
I've checked these all against the Darcs history using a script (check-copyright, in my misccode collection). Anything Neil or I did as part of our PhDs is copyright University of Kent; more recent work belongs to us, as appropriate.
544 lines
24 KiB
Haskell
544 lines
24 KiB
Haskell
{-
|
|
Tock: a compiler for parallel languages
|
|
Copyright (C) 2007, 2008, 2009 University of Kent
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation, either version 2 of the License, or (at your
|
|
option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
-}
|
|
|
|
module ImplicitMobility (implicitMobility, mobiliseArrays, inferDeref) where
|
|
|
|
import Control.Arrow
|
|
import Control.Monad.Error
|
|
import Control.Monad.State
|
|
import Control.Monad.Trans
|
|
import qualified Data.Foldable as F
|
|
import Data.Graph.Inductive
|
|
import Data.Graph.Inductive.Query.DFS
|
|
import Data.List
|
|
import qualified Data.Map as Map
|
|
import Data.Maybe
|
|
import qualified Data.Set as Set
|
|
import qualified Data.Traversable as T
|
|
|
|
import qualified AST as A
|
|
import CompState
|
|
import Data.Generics.Alloy.Route
|
|
import Errors
|
|
import FlowAlgorithms
|
|
import FlowGraph
|
|
import FlowUtils
|
|
import Intrinsics
|
|
import Metadata
|
|
import Pass
|
|
import ShowCode
|
|
import Traversal
|
|
import Types
|
|
import UsageCheckUtils
|
|
import Utils
|
|
|
|
effectDecision :: Var -> Decision -> AlterAST PassM () -> A.AST -> PassM A.AST
|
|
effectDecision targetVar dec (AlterProcess wrapper)
|
|
| isJust (decUsedAfter dec) || decUsedInPar dec = routeModify wrapper alterProc
|
|
where
|
|
alterProc :: A.Process -> PassM A.Process
|
|
alterProc (A.Assign m lhs (A.ExpressionList m' [e@(A.ExprVariable _ v)]))
|
|
| Var v == targetVar
|
|
= return $ A.Assign m lhs $ A.ExpressionList m' [A.CloneMobile m' e]
|
|
alterProc (A.Output m cv [A.OutExpression m' e@(A.ExprVariable _ v)])
|
|
| Var v == targetVar
|
|
= do liftIO $ putStrLn $ show m ++ " COPY"
|
|
return $ A.Output m cv [A.OutExpression m' $ A.CloneMobile m' e]
|
|
alterProc x = return x
|
|
-- alterProc x = dieP (findMeta x) "Cannot alter process to copy"
|
|
effectDecision targetVar dec (AlterSpec wrapper)
|
|
| decUsedAfter dec /= Just UseSubscripted = routeModify wrapper alterSpec
|
|
where
|
|
alterSpec :: A.Specification -> PassM A.Specification
|
|
alterSpec (A.Specification m n (A.Is m' am (A.Mobile t) (A.ActualExpression (A.AllocMobile m'' t' me))))
|
|
| Var (A.Variable emptyMeta n) == targetVar
|
|
= return $ A.Specification m n $ A.Declaration m' (A.Mobile t)
|
|
alterSpec s = do liftIO $ putStrLn $ "Not altering spec: " ++ show s
|
|
return s
|
|
effectDecision _ _ _ = return
|
|
|
|
calculate :: (Monad m, Eq a) => GraphFuncs Node EdgeLabel a -> a
|
|
-> FlowGraph m UsageLabel -> Node -> Either String (Map.Map Node a)
|
|
calculate funcs def g startNode
|
|
= flowAlgorithm funcs (rdfs [startNode] g) (startNode, def)
|
|
|
|
-- | Calculates a map from each node to a set of variables that will be
|
|
-- used again afterwards. Used in this context means it can possibly be
|
|
-- read from before being written to
|
|
readAgainAfterFuncs :: Monad m => FlowGraph m UsageLabel -> GraphFuncs Node EdgeLabel (Set.Set Var)
|
|
readAgainAfterFuncs g = GF
|
|
{ nodeFunc = iterate
|
|
-- Backwards data flow:
|
|
, nodesToProcess = lsuc g
|
|
, nodesToReAdd = lpre g
|
|
, defVal = Set.empty
|
|
, userErrLabel = ("for node at: " ++) . show . fmap getNodeMeta . lab g
|
|
}
|
|
where
|
|
iterate :: (Node, EdgeLabel) -> Set.Set Var -> Maybe (Set.Set Var) -> Set.Set
|
|
Var
|
|
iterate node prevVars maybeVars = case lab g (fst node) of
|
|
Just ul ->
|
|
let vs = nodeVars $ getNodeData ul
|
|
readFromVars = readVars vs
|
|
writtenToVars = writtenVars vs
|
|
-- prevVars is the value from the node after us.
