{- Tock: a compiler for parallel languages Copyright (C) 2007 University of Kent This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . -} module ArrayUsageCheckTest (qcTests) where import Control.Monad.Identity import Data.Array.IArray import Data.List import qualified Data.Map as Map import Data.Maybe import qualified Data.Set as Set import Prelude hiding ((**),fail) import Test.HUnit import Test.QuickCheck hiding (check) import ArrayUsageCheck import qualified AST as A import Omega import TestHarness import TestUtils hiding (m) import Utils testArrayCheck :: Test testArrayCheck = TestList [ -- x_1 = 0 pass (0, [], [[0,1]], []) -- x_1 = 0, 3x_1 >= 0 --> 0 >= 0 ,pass (1, [[0,0]], [[0,1]], [[0,3]]) -- -7 + x_1 = 0 ,pass (2, [], [[-7,1]], []) -- x_1 = 9, 3 + 2x_1 >= 0 --> 21 >= 0 ,pass (3, [[21,0]], [[-9,1]], [[3,2]]) -- x_1 + x_2 = 0, 4x_1 = 8, 2x_2 = -4 ,pass (4, [], [[0,1,1], [-8,4,0], [4,0,2]], []) -- - x_1 + x_2 = 0, 4x_1 = 8, 2x_2 = 4 ,pass (5, [], [[0,-1,1], [-8,4,0], [-4,0,2]], []) -- -x_1 = -9, 3 + 2x_1 >= 0 --> 21 >= 0 ,pass (6, [[21,0]], [[9,-1]], [[3,2]]) -- From the Omega Test paper (x = x_1, y = x_2, z = x_3, sigma = x_1 (effectively)): ,pass (100, [[11,13,0,0], [28,-13,0,0], [47,-5,0,0], [53,5,0,0]], [[-17,7,12,31], [-7,3,5,14]], [[-1,1,0,0], [40,-1,0,0], [50,0,1,0], [50,0,-1,0]]) -- Impossible/inconsistent equality constraints: -- -7 = 0 ,TestCase $ assertEqual "testArrayCheck 1002" (Nothing) (solveConstraints' [simpleArray [(0,7),(1,0)]] []) -- x_1 = 3, x_1 = 4 ,TestCase $ assertEqual "testArrayCheck 1003" (Nothing) (solveConstraints' [simpleArray [(0,-3),(1,1)], simpleArray [(0,-4),(1,1)]] []) -- x_1 + x_2 = 0, x_1 + x_2 = -3 ,TestCase $ assertEqual "testArrayCheck 1004" (Nothing) (solveConstraints' [simpleArray [(0,0),(1,1),(2,1)], simpleArray [(0,3),(1,1),(2,1)]] []) -- 4x_1 = 7 ,TestCase $ assertEqual "testArrayCheck 1005" (Nothing) (solveConstraints' [simpleArray [(0,-7),(1,4)]] []) ] where solveConstraints' = solveConstraints undefined pass :: (Int, [[Integer]], [[Integer]], [[Integer]]) -> Test pass (ind, expIneq, inpEq, inpIneq) = TestCase $ assertEqual ("testArrayCheck " ++ show ind) (Just $ map arrayise expIneq) (transformMaybe snd $ solveConstraints' (map arrayise inpEq) (map arrayise inpIneq)) arrayise :: [Integer] -> Array Int Integer arrayise = simpleArray . zip [0..] -- Various helpers for easily creating equations. -- Rules for writing equations: -- * You must use the variables i, j, k in that order as you need them. -- Never write an equation just involving i and k, or j and k. Always -- use (i), (i and j), or (i and j and k). -- * Constant scaling must always be on the left, and does not need the con -- function. con 1 ** i won't compile. -- Useful to make sure the equation types are not mixed up: newtype HandyEq = Eq [(Int, Integer)] deriving (Show, Eq) newtype HandyIneq = Ineq [(Int, Integer)] deriving (Show, Eq) -- | The constraint for an arbitrary i,j that exist between low and high (inclusive) -- and where i and j are distinct and i is taken to be the lower index. i_j_constraint :: Integer -> Integer -> [HandyIneq] i_j_constraint low high = [con low <== i, i ++ con 1 <== j, j <== con high] -- The easy way of writing equations is built on the following Haskell magic. -- Essentially, everything is a list of (index, coefficient). You can scale -- with the ** operator, and you can form equalities and inequalities with -- the ===, <== and >== operators. The type system saves you from doing anything -- nonsensical. The other neat thing is that + is ++. An &&& operator is defined -- for combining inequality lists. leq :: [[(Int,Integer)]] -> [HandyIneq] leq [] = [] leq [_] = [] leq (x:y:zs) = (x <== y) : (leq (y:zs)) (&&&) :: [HandyIneq] -> [HandyIneq] -> [HandyIneq] (&&&) = (++) infixr 4 === infixr 4 <== infixr 4 >== infix 6 ** (===) :: [(Int,Integer)] -> [(Int,Integer)] -> HandyEq lhs === rhs = Eq $ lhs ++ negateVars rhs (<==) :: [(Int,Integer)] -> [(Int,Integer)] -> HandyIneq lhs <== rhs = Ineq $ negateVars lhs ++ rhs (>==) :: [(Int,Integer)] -> [(Int,Integer)] -> HandyIneq lhs >== rhs = Ineq $ lhs ++ negateVars rhs negateVars :: [(Int,Integer)] -> [(Int,Integer)] negateVars = map (transformPair id negate) (**) :: Integer -> [(Int,Integer)] -> [(Int,Integer)] n ** var = map (transformPair id (* n)) var con :: Integer -> [(Int,Integer)] con c = [(0,c)] i,j,k,m,n,p :: [(Int, Integer)] i = [(1,1)] j = [(2,1)] k = [(3,1)] m = [(4,1)] n = [(5,1)] p = [(6,1)] -- Turns a list like [(i,3),(j,4)] into proper answers answers :: [([(Int, Integer)],Integer)] -> Map.Map CoeffIndex Integer answers = Map.fromList . map (transformPair (fst . head) id) -- Shows the answers in terms of the test variables showTestAnswers :: VariableMapping -> String showTestAnswers vm = concat $ intersperse "\n" $ map showAnswer $ Map.assocs vm where showAnswer :: (CoeffIndex,EqualityConstraintEquation) -> String showAnswer (x,eq) = mylookup x ++ " = " ++ showItems eq showItems :: EqualityConstraintEquation -> String showItems eq = concat (intersperse " + " (filter (not . null) $ map showItem (assocs eq))) showItem :: (CoeffIndex,Integer) -> String showItem (k,a_k) | a_k == 0 = "" | k == 0 = show a_k | a_k == 1 = mylookup k | otherwise = show a_k ++ mylookup k mylookup :: CoeffIndex -> String mylookup x = Map.findWithDefault "unknown" x lookupTable lookupTable :: Map.Map CoeffIndex String lookupTable = Map.fromList $ zip [1..] ["i","j","k","m","n","p"] showInequality :: InequalityConstraintEquation -> String showInequality ineq = "0 <= " ++ zeroIfBlank (showItems ineq) showInequalities :: InequalityProblem -> String showInequalities ineqs = concat $ intersperse "\n" $ map showInequality ineqs showEquality :: InequalityConstraintEquation -> String showEquality eq = "0 = " ++ zeroIfBlank (showItems eq) showEqualities :: InequalityProblem -> String showEqualities eqs = concat $ intersperse "\n" $ map showEquality eqs zeroIfBlank :: String -> String zeroIfBlank s | null s = "0" | otherwise = s showProblem :: (EqualityProblem,InequalityProblem) -> String showProblem (eqs,ineqs) = showEqualities eqs ++ "\n" ++ showInequalities ineqs makeConsistent :: [HandyEq] -> [HandyIneq] -> (EqualityProblem, InequalityProblem) makeConsistent eqs ineqs = (map ensure eqs', map ensure ineqs') where eqs' = map (\(Eq e) -> e) eqs ineqs' = map (\(Ineq e) -> e) ineqs ensure = accumArray (+) 0 (0, largestIndex) largestIndex = maximum $ map (maximum . map fst) $ [[(0,0)]] ++ eqs' ++ ineqs' -- | Returns Nothing if there is definitely no solution, or (Just ineq) if -- further investigation is needed solveAndPrune' :: VariableMapping -> EqualityProblem -> InequalityProblem -> Maybe (VariableMapping,InequalityProblem) solveAndPrune' vm [] ineq = return (vm,ineq) solveAndPrune' vm eq ineq = solveConstraints vm eq ineq >>= (seqPair . transformPair return pruneIneq) >>= (\(x,(y,z)) -> solveAndPrune' x y z) solveAndPrune :: EqualityProblem -> InequalityProblem -> Maybe (VariableMapping,InequalityProblem) solveAndPrune eq ineq = solveAndPrune' (defaultMapping maxVar) eq ineq where maxVar = if null eq && null ineq then 0 else if null eq then snd $ bounds $ head ineq else snd $ bounds $ head eq -- | A problem's "solveability"; essentially how much of the Omega Test do you have to -- run before the result is known, and which result is it data Solveability = SolveEq (Map.Map CoeffIndex Integer) -- ^ Solveable just by solving equalities and pruning. -- In other words, solveAndPrune will give (Just []) | ImpossibleEq -- ^ Definitely not solveable just from the equalities. -- In other words, solveAndPrune will give Nothing | SolveIneq -- ^ Reduceable to inequalities, where the inequalities (therefore) have a solution. -- In other words, solveAndPrune will give (Just a) (a /= []), -- and then feeding a through fmElimination will give back an inequality set -- that can be fed into to give a possible solution | ImpossibleIneq -- ^ The inequalities are impossible to solve. -- In other words, solveAndPrune will give (Just a) (a /= []), -- but feeding this through fmElimination will give Nothing. -- TODO do we need an option where one variable is left in the inequalities? deriving (Eq,Show) check :: Solveability -> (Int,[HandyEq], [HandyIneq]) -> Test check s (ind, eq, ineq) = case s of ImpossibleEq -> TestCase $ assertEqual testName Nothing sapped SolveEq ans -> TestCase $ assertEqual testName (Just (ans,[])) (transformMaybe (transformPair getCounterEqs id) sapped) ImpossibleIneq -> TestCase $ assertEqual testName Nothing elimed