tock-mirror/transformations/ImplicitMobility.hs
Adam Sampson 2c4ccfbf39 Update all the copyright notices.
I've checked these all against the Darcs history using a script
(check-copyright, in my misccode collection). Anything Neil or I did as
part of our PhDs is copyright University of Kent; more recent work
belongs to us, as appropriate.
2011-07-21 11:38:13 +00:00

544 lines
24 KiB
Haskell

{-
Tock: a compiler for parallel languages
Copyright (C) 2007, 2008, 2009 University of Kent
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 2 of the License, or (at your
option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.
-}
module ImplicitMobility (implicitMobility, mobiliseArrays, inferDeref) where
import Control.Arrow
import Control.Monad.Error
import Control.Monad.State
import Control.Monad.Trans
import qualified Data.Foldable as F
import Data.Graph.Inductive
import Data.Graph.Inductive.Query.DFS
import Data.List
import qualified Data.Map as Map
import Data.Maybe
import qualified Data.Set as Set
import qualified Data.Traversable as T
import qualified AST as A
import CompState
import Data.Generics.Alloy.Route
import Errors
import FlowAlgorithms
import FlowGraph
import FlowUtils
import Intrinsics
import Metadata
import Pass
import ShowCode
import Traversal
import Types
import UsageCheckUtils
import Utils
effectDecision :: Var -> Decision -> AlterAST PassM () -> A.AST -> PassM A.AST
effectDecision targetVar dec (AlterProcess wrapper)
| isJust (decUsedAfter dec) || decUsedInPar dec = routeModify wrapper alterProc
where
alterProc :: A.Process -> PassM A.Process
alterProc (A.Assign m lhs (A.ExpressionList m' [e@(A.ExprVariable _ v)]))
| Var v == targetVar
= return $ A.Assign m lhs $ A.ExpressionList m' [A.CloneMobile m' e]
alterProc (A.Output m cv [A.OutExpression m' e@(A.ExprVariable _ v)])
| Var v == targetVar
= do liftIO $ putStrLn $ show m ++ " COPY"
return $ A.Output m cv [A.OutExpression m' $ A.CloneMobile m' e]
alterProc x = return x
-- alterProc x = dieP (findMeta x) "Cannot alter process to copy"
effectDecision targetVar dec (AlterSpec wrapper)
| decUsedAfter dec /= Just UseSubscripted = routeModify wrapper alterSpec
where
alterSpec :: A.Specification -> PassM A.Specification
alterSpec (A.Specification m n (A.Is m' am (A.Mobile t) (A.ActualExpression (A.AllocMobile m'' t' me))))
| Var (A.Variable emptyMeta n) == targetVar
= return $ A.Specification m n $ A.Declaration m' (A.Mobile t)
alterSpec s = do liftIO $ putStrLn $ "Not altering spec: " ++ show s
return s
effectDecision _ _ _ = return
calculate :: (Monad m, Eq a) => GraphFuncs Node EdgeLabel a -> a
-> FlowGraph m UsageLabel -> Node -> Either String (Map.Map Node a)
calculate funcs def g startNode
= flowAlgorithm funcs (rdfs [startNode] g) (startNode, def)
-- | Calculates a map from each node to a set of variables that will be
-- used again afterwards. Used in this context means it can possibly be
-- read from before being written to
readAgainAfterFuncs :: Monad m => FlowGraph m UsageLabel -> GraphFuncs Node EdgeLabel (Set.Set Var)
readAgainAfterFuncs g = GF
{ nodeFunc = iterate
-- Backwards data flow:
, nodesToProcess = lsuc g
, nodesToReAdd = lpre g
, defVal = Set.empty
, userErrLabel = ("for node at: " ++) . show . fmap getNodeMeta . lab g
}
where
iterate :: (Node, EdgeLabel) -> Set.Set Var -> Maybe (Set.Set Var) -> Set.Set
Var
iterate node prevVars maybeVars = case lab g (fst node) of
Just ul ->
let vs = nodeVars $ getNodeData ul
readFromVars = readVars vs
writtenToVars = writtenVars vs
-- prevVars is the value from the node after us.
addTo = fromMaybe Set.empty maybeVars `Set.union` prevVars
in (readFromVars `Set.union` addTo) `Set.difference` Map.keysSet writtenToVars
Nothing -> error "Node label not found in readAgainAfterFuncs"
-- | Calculates whether each variable is used at all before being entirely overwritten.