|
|
addTo = fromMaybe Set.empty maybeVars `Set.union` prevVars
|
|
in (readFromVars `Set.union` addTo) `Set.difference` Map.keysSet writtenToVars
|
|
Nothing -> error "Node label not found in readAgainAfterFuncs"
|
|
|
|
-- | Calculates whether each variable is used at all before being entirely overwritten.
|
|
-- This calculation can then be used to remove unnecessary mobile allocations
|
|
-- from the flow graph. The set is all the variables that are used again before
|
|
-- overwriting; the allocations can be removed for all variables not in the set.
|
|
usedBeforeOverwriteFuncs :: Monad m => FlowGraph m UsageLabel -> GraphFuncs Node EdgeLabel (Set.Set Var)
|
|
usedBeforeOverwriteFuncs g = GF
|
|
{ nodeFunc = iterate
|
|
-- Backwards data flow:
|
|
, nodesToProcess = lsuc g
|
|
, nodesToReAdd = lpre g
|
|
, defVal = Set.empty
|
|
, userErrLabel = ("for node at: " ++) . show . fmap getNodeMeta . lab g
|
|
}
|
|
where
|
|
iterate :: (Node, EdgeLabel) -> Set.Set Var -> Maybe (Set.Set Var) -> Set.Set Var
|
|
iterate node prevVars maybeVars = case lab g (fst node) of
|
|
Just ul -> let vs = nodeVars $ getNodeData ul
|
|
addTo = fromMaybe prevVars maybeVars
|
|
writtenIndirect = concat [map Var $ listifyInner (const True) v
|
|
| Var v <- Map.keys $ writtenVars vs]
|
|
in (readVars vs `Set.union` addTo `Set.union` Set.fromList writtenIndirect)
|
|
`Set.difference` Map.keysSet (writtenVars vs)
|
|
Nothing -> error "Node label not found in usedBeforeOverwriteFuncs"
|
|
|
|
listifyInner :: (AlloyA t BaseOpA (OneOpA s)
|
|
,AlloyA s BaseOpA (OneOpA s)) => (s -> Bool) -> t -> [s]
|
|
listifyInner qf = flip execState [] . makeDescendM ops
|
|
where
|
|
ops = makeBottomUpM ops qf' :-* baseOpA
|
|
qf' x = if qf x then modify (x:) >> return x else return x
|
|
|
|
|
|
type UsedParM = StateT (Set.Set Node) (Either ErrorReport)
|
|
|
|
instance Die UsedParM where
|
|
dieReport = lift . dieReport
|
|
|
|
type NodeToVars = Map.Map Node (Map.Map Var Int)
|
|
|
|
calculateUsedInParallel :: Monad m => FlowGraph m UsageLabel -> [Node] -> Node -> Either
|
|
ErrorReport NodeToVars
|
|
calculateUsedInParallel g roots startNode
|
|
= flip evalStateT Set.empty $ liftM combine $ mapM proceedSeq (roots `intersect` rdfs [startNode] g)
|
|
where
|
|
combine :: [NodeToVars] -> NodeToVars
|
|
combine = foldl (Map.unionWith (Map.unionWith (+))) Map.empty
|
|
add :: NodeToVars -> NodeToVars -> NodeToVars
|
|
add = Map.unionWith (Map.unionWith (+))
|
|
|
|
isESeq :: EdgeLabel -> Bool
|
|
isESeq (ESeq {}) = True
|
|
isESeq _ = False
|
|
|
|
nodeData :: Node -> Bool -> NodeToVars
|
|
nodeData n rep = maybe Map.empty (Map.singleton n . flip setToMap x) $
|
|
fmap (readVars . nodeVars . getNodeData) $ lab g n
|
|
where
|
|
x :: Int
|
|
x = if rep then 2 else 1
|
|
|
|
isRep :: Node -> Bool
|
|
isRep = isJust . maybe Nothing nodeRep . fmap getNodeData . lab g
|
|
|
|
proceedSeq :: Node -> UsedParM NodeToVars
|
|