SolveIneq -> TestCase $ assertBool testName (isJust elimed) -- TODO check for a solution to the inequality where problem = makeConsistent eq ineq sapped = uncurry solveAndPrune problem elimed = uncurry solveProblem problem testName = "check " ++ show s ++ " " ++ show ind ++ "(VM after pruning was: " ++ showMaybe showTestAnswers (transformMaybe fst sapped) ++ ", ineqs: " ++ showMaybe showInequalities (transformMaybe snd sapped) ++ ")" testMakeEquations :: Test testMakeEquations = TestList [ test (0,[(Map.empty,[con 0 === con 1],leq [con 0,con 1,con 7] &&& leq [con 0,con 2,con 7])], [intLiteral 1, intLiteral 2],intLiteral 8) ,test (1,[(i_mapping,[i === con 3],leq [con 0,con 3,con 7] &&& leq [con 0,i,con 7])], [exprVariable "i",intLiteral 3],intLiteral 8) ,test (2,[(ij_mapping,[i === j],leq [con 0,i,con 7] &&& leq [con 0,j,con 7])], [exprVariable "i",exprVariable "j"],intLiteral 8) ,test (3,[(ij_mapping,[i ++ con 3 === j],leq [con 0,i ++ con 3,con 7] &&& leq [con 0,j,con 7])], [buildExpr $ Dy (Var "i") A.Add (Lit $ intLiteral 3),exprVariable "j"],intLiteral 8) ,test (4,[(ij_mapping,[2 ** i === j],leq [con 0,2 ** i,con 7] &&& leq [con 0,j,con 7])], [buildExpr $ Dy (Var "i") A.Mul (Lit $ intLiteral 2),exprVariable "j"],intLiteral 8) -- Testing (i REM 3) vs (4) ,test (10,[ (i_mod_mapping 3,[con 0 === con 4, i === con 0], leq [con 0,con 0,con 7] &&& leq [con 0,con 4,con 7]) ,(i_mod_mapping 3,[i ++ 3 ** j === con 4], leq [con 0,con 4,con 7] &&& leq [con 0,i ++ 3 ** j,con 7] &&& [i >== con 1] &&& [j <== con 0] &&& leq [con 0, i ++ 3 ** j, con 2]) ,(i_mod_mapping 3,[i ++ 3 ** j === con 4], leq [con 0,con 4,con 7] &&& leq [con 0,i ++ 3 ** j,con 7] &&& [i <== con (-1)] &&& [j >== con 0] &&& leq [con (-2), i ++ 3 ** j, con 0]) ],[buildExpr $ Dy (Var "i") A.Rem (Lit $ intLiteral 3),intLiteral 4],intLiteral 8) -- Testing ((3*i - 2*j REM 11) - 5) vs (i + j) -- Expressed as ((2 * (i - j)) + i) REM 11 - 5, and i + j ,test (11,[ (_3i_2j_mod_mapping 11,[con (-5) === i ++ j, 3**i ++ (-2)**j === con 0], leq [con 0,con (-5),con 7] &&& leq [con 0,i ++ j,con 7]) ,(_3i_2j_mod_mapping 11,[3**i ++ (-2)**j ++ 11 ** k ++ con (-5) === i ++ j], leq [con 0,i ++ j,con 7] &&& leq [con 0,3**i ++ (-2)**j ++ 11 ** k ++ con (-5),con 7] &&& [3**i ++ (-2)**j >== con 1] &&& [k <== con 0] &&& leq [con 0, 3**i ++ (-2)**j ++ 11 ** k, con 10]) ,(_3i_2j_mod_mapping 11,[3**i ++ (-2)**j ++ 11 ** k ++ con (-5) === i ++ j], leq [con 0,i ++ j,con 7] &&& leq [con 0,3**i ++ (-2)**j ++ 11 ** k ++ con (-5),con 7] &&& [3**i ++ (-2)**j <== con (-1)] &&& [k >== con 0] &&& leq [con (-10), 3**i ++ (-2)**j ++ 11 ** k, con 0]) ],[buildExpr $ Dy (Dy (Dy (Dy (Lit $ intLiteral 2) A.Mul (Dy (Var "i") A.Subtr (Var "j")) ) A.Add (Var "i") ) A.Rem (Lit $ intLiteral 11) ) A.Subtr (Lit $ intLiteral 5) ,buildExpr $ Dy (Var "i") A.Add (Var "j")],intLiteral 8) -- Testing i REM 2 vs (i + 1) REM 4 ,test (12,combine (i_ip1_mod_mapping 2 4) [ [([con 0 === con 0],[]),rr_i_zero, rr_ip1_zero] ,[([con 0 === i ++ con 1 ++ 4**k],[]),rr_i_zero,rr_ip1_pos] ,[([con 0 === i ++ con 1 ++ 4**k],[]),rr_i_zero,rr_ip1_neg] ,[([i ++ 2**j === con 0],[]),rr_i_pos,rr_ip1_zero] ,[([i ++ 2**j === i ++ con 1 ++ 4**k],[]),rr_i_pos,rr_ip1_pos] ,[([i ++ 2**j === i ++ con 1 ++ 4**k],[]),rr_i_pos,rr_ip1_neg] ,[([i ++ 2**j === con 0],[]),rr_i_neg,rr_ip1_zero] ,[([i ++ 2**j === i ++ con 1 ++ 4**k],[]),rr_i_neg,rr_ip1_pos] ,[([i ++ 2**j === i ++ con 1 ++ 4**k],[]),rr_i_neg,rr_ip1_neg] ], [buildExpr $ Dy (Var "i") A.Rem (Lit $ intLiteral 2) ,buildExpr $ Dy (Dy (Var "i") A.Add (Lit $ intLiteral 1)) A.Rem (Lit $ intLiteral 4) ], intLiteral 8) -- TODO test REM + REM vs REM -- 27 combinations! -- Testing i REM j vs 3 ,test (100,[ -- i = 0: (i_mod_j_mapping, [con 0 === con 3, i === con 0], leq [con 0, con 0, con 7] &&& leq [con 0, con 3, con 7]) -- i positive, j positive, i REM j = i: ,(i_mod_j_mapping, [i === con 3], [i >== con 1] &&& leq [con 0, i, j ++ con (-1)] &&& leq [con 0, i, con 7] &&& leq [con 0, con 3, con 7]) -- i positive, j positive, i REM j = i + k: ,(i_mod_j_mapping, [i ++ k === con 3], [i >== con 1, k <== (-1)**j] &&& leq [con 0, i ++ k, j ++ con (-1)] &&& leq [con 0, i ++ k, con 7] &&& leq [con 0, con 3, con 7]) -- i positive, j negative, i REM j = i: ,(i_mod_j_mapping, [i === con 3], [i >== con 