-- This calculation can then be used to remove unnecessary mobile allocations
-- from the flow graph. The set is all the variables that are used again before
-- overwriting; the allocations can be removed for all variables not in the set.
usedBeforeOverwriteFuncs :: Monad m => FlowGraph m UsageLabel -> GraphFuncs Node EdgeLabel (Set.Set Var)
usedBeforeOverwriteFuncs g = GF
{ nodeFunc = iterate
-- Backwards data flow:
, nodesToProcess = lsuc g
, nodesToReAdd = lpre g
, defVal = Set.empty
, userErrLabel = ("for node at: " ++) . show . fmap getNodeMeta . lab g
}
where
iterate :: (Node, EdgeLabel) -> Set.Set Var -> Maybe (Set.Set Var) -> Set.Set Var
iterate node prevVars maybeVars = case lab g (fst node) of
Just ul -> let vs = nodeVars $ getNodeData ul
addTo = fromMaybe prevVars maybeVars
writtenIndirect = concat [map Var $ listifyInner (const True) v
| Var v <- Map.keys $ writtenVars vs]
in (readVars vs `Set.union` addTo `Set.union` Set.fromList writtenIndirect)
`Set.difference` Map.keysSet (writtenVars vs)
Nothing -> error "Node label not found in usedBeforeOverwriteFuncs"
listifyInner :: (AlloyA t BaseOpA (OneOpA s)
,AlloyA s BaseOpA (OneOpA s)) => (s -> Bool) -> t -> [s]
listifyInner qf = flip execState [] . makeDescendM ops
where
ops = makeBottomUpM ops qf' :-* baseOpA
qf' x = if qf x then modify (x:) >> return x else return x
type UsedParM = StateT (Set.Set Node) (Either ErrorReport)
instance Die UsedParM where
dieReport = lift . dieReport
type NodeToVars = Map.Map Node (Map.Map Var Int)
calculateUsedInParallel :: Monad m => FlowGraph m UsageLabel -> [Node] -> Node -> Either
ErrorReport NodeToVars
calculateUsedInParallel g roots startNode
= flip evalStateT Set.empty $ liftM combine $ mapM proceedSeq (roots `intersect` rdfs [startNode] g)
where
combine :: [NodeToVars] -> NodeToVars
combine = foldl (Map.unionWith (Map.unionWith (+))) Map.empty
add :: NodeToVars -> NodeToVars -> NodeToVars
add = Map.unionWith (Map.unionWith (+))
isESeq :: EdgeLabel -> Bool
isESeq (ESeq {}) = True
isESeq _ = False
nodeData :: Node -> Bool -> NodeToVars
nodeData n rep = maybe Map.empty (Map.singleton n . flip setToMap x) $
fmap (readVars . nodeVars . getNodeData) $ lab g n
where
x :: Int
x = if rep then 2 else 1
isRep :: Node -> Bool
isRep = isJust . maybe Nothing nodeRep . fmap getNodeData . lab g
proceedSeq :: Node -> UsedParM NodeToVars
proceedSeq n
= do been <- get
modify (Set.insert n)
if n `Set.member` been
then return Map.empty
else let myvs = nodeData n False in case nub $ map snd $ lsuc g n of
[EStartPar i] -> do r <- mapM (proceedPar (i, isRep n)) (suc g n)
let (ns, vs) = (catMaybes *** combine) $ unzip r
liftM (add (add myvs vs) . combine) $ mapM proceedSeq ns
es | all isESeq es -> liftM (add myvs . combine) $ mapM proceedSeq $ suc g n
es -> dieP (getMetaSafe g n) $ "Unexpected edge types in proceedSeq: " ++ show es
proceedPar :: (Integer, Bool) -> Node -> UsedParM (Maybe Node, NodeToVars)
proceedPar (i, rep) n
= do been <- get
modify (Set.insert n)
if n `Set.member` been
then return (Nothing, Map.empty)
else let myvs = nodeData n rep in case nub $ map snd $ lsuc g n of
[EStartPar i'] -> do r <- mapM (proceedPar (i', isRep n)) (suc g n)
let (ns, vs) = (catMaybes *** combine) $ unzip r
case nub ns of
[n'] -> liftM (second (add $ add myvs vs)) $ proceedPar (i, rep) n'
_ -> dieP (getMetaSafe g n) "More than one node at end of par in proceedPar"
[EEndPar i'] | i == i' -> return (listToMaybe $ suc g n, myvs)
es | all isESeq es -> do r <- mapM (proceedPar (i, rep)) $ suc g n
let (ns, vs) = (catMaybes *** combine) $ unzip r
case nub ns of
[n'] -> return (Just n', add myvs vs)
[] -> return (Nothing, add myvs vs)
ns' -> dieP (getMetaSafe g n) $ "More than one node at end of par in proceedPar:"
++ show (map (getMetaSafe g) ns')
_ -> dieP (getMetaSafe g n) $ "Unexpected edge types in proceedPar"
getMetaSafe :: Monad m => FlowGraph m UsageLabel -> Node -> Meta
getMetaSafe g = maybe emptyMeta getNodeMeta . lab g
--TODO rememember to take note of declarations/scope, otherwise this:
-- seqeach (..) {int:x; ... x = 3;}
-- will look like x is used again on the next loop iteration
-- TODO look at the types, too!