proceedSeq n
|
|
= do been <- get
|
|
modify (Set.insert n)
|
|
if n `Set.member` been
|
|
then return Map.empty
|
|
else let myvs = nodeData n False in case nub $ map snd $ lsuc g n of
|
|
[EStartPar i] -> do r <- mapM (proceedPar (i, isRep n)) (suc g n)
|
|
let (ns, vs) = (catMaybes *** combine) $ unzip r
|
|
liftM (add (add myvs vs) . combine) $ mapM proceedSeq ns
|
|
es | all isESeq es -> liftM (add myvs . combine) $ mapM proceedSeq $ suc g n
|
|
es -> dieP (getMetaSafe g n) $ "Unexpected edge types in proceedSeq: " ++ show es
|
|
|
|
proceedPar :: (Integer, Bool) -> Node -> UsedParM (Maybe Node, NodeToVars)
|
|
proceedPar (i, rep) n
|
|
= do been <- get
|
|
modify (Set.insert n)
|
|
if n `Set.member` been
|
|
then return (Nothing, Map.empty)
|
|
else let myvs = nodeData n rep in case nub $ map snd $ lsuc g n of
|
|
[EStartPar i'] -> do r <- mapM (proceedPar (i', isRep n)) (suc g n)
|
|
let (ns, vs) = (catMaybes *** combine) $ unzip r
|
|
case nub ns of
|
|
[n'] -> liftM (second (add $ add myvs vs)) $ proceedPar (i, rep) n'
|
|
_ -> dieP (getMetaSafe g n) "More than one node at end of par in proceedPar"
|
|
[EEndPar i'] | i == i' -> return (listToMaybe $ suc g n, myvs)
|
|
es | all isESeq es -> do r <- mapM (proceedPar (i, rep)) $ suc g n
|
|
let (ns, vs) = (catMaybes *** combine) $ unzip r
|
|
case nub ns of
|
|
[n'] -> return (Just n', add myvs vs)
|
|
[] -> return (Nothing, add myvs vs)
|
|
ns' -> dieP (getMetaSafe g n) $ "More than one node at end of par in proceedPar:"
|
|
++ show (map (getMetaSafe g) ns')
|
|
_ -> dieP (getMetaSafe g n) $ "Unexpected edge types in proceedPar"
|
|
|
|
getMetaSafe :: Monad m => FlowGraph m UsageLabel -> Node -> Meta
|
|
getMetaSafe g = maybe emptyMeta getNodeMeta . lab g
|
|
|
|
|
|
--TODO rememember to take note of declarations/scope, otherwise this:
|
|
-- seqeach (..) {int:x; ... x = 3;}
|
|
-- will look like x is used again on the next loop iteration
|
|
|
|
-- TODO look at the types, too!
|
|
printMoveCopyDecisions :: Decisions -> PassM ()
|
|
printMoveCopyDecisions decs
|
|
= mapM_ printDec $ Map.toList decs
|
|
where
|
|
printDec :: ((Node, Var), Decision) -> PassM ()
|
|
printDec ((n,v), dec) = astTypeOf v >>= \t -> (liftIO $ putStrLn $
|
|
show (findMeta v) ++ show (n, v) ++ " " ++ show t ++ " " ++ show dec)
|
|
|
|
data WriteType = WriteWhole | UseSubscripted deriving (Show, Ord, Eq)
|
|
|
|
data Decision = Decision
|
|
{ decMeta :: Meta
|
|
, decUsedAfter :: Maybe WriteType
|
|
, decUsedInPar :: Bool
|
|
} deriving (Show, Ord, Eq)
|
|
|
|
-- These two fields are subtly different. readAfter is where the variable is
|
|
-- read from before being overwritten, either by being written-to in place or
|
|
-- completely, or falling out of scope.
|
|
--
|
|
-- usedBeforeOverwrite indicates whether the allocated mobile is used again at
|
|
-- all (for reading, or writing) before being replaced by a new mobile or falling
|
|
-- out of scope.