1] &&& leq [con 0, i, (-1)**j ++ con (-1)] &&& leq [con 0, i, con 7] &&& leq [con 0, con 3, con 7]) -- i positive, j negative, i REM j = i + k: ,(i_mod_j_mapping, [i ++ k === con 3], [i >== con 1, k <== j] &&& leq [con 0, i ++ k, (-1)**j ++ con (-1)] &&& leq [con 0, i ++ k, con 7] &&& leq [con 0, con 3, con 7]) -- i negative, j positive, i REM j = i: ,(i_mod_j_mapping, [i === con 3], [i <== con (-1)] &&& leq [(-1)**j ++ con 1, i, con 0] &&& leq [con 0, i, con 7] &&& leq [con 0, con 3, con 7]) -- i negative, j positive, i REM j = i + k: ,(i_mod_j_mapping, [i ++ k === con 3], [i <== con (-1), k >== j] &&& leq [(-1)**j ++ con 1, i ++ k, con 0] &&& leq [con 0, i ++ k, con 7] &&& leq [con 0, con 3, con 7]) -- i negative, j negative, i REM j = i: ,(i_mod_j_mapping, [i === con 3], [i <== con (-1)] &&& leq [j ++ con 1, i, con 0] &&& leq [con 0, i, con 7] &&& leq [con 0, con 3, con 7]) -- i negative, j negative, i REM j = i + k: ,(i_mod_j_mapping, [i ++ k === con 3], [i <== con (-1), k >== (-1)**j] &&& leq [j ++ con 1, i ++ k, con 0] &&& leq [con 0, i ++ k, con 7] &&& leq [con 0, con 3, con 7]) ], [buildExpr $ Dy (Var "i") A.Rem (Var "j"), intLiteral 3], intLiteral 8) ,testRep (200,both_rep_i ([i === j],leq [con 1, i, j ++ con (-1), con 5] &&& leq [con 0, i, con 7] &&& leq [con 0, j, con 7]), [(variable "i", intLiteral 1, intLiteral 6)],[exprVariable "i"],intLiteral 8) ,testRep (201,both_rep_i ([i === j],leq [con 1, i, j ++ con (-1), con 5] &&& leq [con 0, i, con 7] &&& leq [con 0, j, con 7]) ++ [(rep_i_mapping,[i === con 3], leq [con 1,i, con 6] &&& leq [con 0, i, con 7] &&& leq [con 0, con 3, con 7])], [(variable "i", intLiteral 1, intLiteral 6)],[exprVariable "i", intLiteral 3],intLiteral 8) ,testRep (202,[ (rep_i_mapping,[i === j ++ con 1],leq [con 1, i, j ++ con (-1), con 5] &&& leq [con 0, i, con 7] &&& leq [con 0, j, con 7]) ,(rep_i_mapping,[i ++ con 1 === j],leq [con 1, i, j ++ con (-1), con 5] &&& leq [con 0, i, con 7] &&& leq [con 0, j, con 7])] ++ replicate 2 (rep_i_mapping,[i === j],leq [con 1, i, j ++ con (-1), con 5] &&& leq [con 0, i, con 7] &&& leq [con 0, j, con 7]) ,[(variable "i", intLiteral 1, intLiteral 6)],[exprVariable "i", buildExpr $ Dy (Var "i") A.Add (Lit $ intLiteral 1)],intLiteral 8) ] where test :: (Integer,[(VarMap,[HandyEq],[HandyIneq])],[A.Expression],A.Expression) -> Test test (ind, problems, exprs, upperBound) = TestCase $ assertEquivalentProblems ("testMakeEquations " ++ show ind) (map (transformPair id (uncurry makeConsistent)) $ map pairLatterTwo problems) =<< (checkRight $ makeEquations exprs upperBound) testRep :: (Integer,[(VarMap,[HandyEq],[HandyIneq])],[(A.Variable, A.Expression, A.Expression)],[A.Expression],A.Expression) -> Test testRep (ind, problems, reps, exprs, upperBound) = TestCase $ assertEquivalentProblems ("testMakeEquations " ++ show ind) (map (transformPair id (uncurry makeConsistent)) $ map pairLatterTwo problems) =<< (checkRight $ makeReplicatedEquations reps exprs upperBound) pairLatterTwo (a,b,c) = (a,(b,c)) joinMapping :: [VarMap] -> ([HandyEq],[HandyIneq]) -> [(VarMap,[HandyEq],[HandyIneq])] joinMapping vms (eq,ineq) = map (\vm -> (vm,eq,ineq)) vms i_mapping = Map.singleton (Scale 1 $ (variable "i",0)) 1 ij_mapping = Map.fromList [(Scale 1 $ (variable "i",0),1),(Scale 1 $ (variable "j",0),2)] i_mod_mapping n = Map.fromList [(Scale 1 $ (variable "i",0),1),(Modulo (Set.singleton $ Scale 1 $ (variable "i",0)) (Set.singleton $ Const n),2)] i_mod_j_mapping = Map.fromList [(Scale 1 $ (variable "i",0),1),(Scale 1 $ (variable "j",0),2), (Modulo (Set.singleton $ Scale 1 $ (variable "i",0)) (Set.singleton $ Scale 1 $ (variable "j",0)),3)] _3i_2j_mod_mapping n = Map.fromList [(Scale 1 $ (variable "i",0),1),(Scale 1 $ (variable "j",0),2), (Modulo (Set.fromList [(Scale 3 $ (variable "i",0)),(Scale (-2) $ (variable "j",0))]) (Set.singleton $ Const n),3)] -- i REM m, i + 1 REM n i_ip1_mod_mapping m n = Map.fromList [(Scale 1 $ (variable "i",0),1) ,(Modulo (Set.singleton $ Scale 1 $ (variable "i",0)) (Set.singleton $ Const m),2) ,(Modulo (Set.fromList [Scale 1 $ (variable "i",0), Const 1]) (Set.singleton $ Const n),3) ] rep_i_mapping = Map.fromList [((Scale 1 (variable "i",0)),1), ((Scale 1 (variable "i",1)),2)] rep_i_mapping' = Map.fromList [((Scale 1 (variable "i",0)),2), ((Scale 1 (variable "i",1)),1)] both_rep_i = joinMapping [rep_i_mapping, rep_i_mapping'] -- Helper functions for i REM 2 vs (i + 1) REM 4. Each one is a pair of equalities, inequalities rr_i_zero = ([i === con 0], leq [con 0,con 0,con 7]) rr_ip1_zero = ([i ++ con 1 === con 0], leq [con 0,con 0,con 7]) rr_i_pos = ([], leq [con 0, i ++ 2**j, con 7] &&& [i >== con 1, j <== con 0] &&& leq [con 0, i ++ 2**j, con 1]) rr_ip1_pos = ([], leq [con 0, i ++ con 1 ++ 4**k, con 7] &&& [i ++ con 1 >== con 1, k <== con 0] &&& leq [con 0, i ++ con 1 ++ 4**k, con 3]) rr_i_neg = ([], leq [con 0, i ++ 2**j, con 7] &&& [i <== con (-1), j >== con 0] &&& leq [con (-1), i ++ 2**j, con 0]) rr_ip1_neg = ([], leq [con 0, i ++ con 1 ++ 4**k, con 7] &&& [i ++ con 1 <== con (-1), k >== con 0] &&& leq [con (-3), i ++ con 1 ++ 4**k, con 0]) combine :: VarMap -> [[([HandyEq],[HandyIneq])]] -> [(VarMap,[HandyEq],[HandyIneq])] combine vm eq_ineqs = [(vm,e,i) | (e,i) <- map (transformPair concat concat . unzip) eq_ineqs] testIndexes :: Test testIndexes = TestList [ check (SolveEq $ answers [(i,7)]) (0, [i === con 7], []) ,check (SolveEq $ answers [(i,6)]) (1, [2 ** i === con 12], []) ,check ImpossibleEq (2, [i === con 7],[i <== con 5]) -- Can i = j? ,check ImpossibleEq (3, [i === j], i_j_constraint 0 9) -- Can (j + 1 % 10 == i + 1 % 10)? ,check ImpossibleIneq $ withKIsMod (i ++ con 1) 10 $ withNIsMod (j ++ con 1) 10 $ (4, [k === n], i_j_constraint 0 9) -- Off by one (i + 1 % 9) ,check SolveIneq $ withKIsMod (i ++ con 1) 9 $ withNIsMod (j ++ con 1) 9 $ (5, [k === n], i_j_constraint 0 9) -- The "nightmare" example from the Omega Test paper: ,check ImpossibleIneq (6,[],leq [con 27, 11 ** i ++ 13 ** j, con 45] &&& leq [con (-10), 7 ** i ++ (-9) ** j, con 4]) -- Solution is: i = 0, j = 0, k = 0 ,check (SolveEq $ answers [(i,0),(j,0),(k,0)]) (7, [con 0 === i ++ j ++ k, con 0 === 5 ** i ++ 4 ** j ++ 3 ** k, con 0 === i ++ 6 ** j ++ 2 ** k] , [con 1 >== i ++ 3 ** j ++ k, con (-4) <== (-5) ** i ++ 2 ** j ++ k, con 0 >== 4 ** i ++ (-7) ** j ++ (-13) ** k]) -- Solution is i = 0, j = 0, k = 4 ,check (SolveEq $ answers [(i,0),(j,0),(k,4)]) (8, [con 4 === i ++ j ++ k, con 12 === 5 ** i ++ 4 ** j ++ 3 ** k, con 8 === i ++ 6 ** j ++ 2 ** k] , [con 5 >== i ++ 3 ** j ++ k, con 3 <== (-5) ** i ++ 2 ** j ++ k, con (-52) >== 4 ** i ++ (-7) ** j ++ (-13) ** k]) -- Solution is: i = 0, j = 5, k = 4, but -- this can't be determined from the equalities alone. ,check SolveIneq (9, [con 32 === 4 ** i ++ 4 ** j ++ 3 ** k, con 17 === i ++ j ++ 3 ** k, con 54 === 10 ** i ++ 10 ** j ++ k] , [3 ** i ++ 8 ** j ++ 5 ** k >== con 60, i ++ j ++ 3 ** k >== con 17, 5 ** i ++ j ++ 5 ** k >== con 25]) -- If we have (solution: 1,2): -- 5 <= 5y - 4x <= 7 -- 9 <= 3y + 4x <= 11 -- Bounds on x: -- Upper: 4x <= 5y - 5, 4x <= 11 - 3y -- Lower: 5y - 7 <= 4x, 9 - 3y <= 4x -- Dark shadow of x includes: -- 4(11 - 3y) - 4(9 - 3y) >= 9, gives 8 >= 9. -- Bounds on y: -- Upper: 5y <= 7 + 4x, 3y <= 11 - 4x -- Lower: 5 + 4x <= 5y, 9 - 4x <= 3y -- Dark shadow of y includes: -- 5(7 + 4x) - 5(5 + 4x) >= 16, gives 10 >= 16 -- So no solution to dark shadow, either way! ,check SolveIneq (10, [], leq [con 5, 5 ** i ++ (-4) ** j, con 7] &&& leq [con 9, 3 ** i ++ 4 ** j, con 11]) ,safeParTest 100 True (0,10) [i] ,safeParTest 120 False (0,10) [i,i ++ con 1] ,safeParTest 140 True (0,10) [2 ** i, 2 ** i ++ con 1] ] where -- Given some indexes using "i", this function checks whether these can -- ever overlap within the bounds given, and matches this against -- the expected value; True for safe, False for unsafe. safeParTest :: Int -> Bool -> (Integer,Integer) -> [[(Int,Integer)]] -> Test safeParTest ind expSafe (low, high) usesI = TestCase $ (if expSafe then assertEqual ("testIndexes " ++ show ind ++ " should be safe (unsolveable)") [] else assertNotEqual ("testIndexes " ++ show ind ++ " should be solveable") [] ) $ findSolveable $ zip3 [ind..] (equalityCombinations) (repeat constraint) where changeItoJ (1,n) = (2,n) changeItoJ x = x usesJ = map (map changeItoJ) usesI constraint = i_j_constraint low high equalityCombinations :: [[HandyEq]] equalityCombinations = map (\(lhs,rhs) -> [lhs === rhs]) $ product2 (usesI,usesJ) findSolveable :: [(Int, [HandyEq], [HandyIneq])] -> [(Int, [HandyEq], [HandyIneq])] findSolveable = filter isSolveable isSolveable :: (Int, [HandyEq], [HandyIneq]) -> Bool isSolveable (ind, eq, ineq) = isJust $ (uncurry solveProblem) (makeConsistent eq ineq) isMod :: [(Int,Integer)] -> [(Int,Integer)] -> Integer -> ([HandyEq], [HandyIneq]) isMod var@[(ind,1)] alpha divisor = ([alpha_minus_div_sigma === var], leq [con 0, alpha_minus_div_sigma, con $ divisor - 1]) where alpha_minus_div_sigma = alpha ++ (negate divisor) ** sigma sigma = [(ind+1,1)] -- | Adds both k and m to the equation! withKIsMod :: [(Int,Integer)] -> Integer -> (Int, [HandyEq], [HandyIneq]) -> (Int, [HandyEq], [HandyIneq]) withKIsMod alpha divisor (ind,eq,ineq) = let (eq',ineq') = isMod k alpha divisor in (ind,eq ++ eq',ineq ++ ineq') -- | Adds both n and p to the equation! withNIsMod :: [(Int,Integer)] -> Integer -> (Int, [HandyEq], [HandyIneq]) -> (Int, [HandyEq], [HandyIneq]) withNIsMod alpha divisor (ind,eq,ineq) = let (eq',ineq') = isMod n alpha divisor in (ind,eq ++ eq',ineq ++ ineq') -- | Given one mapping and a second mapping, gives a function that converts the indexes -- from one to the indexes of the next. If any of the keys in the map don't match -- (i.e. if (keys m0 /= keys m1)) Nothing will be returned generateMapping :: VarMap -> VarMap -> Maybe [(CoeffIndex,CoeffIndex)] generateMapping m0 m1 = if Map.keys m0 /= Map.keys m1 then Nothing else Just (Map.elems $ zipMap f m0 m1) where f (Just x) (Just y) = Just (x,y) f _ _ = Nothing -- More readable than liftM (,) ! -- | Given a forward mapping list, translates equations across translateEquations :: [(CoeffIndex,CoeffIndex)] -> (EqualityProblem, InequalityProblem) -> Maybe (EqualityProblem, InequalityProblem) translateEquations mp = seqPair . transformPair (mapM swapColumns) (mapM swapColumns) where swapColumns :: Array CoeffIndex Integer -> Maybe (Array CoeffIndex Integer) swapColumns arr = liftM simpleArray $ mapM swapColumns' $ assocs arr where swapColumns' :: (CoeffIndex,Integer) -> Maybe (CoeffIndex,Integer) swapColumns' (0,v) = Just (0,v) -- Never swap the units column swapColumns' (x,v) = transformMaybe (\y -> (y,v)) $ transformMaybe fst $ find ((== x) . snd) mp -- | Asserts that the two problems are equivalent, once you take into account the potentially different variable mappings assertEquivalentProblems :: String -> [(VarMap, (EqualityProblem, InequalityProblem))] -> [(VarMap, (EqualityProblem, InequalityProblem))] -> Assertion assertEquivalentProblems title exp act = ((uncurry $ assertEqualCustomShow (showPairCustom show $ showListCustom $ showMaybe showProblem) title) $ pairPairs (length exp, length act) $ unzip $ map (uncurry transform) $ zip exp act) where transform :: (VarMap, (EqualityProblem, InequalityProblem)) -> (VarMap, (EqualityProblem, InequalityProblem)) -> ( Maybe (EqualityProblem, InequalityProblem), Maybe (EqualityProblem, InequalityProblem) ) transform exp act = (translatedExp, Just $ sortP $ snd act) where sortP :: (EqualityProblem, InequalityProblem) -> (EqualityProblem, InequalityProblem) sortP (eq,ineq) = (sort $ map normaliseEquality eq, sort ineq) translatedExp = ( generateMapping (fst exp) (fst act) >>= flip translateEquations (snd exp)) >>* sortP pairPairs (xa,ya) (xb,yb) = ((xa,xb), (ya,yb)) checkRight :: Show a => Either a b -> IO b checkRight (Left err) = assertFailure ("Not Right: " ++ show err) >> return undefined checkRight (Right x) = return x -- QuickCheck tests for Omega Test: -- The idea is to begin with a random list of integers, representing answers. -- Combine this with a randomly generated matrix of coefficients for equalities -- and the similar for inequalities. Correct all the unit coefficients such that -- the equalities are true, and the inequalities should all resolve such that -- LHS = RHS (and therefore they will be pruned out) -- | We want to generate a solveable equation. Expressing our N equations as a matrix A (size: NxN), -- we get: A . x = b, where b is our solution. The equations are solveable iff x = inv(A) . b -- Or expressed another way, the equations are solveable iff A is nonsingular; -- see http://mathworld.wolfram.com/LinearSystemofEquations.html A is singular if it -- has determinant zero, therefore A is non-singular if the determinant is non-zero. -- See