printMoveCopyDecisions :: Decisions -> PassM ()
printMoveCopyDecisions decs
= mapM_ printDec $ Map.toList decs
where
printDec :: ((Node, Var), Decision) -> PassM ()
printDec ((n,v), dec) = astTypeOf v >>= \t -> (liftIO $ putStrLn $
show (findMeta v) ++ show (n, v) ++ " " ++ show t ++ " " ++ show dec)
data WriteType = WriteWhole | UseSubscripted deriving (Show, Ord, Eq)
data Decision = Decision
{ decMeta :: Meta
, decUsedAfter :: Maybe WriteType
, decUsedInPar :: Bool
} deriving (Show, Ord, Eq)
-- These two fields are subtly different. readAfter is where the variable is
-- read from before being overwritten, either by being written-to in place or
-- completely, or falling out of scope.
--
-- usedBeforeOverwrite indicates whether the allocated mobile is used again at
-- all (for reading, or writing) before being replaced by a new mobile or falling
-- out of scope.
data Info = Info
{ readAfter :: Set.Set Var
, usedBeforeOverwite :: Set.Set Var
}
deriving Show
makeMoveCopyDecisions :: forall m. Monad m => FlowGraph m UsageLabel -> [Node] -> [Node] ->
PassM Decisions
makeMoveCopyDecisions grOrig roots ns
= do namesWithTypes <- getCompState >>* csNames >>= T.mapM (typeOfSpec . A.ndSpecType)
--liftIO $ putStrLn $ graphviz' $ nmap getNodeMeta grOrig
let mobVars = Set.mapMonotonic (Var . A.Variable emptyMeta . A.Name emptyMeta)
. Map.keysSet
. Map.filter isJustMobileType
$ namesWithTypes
processed <- foldM (processConnected $ nmap (fmap $ filterVars mobVars) grOrig) (Map.empty) ns
return $ Map.filterWithKey (\(_, v) _ -> v `Set.member` mobVars) processed
where
isJustMobileType :: Maybe A.Type -> Bool
isJustMobileType (Just (A.Mobile {})) = True
isJustMobileType _ = False
containsVar :: Var -> Var -> Bool
containsVar (Var big) small = not $ null $ listifyDepth ((== small) . Var) big
containsAnyVars :: Var -> Set.Set Var -> Bool
containsAnyVars v = F.any (v `containsVar`)
filterVars :: Set.Set Var -> UsageLabel -> UsageLabel
filterVars keep u
= u { nodeVars = filterNodeVars (nodeVars u) }
where
keepM = setToMap keep ()
filterNodeVars :: Vars -> Vars
filterNodeVars vs
= vs { readVars = Set.filter (`containsAnyVars` keep) $ readVars vs
, writtenVars = Map.filterWithKey (\k _ -> k `containsAnyVars` keep) $ writtenVars vs
, usedVars = Set.filter (`containsAnyVars` keep) $ readVars vs }
-- Processes the entire sub-graph that is connected to the given node
processConnected :: FlowGraph m UsageLabel -> Map.Map (Node, Var) Decision -> Node ->
PassM (Map.Map (Node, Var) Decision)
processConnected gr m n = case fmap (fmap (uncurry Info)) $ calculate gf (Set.empty, Set.empty) gr n of
Left err -> dieP (getNodeMeta $ fromJust $ lab gr n) err
Right mvs -> case calculateUsedInParallel gr roots n of
Left err -> throwError err
Right mp -> do debug $ show (grOrig, gr, mvs)
foldM (processNode gr mvs mp) m $ Map.keys mvs
where
gf = joinGraphFuncs (readAgainAfterFuncs gr) (usedBeforeOverwriteFuncs gr)
-- Processes all the variables at a given node
processNode :: FlowGraph m UsageLabel -> Map.Map Node Info ->
NodeToVars
-> Map.Map (Node, Var) Decision -> Node -> PassM (Map.Map (Node, Var) Decision)