|
|
data Info = Info
|
|
{ readAfter :: Set.Set Var
|
|
, usedBeforeOverwite :: Set.Set Var
|
|
}
|
|
deriving Show
|
|
|
|
makeMoveCopyDecisions :: forall m. Monad m => FlowGraph m UsageLabel -> [Node] -> [Node] ->
|
|
PassM Decisions
|
|
makeMoveCopyDecisions grOrig roots ns
|
|
= do namesWithTypes <- getCompState >>* csNames >>= T.mapM (typeOfSpec . A.ndSpecType)
|
|
--liftIO $ putStrLn $ graphviz' $ nmap getNodeMeta grOrig
|
|
let mobVars = Set.mapMonotonic (Var . A.Variable emptyMeta . A.Name emptyMeta)
|
|
. Map.keysSet
|
|
. Map.filter isJustMobileType
|
|
$ namesWithTypes
|
|
processed <- foldM (processConnected $ nmap (fmap $ filterVars mobVars) grOrig) (Map.empty) ns
|
|
return $ Map.filterWithKey (\(_, v) _ -> v `Set.member` mobVars) processed
|
|
where
|
|
isJustMobileType :: Maybe A.Type -> Bool
|
|
isJustMobileType (Just (A.Mobile {})) = True
|
|
isJustMobileType _ = False
|
|
|
|
containsVar :: Var -> Var -> Bool
|
|
containsVar (Var big) small = not $ null $ listifyDepth ((== small) . Var) big
|
|
|
|
containsAnyVars :: Var -> Set.Set Var -> Bool
|
|
containsAnyVars v = F.any (v `containsVar`)
|
|
|
|
filterVars :: Set.Set Var -> UsageLabel -> UsageLabel
|
|
filterVars keep u
|
|
= u { nodeVars = filterNodeVars (nodeVars u) }
|
|
where
|
|
keepM = setToMap keep ()
|
|
|
|
filterNodeVars :: Vars -> Vars
|
|
filterNodeVars vs
|
|
= vs { readVars = Set.filter (`containsAnyVars` keep) $ readVars vs
|
|
, writtenVars = Map.filterWithKey (\k _ -> k `containsAnyVars` keep) $ writtenVars vs
|
|
, usedVars = Set.filter (`containsAnyVars` keep) $ readVars vs }
|
|
|
|
-- Processes the entire sub-graph that is connected to the given node
|
|
processConnected :: FlowGraph m UsageLabel -> Map.Map (Node, Var) Decision -> Node ->
|
|
PassM (Map.Map (Node, Var) Decision)
|
|
processConnected gr m n = case fmap (fmap (uncurry Info)) $ calculate gf (Set.empty, Set.empty) gr n of
|
|
Left err -> dieP (getNodeMeta $ fromJust $ lab gr n) err
|
|
Right mvs -> case calculateUsedInParallel gr roots n of
|
|
Left err -> throwError err
|
|
Right mp -> do debug $ show (grOrig, gr, mvs)
|
|
foldM (processNode gr mvs mp) m $ Map.keys mvs
|
|
where
|
|
gf = joinGraphFuncs (readAgainAfterFuncs gr) (usedBeforeOverwriteFuncs gr)
|
|
|
|
-- Processes all the variables at a given node
|
|
processNode :: FlowGraph m UsageLabel -> Map.Map Node Info ->
|
|
NodeToVars
|
|
-> Map.Map (Node, Var) Decision -> Node -> PassM (Map.Map (Node, Var) Decision)
|
|
processNode gr mvs mp m n
|
|
= case fmap (nodeVars . getNodeData) $ lab gr n of
|
|
Nothing -> dieP emptyMeta "Did not find node label during implicit mobility"
|
|
Just nvs -> return $ foldl (process n mvs mp) m $
|
|
Set.toList (readVars nvs) ++ Map.keys (writtenVars nvs)
|
|
|
|
-- Processes a single variable at a given node
|
|
process :: Node -> Map.Map Node Info -> NodeToVars -> Map.Map (Node, Var) Decision ->
|
|
Var -> Map.Map (Node, Var) Decision
|
|
process n useAgain usedInPar prev v = let s = Map.findWithDefault (Info Set.empty Set.empty) n useAgain
|
|
uvs = Map.findWithDefault Map.empty n usedInPar
|
|
u = Map.findWithDefault 1 v uvs
|
|
in Map.insert (n, v)
|
|
(Decision
|
|
{ decMeta = maybe (getMetaSafe grOrig n) findMeta $ getElem v (readAfter s)
|
|
, decUsedAfter = case (v `Set.member` readAfter s, v `Set.member` usedBeforeOverwite s) of
|
|
(False, True) -> Just UseSubscripted
|
|
(False, False) -> Nothing
|
|
(True, True) -> Just UseSubscripted
|
|
(True, False) -> Just WriteWhole
|
|
, decUsedInPar = u > 1
|
|
}) prev
|
|
|
|
-- Gets the element from the set that matches the given one by equality.
