"@@DontCare)] (tag2 A.ExpressionList DontCare [(exprVariable "d")])) ,(mOnlyP' m $ tag3 A.Assign DontCare [tag2 A.Variable DontCare ("newc"@@DontCare)] (tag2 A.ExpressionList DontCare [(exprVariable "e")])) ] check (items,state) = do newcName <- castAssertADI (Map.lookup "newc" items) assertNotEqual "testUnique2: Variable was not made unique" "c" (A.nameName newcName) -- | Tests that proc names are recorded, but not made unique (because they might be exported), and not resolved either testUnique3 :: Test testUnique3 = TestCase $ testPassWithItemsStateCheck "testUnique3" exp uniquifyAndResolveVars orig (return ()) check where orig = A.Spec m (A.Specification m (procName "foo") $ A.Proc m (A.PlainSpec, A.Recursive) [] $ Just $ A.Skip m) (A.Only m $ A.ProcCall m (procName "foo") []) exp = orig check (items,state) = assertVarDef "testUnique3: Variable was not recorded" state "foo" (tag7 A.NameDef DontCare "foo" "foo" (A.Proc m (A.PlainSpec, A.Recursive) [] $ Just $ A.Skip m) A.Original A.NameUser A.Unplaced) -- | Tests that parameters are uniquified and resolved: testUnique4 :: Test testUnique4 = TestCase $ testPassWithItemsStateCheck "testUnique4" exp uniquifyAndResolveVars orig (return ()) check where orig = A.Spec m (A.Specification m (procName "foo") $ A.Proc m (A.PlainSpec, A.Recursive) [A.Formal A.ValAbbrev A.Byte $ simpleName "c"] $ Just $ A.ProcCall m (procName "foo") [A.ActualExpression $ exprVariable "c"]) (skipP) exp = mSpecP (tag3 A.Specification DontCare (procNamePattern "foo") $ tag4 A.Proc DontCare (A.PlainSpec, A.Recursive) [tag3 A.Formal A.ValAbbrev A.Byte newc] (bodyPattern newc) ) skipP bodyPattern n = (tag3 A.ProcCall DontCare (procNamePattern "foo") [tag1 A.ActualExpression $ tag2 A.ExprVariable DontCare $ tag2 A.Variable DontCare n] ) newc = Named "newc" DontCare check (items,state) = do newcName <- castAssertADI (Map.lookup "newc" items) assertNotEqual "testUnique4: Variable was not made unique" "c" (A.nameName newcName) assertVarDef "testUnique4: Variable was not recorded" state (A.nameName newcName) (tag7 A.NameDef DontCare (A.nameName newcName) "c" (A.Declaration m A.Byte) A.ValAbbrev A.NameUser A.Unplaced) assertVarDef "testUnique4: Variable was not recorded" state "foo" (tag7 A.NameDef DontCare "foo" "foo" (tag4 A.Proc DontCare (A.PlainSpec, A.Recursive) [tag3 A.Formal A.ValAbbrev A.Byte newcName] (bodyPattern newcName)) A.Original A.NameUser A.Unplaced) -- TODO check that doing {int : c; { int: c; } } does give an error -- TODO check that declaring a new proc with the same name as an old one does give an error --Easy way to string two passes together; creates a pass-like function that applies the left-hand pass then the right-hand pass. Associative. (>>>) :: Pass t -> Pass t -> Pass t (>>>) f0 f1 = Pass {passCode = passCode f1 <.< passCode f0} --Normally, process names in Rain are not mangled. And this should be fine in all cases - but not for the main process (which would --result in a function called main. Therefore we must mangle main. Ideally into a nonce, but for now into ____main --TODO check recursive main function works testFindMain0 :: Test testFindMain0 = TestCase $ testPassWithItemsStateCheck "testFindMain0" exp (uniquifyAndResolveVars >>> findMain) orig (return ()) check where orig = A.Spec m (A.Specification m (A.Name m "main") $ A.Proc m (A.PlainSpec, A.Recursive) [] (Just $ A.Skip m)) $ A.Several m [] :: A.AST exp = mSpecAST (tag3 A.Specification DontCare (tag2 A.Name DontCare ("main"@@DontCare)) $ tag4 A.Proc DontCare (A.PlainSpec, A.Recursive) ([] :: [A.Formal]) (tag1 A.Skip DontCare)) $ mSeveralAST ([] :: [A.AST]) check (items,state) = do mainName <- castAssertADI (Map.lookup "main" items) assertNotEqual "testFindMain0 A" "main" mainName assertEqual "testFindMain0 B" [(mainName, (A.Name m mainName, ProcName))] (csMainLocals state) assertVarDef "testFindMain0 C" state mainName (tag7 A.NameDef DontCare mainName "main" DontCare A.Original A.NameUser A.Unplaced) testFindMain1 :: Test testFindMain1 = TestCase $ testPassWithStateCheck "testFindMain1" orig (uniquifyAndResolveVars >>> findMain) orig (return ()) check where orig = A.Spec m (A.Specification m (A.Name m "foo") $ A.Proc m (A.PlainSpec, A.Recursive) [] (Just $ A.Skip m)) $ A.Several m ([] :: [A.AST]) check state = assertEqual "testFindMain1" [] (csMainLocals state) testFindMain2 :: Test testFindMain2 = TestCase $ testPassWithItemsStateCheck "testFindMain2" exp (uniquifyAndResolveVars >>> findMain) orig (return ()) check where inner = A.Spec m (A.Specification m (A.Name m "foo") $ A.Proc m (A.PlainSpec, A.Recursive) [] (Just $ A.Skip m)) $ A.Several m ([] :: [A.AST]) orig = A.Spec m (A.Specification m (A.Name m "main") $ A.Proc m (A.PlainSpec, A.Recursive) [] (Just $ A.Skip m)) inner exp = mSpecAST (tag3 A.Specification DontCare (tag2 A.Name DontCare ("main"@@DontCare)) $ tag4 A.Proc DontCare (A.PlainSpec, A.Recursive) ([] :: [A.Formal]) (tag1 A.Skip DontCare)) (stopCaringPattern m $ mkPattern inner) check (items,state) = do mainName <- castAssertADI (Map.lookup "main" items) assertNotEqual "testFindMain2 A" "main" mainName assertEqual "testFindMain2 B" [(mainName, (A.Name m mainName, ProcName))] (csMainLocals state) testParamPass :: String -- ^ The test name -> Maybe [A.Formal] -- ^ The parameters of a process\/function to optionally define -> [A.Actual] -- ^ The parameters of the process\/function call -> Maybe [A.Actual] -- ^ The result (or Nothing if failure is expected) -> Test testParamPass testName formals params transParams = case transParams of Just act -> TestList [TestCase $ testPass (testName ++ "/process") (expProc act) performTypeUnification origProc startStateProc, TestCase $ testPass (testName ++ "/function") (expFunc act) performTypeUnification origFunc startStateFunc] Nothing -> TestList [TestCase $ testPassShouldFail (testName ++ "/process") performTypeUnification origProc startStateProc, TestCase $ testPassShouldFail (testName ++ "/function") performTypeUnification origFunc startStateFunc] where startStateProc :: State CompState () startStateProc = do defineName (simpleName "x") $ simpleDefDecl "x" (A.UInt16) case formals of Nothing -> return () Just formals' -> defineName (procName "foo") $ simpleDef "foo" $ A.Proc m (A.PlainSpec, A.Recursive) formals' (Just $ A.Skip m) startStateFunc :: State CompState () startStateFunc = do defineName (simpleName "x") $ simpleDefDecl "x" (A.UInt16) case formals of Nothing -> return () Just formals' -> defineName (funcName "foo") $ simpleDef "foo" $ A.Function m (A.PlainSpec,A.Recursive) [A.Byte] formals' (Just $ Left $ A.Only m $ A.ExpressionList m []) origProc = A.ProcCall m (procName "foo") params expProc ps = A.ProcCall m (procName "foo") ps origFunc = A.FunctionCall m (funcName "foo") (deActualise params) expFunc ps = A.FunctionCall m (funcName "foo") (deActualise ps) deActualise :: [A.Actual] -> [A.Expression] deActualise = map deActualise' deActualise' :: A.Actual -> A.Expression deActualise' (A.ActualVariable v) = A.ExprVariable m v deActualise' (A.ActualExpression e) = e -- | Test no-params: testParamPass0 :: Test testParamPass0 = testParamPass "testParamPass0" (Just []) [] (Just []) -- | Test param of right type: testParamPass1 :: Test testParamPass1 = testParamPass "testParamPass1" (Just [A.Formal A.ValAbbrev A.UInt16 (simpleName "p0")]) [A.ActualVariable (variable "x")] (Just [A.ActualVariable (variable "x")]) -- testParamPass2 was no longer applicable -- | Test invalid implicit down-cast: testParamPass3 :: Test testParamPass3 = testParamPass "testParamPass3" (Just [A.Formal A.ValAbbrev A.Int8 (simpleName "p0"),A.Formal A.ValAbbrev A.UInt32 (simpleName "p1")]) [A.ActualVariable (variable "x"),A.ActualVariable (variable "x")] Nothing -- | Test explicit down-cast: testParamPass4 :: Test testParamPass4 = testParamPass "testParamPass4" (Just [A.Formal A.ValAbbrev A.Int8 (simpleName "p0"),A.Formal A.ValAbbrev A.UInt16 (simpleName "p1")]) [A.ActualExpression $ A.Conversion m A.DefaultConversion A.Int8 (exprVariable "x"),A.ActualVariable (variable "x")] (Just [A.ActualExpression $ A.Conversion m A.DefaultConversion A.Int8 (exprVariable "x"), A.ActualVariable (variable "x")]) -- | Test too few