processNode gr mvs mp m n
= case fmap (nodeVars . getNodeData) $ lab gr n of
Nothing -> dieP emptyMeta "Did not find node label during implicit mobility"
Just nvs -> return $ foldl (process n mvs mp) m $
Set.toList (readVars nvs) ++ Map.keys (writtenVars nvs)
-- Processes a single variable at a given node
process :: Node -> Map.Map Node Info -> NodeToVars -> Map.Map (Node, Var) Decision ->
Var -> Map.Map (Node, Var) Decision
process n useAgain usedInPar prev v = let s = Map.findWithDefault (Info Set.empty Set.empty) n useAgain
uvs = Map.findWithDefault Map.empty n usedInPar
u = Map.findWithDefault 1 v uvs
in Map.insert (n, v)
(Decision
{ decMeta = maybe (getMetaSafe grOrig n) findMeta $ getElem v (readAfter s)
, decUsedAfter = case (v `Set.member` readAfter s, v `Set.member` usedBeforeOverwite s) of
(False, True) -> Just UseSubscripted
(False, False) -> Nothing
(True, True) -> Just UseSubscripted
(True, False) -> Just WriteWhole
, decUsedInPar = u > 1
}) prev
-- Gets the element from the set that matches the given one by equality.
getElem :: Ord a => a -> Set.Set a -> Maybe a
getElem x = listToMaybe . Set.elems . Set.union (Set.singleton x)
type Decisions = Map.Map (Node, Var) Decision
effectMoveCopyDecisions :: FlowGraph PassM UsageLabel -> Decisions -> A.AST -> PassM A.AST
effectMoveCopyDecisions g decs = foldFuncsM $ map effect $ Map.toList decs
where
effect :: ((Node, Var), Decision) -> A.AST -> PassM A.AST
effect ((n, v), dec)
= case fmap getNodeFunc $ lab g n of
Nothing -> const $ dieP (findMeta v) "Could not find label for node"
Just mod -> effectDecision v dec mod
implicitMobility :: Pass A.AST
implicitMobility
= pass "Implicit mobility optimisation"
[] [] --TODO properties
(passOnlyOnAST "implicitMobility" $ \t -> do
g' <- buildFlowGraph labelUsageFunctions t
:: PassM (Either String (FlowGraph' PassM UsageLabel (), [Node],
[Node]))
case g' of
Left err -> dieP emptyMeta $ "Error building flow graph: " ++ err
Right (g, roots, terms) ->
-- We go from the terminator nodes, because we are performing backward
-- data-flow analysis
do decs <- makeMoveCopyDecisions g roots terms
printMoveCopyDecisions decs
effectMoveCopyDecisions g decs t)
-- This leaves alone proc parameters for now
mobiliseArrays :: PassASTOnStruct
mobiliseArrays = pass "Make all arrays mobile" [] [] recurse
where
ops :: ExtOpMSP BaseOpM
ops = opMS (ops, doStructured)
recurse :: RecurseM PassM (ExtOpMS BaseOpM)
recurse = makeRecurseM ops
descend :: DescendM PassM (ExtOpMS BaseOpM)
descend = makeDescendM ops
doStructured :: TransformStructured' (ExtOpMS BaseOpM)
doStructured s@(A.Spec m (A.Specification m' n (A.Declaration m'' t@(A.Array ds
innerT))) scope)
= case innerT of
A.Chan {} -> case mobiliseArrayInside (t, A.Declaration m'') of
Just newSpec ->
do modifyName n (\nd -> nd {A.ndSpecType = newSpec})
recurse scope >>* A.Spec m (A.Specification m' n newSpec)
Nothing -> descend s
A.ChanEnd {} -> case mobiliseArrayInside (t, A.Declaration m'') of
Just newSpec ->
do modifyName n (\nd -> nd {A.ndSpecType = newSpec})