|
|
getElem :: Ord a => a -> Set.Set a -> Maybe a
|
|
getElem x = listToMaybe . Set.elems . Set.union (Set.singleton x)
|
|
|
|
type Decisions = Map.Map (Node, Var) Decision
|
|
|
|
effectMoveCopyDecisions :: FlowGraph PassM UsageLabel -> Decisions -> A.AST -> PassM A.AST
|
|
effectMoveCopyDecisions g decs = foldFuncsM $ map effect $ Map.toList decs
|
|
where
|
|
effect :: ((Node, Var), Decision) -> A.AST -> PassM A.AST
|
|
effect ((n, v), dec)
|
|
= case fmap getNodeFunc $ lab g n of
|
|
Nothing -> const $ dieP (findMeta v) "Could not find label for node"
|
|
Just mod -> effectDecision v dec mod
|
|
|
|
implicitMobility :: Pass A.AST
|
|
implicitMobility
|
|
= pass "Implicit mobility optimisation"
|
|
[] [] --TODO properties
|
|
(passOnlyOnAST "implicitMobility" $ \t -> do
|
|
g' <- buildFlowGraph labelUsageFunctions t
|
|
:: PassM (Either String (FlowGraph' PassM UsageLabel (), [Node],
|
|
[Node]))
|
|
case g' of
|
|
Left err -> dieP emptyMeta $ "Error building flow graph: " ++ err
|
|
Right (g, roots, terms) ->
|
|
-- We go from the terminator nodes, because we are performing backward
|
|
-- data-flow analysis
|
|
do decs <- makeMoveCopyDecisions g roots terms
|
|
printMoveCopyDecisions decs
|
|
effectMoveCopyDecisions g decs t)
|
|
|
|
-- This leaves alone proc parameters for now
|
|
mobiliseArrays :: PassASTOnStruct
|
|
mobiliseArrays = pass "Make all arrays mobile" [] [] recurse
|
|
where
|
|
ops :: ExtOpMSP BaseOpM
|
|
ops = opMS (ops, doStructured)
|
|
|
|
recurse :: RecurseM PassM (ExtOpMS BaseOpM)
|
|
recurse = makeRecurseM ops
|
|
descend :: DescendM PassM (ExtOpMS BaseOpM)
|
|
descend = makeDescendM ops
|
|
|
|
doStructured :: TransformStructured' (ExtOpMS BaseOpM)
|
|
doStructured s@(A.Spec m (A.Specification m' n (A.Declaration m'' t@(A.Array ds
|
|
innerT))) scope)
|
|
= case innerT of
|
|
A.Chan {} -> case mobiliseArrayInside (t, A.Declaration m'') of
|
|
Just newSpec ->
|
|
do modifyName n (\nd -> nd {A.ndSpecType = newSpec})
|
|
recurse scope >>* A.Spec m (A.Specification m' n newSpec)
|
|
Nothing -> descend s
|
|
A.ChanEnd {} -> case mobiliseArrayInside (t, A.Declaration m'') of
|
|
Just newSpec ->
|
|
do modifyName n (\nd -> nd {A.ndSpecType = newSpec})
|
|
recurse scope >>* A.Spec m (A.Specification m' n newSpec)
|
|
Nothing -> descend s
|
|
_ -> do scope' <- recurse {-addAtEndOfScopeDyn m'' (A.ClearMobile m'' $ A.Variable m' n)-} scope
|
|
let newSpec = A.Is m'' A.Original (A.Mobile t) $
|
|
A.ActualExpression $ A.AllocMobile m'' (A.Mobile t) Nothing
|
|
modifyName n (\nd -> nd {A.ndSpecType = newSpec})
|
|
return $ A.Spec m (A.Specification m' n newSpec) scope'
|
|
|
|
doStructured (A.Spec m (A.Specification m' n (A.Proc m'' sm fs body)) scope)
|
|
= do scope' <- recurse scope
|
|
body' <- recurse body
|
|
fs' <- mapM processFormal fs
|
|
let newSpecF = A.Proc m'' sm fs'
|
|
modifyName n (\nd -> nd {A.ndSpecType =
|
|
let A.Proc _ _ _ stub = A.ndSpecType nd in newSpecF stub})
|
|
return $ A.Spec m (A.Specification m' n (newSpecF body')) scope'
|
|
|
|