http://mathworld.wolfram.com/Determinant.html for this. -- -- At first I tried to simply check the determinant of a randomly generated matrix. -- I implemented the standard naive algorithm, which is O(N!). Eeek! Reading the maths -- more, a quicker way to do the determinant of a matrix M is to decompose it into -- M = LU (where L is lower triangular, and U is upper triangular). Once you have -- done this, you can use det M = det (LU) = (det L) . (det U) (from the Determinant page) -- This is easier because det (A) where A is triangular, is simply the product -- of its diagonal elements (see http://planetmath.org/encyclopedia/TriangularMatrix.html). -- -- However, we don't need to do this the hard way. We just want to generate a matrix M -- where its determinant is non-zero. If we imagine M = LU, then (det M) is non-zero -- as long as (det L) is non-zero AND (det U) is non-zero. In turn, det L and det U are -- non-zero as long as all their diagonal elements are non-zero. Therefore we just -- need to randomly generate L and U (such that the diagonal elements are all non-zero) -- and do M = LU. -- -- Note that we should not take the shortcut of using just L or just U. This would -- lead to trivially solveable linear equations, which would not test our algorithm well! generateInvertibleMatrix :: Int -> Gen [[Integer]] generateInvertibleMatrix size = do u <- genUpper l <- genLower return $ l `multMatrix` u where ns = [0 .. size - 1] -- | From http://mathworld.wolfram.com/MatrixMultiplication.html: -- To multiply two square matrices of size N: -- c_ik = sum (j in 0 .. N-1) (a_ij . b_jk) -- Note that we begin our indexing at zero, because that's how !! works. multMatrix a b = [[sum [((a !! i) !! j) * ((b !! j) !! k) | j <- ns] | k <- ns] | i <- ns] genUpper :: Gen [[Integer]] genUpper = mapM sequence [[ case i `compare` j of EQ -> oneof [choose (-10,-1),choose (1,10)] LT -> return 0 GT -> choose (-10,10) | i <- ns] |j <- ns] genLower :: Gen [[Integer]] genLower = mapM sequence [[ case i `compare` j of EQ -> oneof [choose (-10,-1),choose (1,10)] GT -> return 0 LT -> choose (-10,10) | i <- ns] |j <- ns] -- | Given a solution, and the coefficients, work out the result. -- Effectively the dot-product of the two lists. calcUnits :: [Integer] -> [Integer] -> Integer calcUnits a b = sum $ zipWith (*) a b -- | Given the solution for an equation (values of x_1 .. x_n), generates -- equalities and inequalities. The equalities will all be true and consistent, -- the inequalities will all turn out to be equal. That is, when the inequalities -- are resolved, the LHS will equal 0. Therefore we can generate the inequalities -- using the same method as equalities. Also, the equalities are assured to be -- distinct. If they were not distinct (one could be transformed into another by scaling) -- then the equation set would be unsolveable. generateEqualities :: [Integer] -> Gen (EqualityProblem, InequalityProblem) generateEqualities solution = do eqCoeffs <- generateInvertibleMatrix num_vars ineqCoeffs <- generateInvertibleMatrix num_vars return (map mkCoeffArray eqCoeffs, map mkCoeffArray ineqCoeffs) where num_vars = length solution mkCoeffArray coeffs = arrayise $ (negate $ calcUnits solution coeffs) : coeffs -- | The input to a test that will have an exact solution after the equality problems have been -- solved. All the inequalities will be simplified to 0 = 0. The answers to the equation are -- in the map. newtype OmegaTestInput = OMI (Map.Map CoeffIndex Integer,(EqualityProblem, InequalityProblem)) deriving (Show) -- | Generates an Omega test problem with between 1 and 10 variables (incl), where the solutions -- are numbers between -20 and + 20 (incl). generateProblem :: Gen (Map.Map CoeffIndex Integer,(EqualityProblem, InequalityProblem)) generateProblem = choose (1,10) >>= (\n -> replicateM n $ choose (-20,20)) >>= (\ans -> seqPair (return $ makeAns (zip [1..] ans),generateEqualities ans)) where makeAns :: [(Int, Integer)] -> Map.Map CoeffIndex Integer makeAns = Map.fromList instance Arbitrary OmegaTestInput where arbitrary = generateProblem >>* OMI qcOmegaEquality :: [QuickCheckTest] qcOmegaEquality = [scaleQC (40,200,2000,10000) prop] where prop (OMI (ans,(eq,ineq))) = omegaCheck actAnswer where actAnswer = solveConstraints (defaultMapping $ Map.size ans) eq ineq -- We use Map.assocs because pshow doesn't work on Maps omegaCheck (Just (vm,ineqs)) = (True *==* all (all (== 0) . elems) ineqs) *&&* ((Map.assocs ans) *==* (Map.assocs $ getCounterEqs vm)) omegaCheck Nothing = mkFailResult ("Found Nothing while expecting answer: " ++ show (eq,ineq)) -- | A randomly mutated problem ready for testing the inequality pruning. -- The first part is the input to the pruning, and the second part is the expected result; -- the remaining inequalities, preceding by a list of equalities. type MutatedProblem = (InequalityProblem ,Maybe ([EqualityConstraintEquation],InequalityProblem)) -- | The type for inside the function; easier to work with since it can't be -- inconsistent until the end. type MutatedProblem' = (InequalityProblem ,[EqualityConstraintEquation] ,InequalityProblem) -- | Given a distinct inequality list, mutates each one at random using one of these mutations: -- * Unchanged -- * Generates similar but redundant equations -- * Generates its dual (to be transformed into an equality equation) -- * Generates an inconsistent partner (rare - 20% chance of existing in the returned problem). -- The equations passed in do not have to be consistent, merely unique and normalised. -- Returns the input, and the expected output. mutateEquations :: InequalityProblem -> Gen MutatedProblem mutateEquations ineq = do (a,b,c) <- mapM mutate ineq >>* foldl (\(a,b,c) (x,y,z) -> (a++x,b++y,c++z)) ([],[],[]) frequency [ (80,return (a,Just (b,c))) ,(20,addInconsistent a >>* (\x -> (x,Nothing))) ] where -- We take an equation like 5 + 3x - y >=0 (i.e. 3x - y >= -5) -- and add -6 -3x + y >= 0 (i.e. -6 >= 3x - y) -- This works for all cases, even where the unit coeff is zero; -- 3x - y >= 0 becomes -1 -3x + y >= 0 (i.e. -1 >= 3x - y) addInconsistent :: InequalityProblem -> Gen InequalityProblem addInconsistent inpIneq = do randEq <- oneof (map return inpIneq) let negEq = amap negate randEq let modRandEq = (negEq) // [(0, (negEq ! 0) - 1)] return (modRandEq : inpIneq) mutate :: InequalityConstraintEquation -> Gen MutatedProblem' mutate ineq = oneof [ return ([ineq],[],[ineq]) ,addRedundant ineq ,return $ addDual ineq ] addDual :: InequalityConstraintEquation -> MutatedProblem' addDual eq = ([eq,neg],[eq],[]) where neg = amap negate eq addRedundant :: InequalityConstraintEquation -> Gen MutatedProblem' addRedundant ineq = do i <- choose (1,5) -- number of redundant equations to add newIneqs <- replicateM i addRedundant' return (ineq : newIneqs, [], [ineq]) where -- A redundant equation is one with a bigger unit coefficient: addRedundant' = do n <- choose (1,100) return $ ineq // [(0,n + (ineq ! 0))] -- | Puts an equality into normal form. This is where the first non-zero coefficient is positive. -- If all coefficients are zero, it doesn't matter (it will be equal to its negation) normaliseEquality :: EqualityConstraintEquation -> EqualityConstraintEquation normaliseEquality eq = case listToMaybe $ filter (/= 0) $ elems eq of Nothing -> eq -- all zeroes Just x -> amap (* (signum x)) eq newtype OmegaPruneInput = OPI MutatedProblem deriving (Show) instance Arbitrary OmegaPruneInput where arbitrary = ((generateProblem >>* snd) >>= (return . snd) >>= mutateEquations) >>* OPI qcOmegaPrune :: [QuickCheckTest] qcOmegaPrune = [scaleQC (100,1000,10000,50000) prop] where --We perform the map assocs because we can't compare arrays using *==* -- (toConstr fails in the pretty-printing!). prop (OPI (inp,out)) = True {- case out of Nothing -> Nothing *==* result Just (expEq,expIneq) -> case result of Nothing -> mkFailResult $ "Expected success but got failure: " ++ pshow (inp,out) Just (actEq,actIneq) -> (sort (map assocs expIneq) *==* sort (map assocs actIneq)) *&&* ((sort $ map normaliseEquality expEq) *==* (sort $ map normaliseEquality actEq)) where result = undefined -- TODO replace solveAndPrune: solveProblem [] inp -} qcTests :: IO (Test, [QuickCheckTest]) qcTests = do usageCheckTest1 <- automaticTest "testcases/automatic/usage-check-1.occ.test" usageCheckTest2 <- automaticTest "testcases/automatic/usage-check-2.occ.test" return (TestList [ testArrayCheck ,testIndexes ,testMakeEquations ,usageCheckTest1 ,usageCheckTest2 ] ,qcOmegaEquality ++ qcOmegaPrune)