recurse scope >>* A.Spec m (A.Specification m' n newSpec)
Nothing -> descend s
_ -> do scope' <- recurse {-addAtEndOfScopeDyn m'' (A.ClearMobile m'' $ A.Variable m' n)-} scope
let newSpec = A.Is m'' A.Original (A.Mobile t) $
A.ActualExpression $ A.AllocMobile m'' (A.Mobile t) Nothing
modifyName n (\nd -> nd {A.ndSpecType = newSpec})
return $ A.Spec m (A.Specification m' n newSpec) scope'
doStructured (A.Spec m (A.Specification m' n (A.Proc m'' sm fs body)) scope)
= do scope' <- recurse scope
body' <- recurse body
fs' <- mapM processFormal fs
let newSpecF = A.Proc m'' sm fs'
modifyName n (\nd -> nd {A.ndSpecType =
let A.Proc _ _ _ stub = A.ndSpecType nd in newSpecF stub})
return $ A.Spec m (A.Specification m' n (newSpecF body')) scope'
doStructured (A.Spec m (A.Specification m' n (A.Protocol m'' ts)) scope)
= do let ts' = [case t of
A.Array {} -> A.Mobile t
_ -> t
| t <- ts]
newSpec = A.Protocol m'' ts'
modifyName n (\nd -> nd {A.ndSpecType = newSpec})
scope' <- recurse scope
return $ A.Spec m (A.Specification m' n newSpec) scope'
doStructured (A.Spec m (A.Specification m' n (A.ProtocolCase m'' nts)) scope)
= do let nts' = [(n, [case t of
A.Array {} -> A.Mobile t
_ -> t
| t <- ts]) | (n, ts) <- nts]
newSpec = A.ProtocolCase m'' nts'
modifyName n (\nd -> nd {A.ndSpecType = newSpec})
scope' <- recurse scope
return $ A.Spec m (A.Specification m' n newSpec) scope'
-- Must also mobilise channels of arrays, and arrays of channels of arrays:
doStructured s@(A.Spec m (A.Specification m' n st) scope)
= do mtf <- typeOfSpec' st
case mtf >>= mobiliseArrayInside of
Just newSpec ->
do scope' <- recurse scope
modifyName n (\nd -> nd {A.ndSpecType = newSpec})
return $ A.Spec m (A.Specification m' n newSpec) scope'
Nothing -> descend s
doStructured s = descend s
processFormal :: A.Formal -> PassM A.Formal
processFormal f@(A.Formal am t n)
= case mobiliseArrayInside (t, A.Declaration (A.nameMeta n)) of
Just decl@(A.Declaration _ t') ->
do modifyName n $ \nd -> nd {A.ndSpecType = decl}
return $ A.Formal am t' n
Nothing -> return f
mobiliseArrayInside :: (A.Type, A.Type -> A.SpecType) -> Maybe A.SpecType
mobiliseArrayInside (A.Chan attr t@(A.Array {}), f)
= Just $ f $ A.Chan attr $ A.Mobile t
mobiliseArrayInside (A.ChanEnd attr dir t@(A.Array {}), f)
= Just $ f $ A.ChanEnd attr dir $ A.Mobile t
mobiliseArrayInside (A.Array ds (A.Chan attr t@(A.Array {})), f)
= Just $ f $ A.Array ds $ A.Chan attr $ A.Mobile t
mobiliseArrayInside (A.Array ds (A.ChanEnd attr dir t@(A.Array {})), f)
= Just $ f $ A.Array ds $ A.ChanEnd attr dir $ A.Mobile t
mobiliseArrayInside _ = Nothing
class Dereferenceable a where
deref :: Meta -> a -> Maybe a
instance Dereferenceable A.Variable where
deref m = Just . A.DerefVariable m
instance Dereferenceable A.Expression where
deref m (A.ExprVariable m' v) = fmap (A.ExprVariable m') $ deref m v
deref m (A.AllocMobile _ _ (Just e)) = Just e
deref _ _ = Nothing
instance Dereferenceable A.Actual where
deref m (A.ActualVariable v) = fmap A.ActualVariable $ deref m v
deref m (A.ActualExpression e) = fmap A.ActualExpression $ deref m e