doStructured (A.Spec m (A.Specification m' n (A.Protocol m'' ts)) scope)
|
|
= do let ts' = [case t of
|
|
A.Array {} -> A.Mobile t
|
|
_ -> t
|
|
| t <- ts]
|
|
newSpec = A.Protocol m'' ts'
|
|
modifyName n (\nd -> nd {A.ndSpecType = newSpec})
|
|
scope' <- recurse scope
|
|
return $ A.Spec m (A.Specification m' n newSpec) scope'
|
|
|
|
doStructured (A.Spec m (A.Specification m' n (A.ProtocolCase m'' nts)) scope)
|
|
= do let nts' = [(n, [case t of
|
|
A.Array {} -> A.Mobile t
|
|
_ -> t
|
|
| t <- ts]) | (n, ts) <- nts]
|
|
newSpec = A.ProtocolCase m'' nts'
|
|
modifyName n (\nd -> nd {A.ndSpecType = newSpec})
|
|
scope' <- recurse scope
|
|
return $ A.Spec m (A.Specification m' n newSpec) scope'
|
|
|
|
-- Must also mobilise channels of arrays, and arrays of channels of arrays:
|
|
doStructured s@(A.Spec m (A.Specification m' n st) scope)
|
|
= do mtf <- typeOfSpec' st
|
|
case mtf >>= mobiliseArrayInside of
|
|
Just newSpec ->
|
|
do scope' <- recurse scope
|
|
modifyName n (\nd -> nd {A.ndSpecType = newSpec})
|
|
return $ A.Spec m (A.Specification m' n newSpec) scope'
|
|
Nothing -> descend s
|
|
|
|
doStructured s = descend s
|
|
|
|
processFormal :: A.Formal -> PassM A.Formal
|
|
processFormal f@(A.Formal am t n)
|
|
= case mobiliseArrayInside (t, A.Declaration (A.nameMeta n)) of
|
|
Just decl@(A.Declaration _ t') ->
|
|
do modifyName n $ \nd -> nd {A.ndSpecType = decl}
|
|
return $ A.Formal am t' n
|
|
Nothing -> return f
|
|
|
|
mobiliseArrayInside :: (A.Type, A.Type -> A.SpecType) -> Maybe A.SpecType
|
|
mobiliseArrayInside (A.Chan attr t@(A.Array {}), f)
|
|
= Just $ f $ A.Chan attr $ A.Mobile t
|
|
mobiliseArrayInside (A.ChanEnd attr dir t@(A.Array {}), f)
|
|
= Just $ f $ A.ChanEnd attr dir $ A.Mobile t
|
|
mobiliseArrayInside (A.Array ds (A.Chan attr t@(A.Array {})), f)
|
|
= Just $ f $ A.Array ds $ A.Chan attr $ A.Mobile t
|
|
mobiliseArrayInside (A.Array ds (A.ChanEnd attr dir t@(A.Array {})), f)
|
|
= Just $ f $ A.Array ds $ A.ChanEnd attr dir $ A.Mobile t
|
|
mobiliseArrayInside _ = Nothing
|
|
|
|
class Dereferenceable a where
|
|
deref :: Meta -> a -> Maybe a
|
|
|
|
instance Dereferenceable A.Variable where
|
|
deref m = Just . A.DerefVariable m
|
|
|
|
instance Dereferenceable A.Expression where
|
|
deref m (A.ExprVariable m' v) = fmap (A.ExprVariable m') $ deref m v
|
|
deref m (A.AllocMobile _ _ (Just e)) = Just e
|
|
deref _ _ = Nothing
|
|
|
|
instance Dereferenceable A.Actual where
|
|
deref m (A.ActualVariable v) = fmap A.ActualVariable $ deref m v
|
|
deref m (A.ActualExpression e) = fmap A.ActualExpression $ deref m e
|
|
|
|
type InferDerefOps = A.Process :-* A.Variable :-* A.Expression :-* A.SpecType :-* BaseOpM
|
|
|
|
-- We mainly need this wherever we may have non-mobile arrays, such as proc calls,
|
|
-- and record literals and so on
|
|
inferDeref :: PassOnOps InferDerefOps
|
|
inferDeref = pass "Infer mobile dereferences" [] [] recurse
|
|
where
|
|
ops :: InferDerefOps PassM
|
|
ops = doProcess :-* doVariable :-* doExpression :-* doSpec :-* baseOpM