parameters: testParamPass5 :: Test testParamPass5 = testParamPass "testParamPass5" (Just [A.Formal A.ValAbbrev A.UInt16 (simpleName "p0")]) [] Nothing -- | Test too many parameters: testParamPass6 :: Test testParamPass6 = testParamPass "testParamPass6" (Just [A.Formal A.ValAbbrev A.UInt16 (simpleName "p0")]) [A.ActualVariable (variable "x"),A.ActualVariable (variable "x")] Nothing -- | Test unknown process: testParamPass7 :: Test testParamPass7 = testParamPass "testParamPass7" Nothing [A.ActualVariable (variable "x"),A.ActualVariable (variable "x")] Nothing -- | Test calling something that is not a process: testParamPass8 :: Test testParamPass8 = TestList [TestCase $ testPassShouldFail "testParamPass8/process" performTypeUnification origProc (startState'), TestCase $ testPassShouldFail "testParamPass8/function" performTypeUnification origFunc (startState')] where startState' :: State CompState () startState' = do defineName (simpleName "x") $ simpleDefDecl "x" (A.UInt16) origProc = A.ProcCall m (procName "x") [] origFunc = A.FunctionCall m (funcName "x") [] --TODO test passing in channel ends -- | Transform an example list testRangeRepPass0 :: Test testRangeRepPass0 = TestCase $ testPass "testRangeRepPass0" exp transformRangeRep orig (return()) where orig = A.Literal m (A.List A.Int) $ A.RangeLiteral m (intLiteral 0) (intLiteral 1) exp = mLiteral (A.List A.Int) $ mArrayListLiteral $ mSpecE (mSpecification ("repIndex"@@DontCare) (mRep $ mFor (intLiteral 0) (makeRange 0 1) (intLiteral 1))) (mOnlyE $ mExprVariable $ mVariable $ "repIndex"@@DontCare) --TODO consider/test pulling up the definitions of variables involved in return statements in functions {- -- | Test a fairly standard function: testCheckFunction0 :: Test testCheckFunction0 = TestCase $ testPass "testCheckFunction0" orig checkFunction orig (return ()) where orig = A.Specification m (procName "id") $ A.Function m A.PlainSpec [A.Byte] [A.Formal A.ValAbbrev A.Byte (simpleName "x")] $ Right (A.Seq m $ A.Several m [A.Only m $ A.Assign m [variable "id"] $ A.ExpressionList m [exprVariable "x"]]) -- | Test a function without a return as the final statement: testCheckFunction1 :: Test testCheckFunction1 = TestCase $ testPassShouldFail "testCheckFunction1" checkFunction orig (return ()) where orig = A.Specification m (procName "brokenid") $ A.Function m A.PlainSpec [A.Byte] [A.Formal A.ValAbbrev A.Byte (simpleName "x")] $ (Right $ A.Seq m $ A.Several m []) -} testPullUpParDecl0 :: Test testPullUpParDecl0 = TestCase $ testPass "testPullUpParDecl0" orig pullUpParDeclarations orig (return ()) where orig = A.Par m A.PlainPar (A.Several m []) testPullUpParDecl1 :: Test testPullUpParDecl1 = TestCase $ testPass "testPullUpParDecl1" exp pullUpParDeclarations orig (return ()) where orig = A.Par m A.PlainPar $ A.Spec m (A.Specification m (simpleName "x") $ A.Declaration m A.Int) (A.Several m []) exp = A.Seq m $ A.Spec m (A.Specification m (simpleName "x") $ A.Declaration m A.Int) (A.Only m $ A.Par m A.PlainPar $ A.Several m []) testPullUpParDecl2 :: Test testPullUpParDecl2 = TestCase $ testPass "testPullUpParDecl2" exp pullUpParDeclarations orig (return ()) where orig = A.Par m A.PlainPar $ A.Spec m (A.Specification m (simpleName "x") $ A.Declaration m A.Int) $ A.Spec m (A.Specification m (simpleName "y") $ A.Declaration m A.Byte) $ (A.Several m []) exp = A.Seq m $ A.Spec m (A.Specification m (simpleName "x") $ A.Declaration m A.Int) $ A.Spec m (A.Specification m (simpleName "y") $ A.Declaration m A.Byte) (A.Only m $ A.Par m A.PlainPar $ A.Several m []) ---Returns the list of tests: tests :: Test tests = TestLabel "RainPassesTest" $ TestList [ testEachRangePass0 ,testEachRangePass1 ,testEachRangePass2 ,testEachRangePass3 ,testUnique0 ,testUnique1 ,testUnique2 ,testUnique2b ,testUnique3 ,testUnique4 ,testFindMain0 ,testFindMain1 ,testFindMain2 ,testParamPass0 ,testParamPass1 ,testParamPass3 ,testParamPass4 ,testParamPass5 ,testParamPass6 ,testParamPass7 ,testParamPass8 ,testRangeRepPass0 -- ,testCheckFunction0 -- ,testCheckFunction1 ,testPullUpParDecl0 ,testPullUpParDecl1 ,testPullUpParDecl2 ]