type InferDerefOps = A.Process :-* A.Variable :-* A.Expression :-* A.SpecType :-* BaseOpM
-- We mainly need this wherever we may have non-mobile arrays, such as proc calls,
-- and record literals and so on
inferDeref :: PassOnOps InferDerefOps
inferDeref = pass "Infer mobile dereferences" [] [] recurse
where
ops :: InferDerefOps PassM
ops = doProcess :-* doVariable :-* doExpression :-* doSpec :-* baseOpM
recurse :: RecurseM PassM InferDerefOps
recurse = makeRecurseM ops
descend :: DescendM PassM InferDerefOps
descend = makeDescendM ops
unify :: (Dereferenceable a, ASTTypeable a, ShowOccam a, ShowRain a) => Meta
-> A.Type -> a -> PassM a
unify _ (A.Mobile t) x = return x
unify m t x = do xt <- astTypeOf x
case xt of
A.Mobile {} -> case deref m x of
Just x' -> return x'
Nothing -> diePC m $ formatCode "Unable to dereference %" x
_ -> return x
doProcess :: Transform A.Process
doProcess (A.ProcCall m n as)
= do as' <- recurse as
A.Proc _ _ fs _ <- specTypeOfName n
ts <- mapM astTypeOf fs
as'' <- mapM (uncurry $ unify m) (zip ts as')
return $ A.ProcCall m n as''
doProcess (A.IntrinsicProcCall m n as)
= do as' <- recurse as
let Just amtns = lookup n intrinsicProcs
as'' <- mapM (uncurry $ unify m) (zip (map mid amtns) as')
return $ A.IntrinsicProcCall m n as''
where mid (_,y,_) = y
doProcess (A.Output m c ois)
= do ts <- protocolItems m c >>* either id (concatMap snd)
sequence [ case oi of
A.OutExpression m' e -> (recurse e >>= revUnify t) >>* A.OutExpression m'
_ -> descend oi
| (oi, t) <- zip ois ts] >>* A.Output m c
doProcess p = descend p
revUnify :: A.Type -> A.Expression -> PassM A.Expression
revUnify (A.Mobile innerT) e
= do t <- astTypeOf e
case t of
A.Mobile {} -> return e
_ -> return $ A.AllocMobile (findMeta e) (A.Mobile innerT) (Just e)
revUnify _ e = return e
doSpec :: Transform A.SpecType
doSpec (A.Function a b ts d (Just (Left el)))
= do el' <- recurse el >>= transformOnly (\m -> liftM (A.Only m) . doEL)
return $ A.Function a b ts d (Just $ Left el')
where
doEL :: Transform A.ExpressionList
doEL (A.ExpressionList m es)
= mapM (uncurry $ unify m) (zip ts es) >>* A.ExpressionList m
doEL el = descend el
doSpec s = descend s
doExpression :: Transform A.Expression
doExpression (A.FunctionCall m n as)
= do as' <- recurse as
A.Function _ _ _ fs _ <- specTypeOfName n
ts <- mapM astTypeOf fs
as'' <- mapM (uncurry $ unify m) (zip ts as')
return $ A.FunctionCall m n as''
doExpression (A.IntrinsicFunctionCall m n as)
= do as' <- recurse as
let Just amtns = fmap snd $ lookup n intrinsicFunctions
as'' <- mapM (uncurry $ unify m) (zip (map fst amtns) as')
return $ A.IntrinsicFunctionCall m n as''
where mid (_,y,_) = y
doExpression (A.Literal m t@(A.Record n) (A.RecordLiteral m' es))
= do ts <- recordFields m t >>* map snd
mapM (uncurry $ unify m) (zip ts es) >>* (A.Literal m t . A.RecordLiteral m')
doExpression e = descend e
doVariable :: Transform A.Variable
doVariable all@(A.SubscriptedVariable m sub v)
= do t <- astTypeOf v
case t of
A.Mobile {} -> return $ A.SubscriptedVariable m sub $ fromJust (deref m v)
_ -> descend all
doVariable v = descend v