|
|
|
|
recurse :: RecurseM PassM InferDerefOps
|
|
recurse = makeRecurseM ops
|
|
descend :: DescendM PassM InferDerefOps
|
|
descend = makeDescendM ops
|
|
|
|
unify :: (Dereferenceable a, ASTTypeable a, ShowOccam a, ShowRain a) => Meta
|
|
-> A.Type -> a -> PassM a
|
|
unify _ (A.Mobile t) x = return x
|
|
unify m t x = do xt <- astTypeOf x
|
|
case xt of
|
|
A.Mobile {} -> case deref m x of
|
|
Just x' -> return x'
|
|
Nothing -> diePC m $ formatCode "Unable to dereference %" x
|
|
_ -> return x
|
|
|
|
doProcess :: Transform A.Process
|
|
doProcess (A.ProcCall m n as)
|
|
= do as' <- recurse as
|
|
A.Proc _ _ fs _ <- specTypeOfName n
|
|
ts <- mapM astTypeOf fs
|
|
as'' <- mapM (uncurry $ unify m) (zip ts as')
|
|
return $ A.ProcCall m n as''
|
|
doProcess (A.IntrinsicProcCall m n as)
|
|
= do as' <- recurse as
|
|
let Just amtns = lookup n intrinsicProcs
|
|
as'' <- mapM (uncurry $ unify m) (zip (map mid amtns) as')
|
|
return $ A.IntrinsicProcCall m n as''
|
|
where mid (_,y,_) = y
|
|
doProcess (A.Output m c ois)
|
|
= do ts <- protocolItems m c >>* either id (concatMap snd)
|
|
sequence [ case oi of
|
|
A.OutExpression m' e -> (recurse e >>= revUnify t) >>* A.OutExpression m'
|
|
_ -> descend oi
|
|
| (oi, t) <- zip ois ts] >>* A.Output m c
|
|
doProcess p = descend p
|
|
|
|
revUnify :: A.Type -> A.Expression -> PassM A.Expression
|
|
revUnify (A.Mobile innerT) e
|
|
= do t <- astTypeOf e
|
|
case t of
|
|
A.Mobile {} -> return e
|
|
_ -> return $ A.AllocMobile (findMeta e) (A.Mobile innerT) (Just e)
|
|
revUnify _ e = return e
|
|
|
|
doSpec :: Transform A.SpecType
|
|
doSpec (A.Function a b ts d (Just (Left el)))
|
|
= do el' <- recurse el >>= transformOnly (\m -> liftM (A.Only m) . doEL)
|
|
return $ A.Function a b ts d (Just $ Left el')
|
|
where
|
|
doEL :: Transform A.ExpressionList
|
|
doEL (A.ExpressionList m es)
|
|
= mapM (uncurry $ unify m) (zip ts es) >>* A.ExpressionList m
|
|
doEL el = descend el
|
|
doSpec s = descend s
|
|
|
|
|
|
doExpression :: Transform A.Expression
|
|
doExpression (A.FunctionCall m n as)
|
|
= do as' <- recurse as
|
|
A.Function _ _ _ fs _ <- specTypeOfName n
|
|
ts <- mapM astTypeOf fs
|
|
as'' <- mapM (uncurry $ unify m) (zip ts as')
|
|
return $ A.FunctionCall m n as''
|
|
doExpression (A.IntrinsicFunctionCall m n as)
|
|
= do as' <- recurse as
|
|
let Just amtns = fmap snd $ lookup n intrinsicFunctions
|
|
as'' <- mapM (uncurry $ unify m) (zip (map fst amtns) as')
|
|
return $ A.IntrinsicFunctionCall m n as''
|
|
where mid (_,y,_) = y
|
|
doExpression (A.Literal m t@(A.Record n) (A.RecordLiteral m' es))
|
|
= do ts <- recordFields m t >>* map snd
|
|
mapM (uncurry $ unify m) (zip ts es) >>* (A.Literal m t . A.RecordLiteral m')
|
|
doExpression e = descend e
|
|
|
|
doVariable :: Transform A.Variable
|
|
doVariable all@(A.SubscriptedVariable m sub v)
|
|
= do t <- astTypeOf v
|
|
case t of
|
|
A.Mobile {} -> return $ A.SubscriptedVariable m sub $ fromJust (deref m v)
|
|
_ -> descend all
|
|
doVariable v = descend v
|