tock-mirror/frontends/ParseOccam.hs

2059 lines
68 KiB
Haskell

{-
Tock: a compiler for parallel languages
Copyright (C) 2007, 2008 University of Kent
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 2 of the License, or (at your
option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.
-}
-- | Parse occam code into an AST.
module ParseOccam (parseOccamProgram) where
import Control.Monad (liftM, when)
import Control.Monad.State (MonadState, modify, get, put)
import Data.List
import qualified Data.Map as Map
import Data.Maybe
import Text.ParserCombinators.Parsec
import qualified AST as A
import CompState
import Errors
import EvalConstants
import EvalLiterals
import Intrinsics
import LexOccam
import Metadata
import ParseUtils
import Pass
import ShowCode
import Types
import Utils
--{{{ the parser monad
type OccParser = GenParser Token ([WarningReport], CompState)
instance CSMR (GenParser tok (a,CompState)) where
getCompState = getState >>* snd
-- We can expose only part of the state to make it look like we are only using
-- CompState:
instance MonadState CompState (GenParser tok (a,CompState)) where
get = getState >>* snd
put st = do (other, _) <- getState
setState (other, st)
-- The other part of the state is actually the built-up list of warnings:
instance Warn (GenParser tok ([WarningReport], b)) where
warnReport w = do (ws, other) <- getState
setState (ws ++ [w], other)
instance Die (GenParser tok st) where
dieReport (Just m, err) = fail $ packMeta m err
dieReport (Nothing, err) = fail err
--}}}
--{{{ matching rules for raw tokens
-- | Extract source position from a `Token`.
tokenPos :: Token -> SourcePos
tokenPos (m, _) = metaToSourcePos m
genToken :: (Token -> Maybe a) -> OccParser a
genToken test = token show tokenPos test
reserved :: String -> OccParser ()
reserved name = genToken test
where
test (_, TokReserved name')
= if name' == name then Just () else Nothing
test _ = Nothing
identifier :: OccParser String
identifier = genToken test
where
test (_, TokIdentifier s) = Just s
test _ = Nothing
plainToken :: TokenType -> OccParser ()
plainToken t = genToken test
where
test (_, t') = if t == t' then Just () else Nothing
--}}}
--{{{ symbols
sAmp, sAssign, sBang, sBar, sColon, sColons, sComma, sEq, sLeft, sLeftR,
sQuest, sRight, sRightR, sSemi
:: OccParser ()
sAmp = reserved "&"
sAssign = reserved ":="
sBang = reserved "!"
sBar = reserved "|"
sColon = reserved ":"
sColons = reserved "::"
sComma = reserved ","
sEq = reserved "="
sLeft = reserved "["
sLeftR = reserved "("
sQuest = reserved "?"
sRight = reserved "]"
sRightR = reserved ")"
sSemi = reserved ";"
--}}}
--{{{ keywords
sAFTER, sALT, sAND, sANY, sAT, sBITAND, sBITNOT, sBITOR, sBOOL, sBYTE,
sBYTESIN, sCASE, sCHAN, sDATA, sELSE, sFALSE, sFOR, sFROM, sFUNCTION, sIF,
sINLINE, sIN, sINITIAL, sINT, sINT16, sINT32, sINT64, sIS, sMINUS, sMOSTNEG,
sMOSTPOS, sNOT, sOF, sOFFSETOF, sOR, sPACKED, sPAR, sPLACE, sPLACED, sPLUS,
sPORT, sPRI, sPROC, sPROCESSOR, sPROTOCOL, sREAL32, sREAL64, sRECORD, sREM,
sRESHAPES, sRESULT, sRETYPES, sROUND, sSEQ, sSIZE, sSKIP, sSTOP, sTIMER,
sTIMES, sTRUE, sTRUNC, sTYPE, sVAL, sVALOF, sWHILE, sWORKSPACE, sVECSPACE
:: OccParser ()
sAFTER = reserved "AFTER"
sALT = reserved "ALT"
sAND = reserved "AND"
sANY = reserved "ANY"
sAT = reserved "AT"
sBITAND = reserved "BITAND"
sBITNOT = reserved "BITNOT"
sBITOR = reserved "BITOR"
sBOOL = reserved "BOOL"
sBYTE = reserved "BYTE"
sBYTESIN = reserved "BYTESIN"
sCASE = reserved "CASE"
sCHAN = reserved "CHAN"
sDATA = reserved "DATA"
sELSE = reserved "ELSE"
sFALSE = reserved "FALSE"
sFOR = reserved "FOR"
sFROM = reserved "FROM"
sFUNCTION = reserved "FUNCTION"
sIF = reserved "IF"
sINLINE = reserved "INLINE"
sIN = reserved "IN"
sINITIAL = reserved "INITIAL"
sINT = reserved "INT"
sINT16 = reserved "INT16"
sINT32 = reserved "INT32"
sINT64 = reserved "INT64"
sIS = reserved "IS"
sMINUS = reserved "MINUS"
sMOSTNEG = reserved "MOSTNEG"
sMOSTPOS = reserved "MOSTPOS"
sNOT = reserved "NOT"
sOF = reserved "OF"
sOFFSETOF = reserved "OFFSETOF"
sOR = reserved "OR"
sPACKED = reserved "PACKED"
sPAR = reserved "PAR"
sPLACE = reserved "PLACE"
sPLACED = reserved "PLACED"
sPLUS = reserved "PLUS"
sPORT = reserved "PORT"
sPRI = reserved "PRI"
sPROC = reserved "PROC"
sPROCESSOR = reserved "PROCESSOR"
sPROTOCOL = reserved "PROTOCOL"
sREAL32 = reserved "REAL32"
sREAL64 = reserved "REAL64"
sRECORD = reserved "RECORD"
sREM = reserved "REM"
sRESHAPES = reserved "RESHAPES"
sRESULT = reserved "RESULT"
sRETYPES = reserved "RETYPES"
sROUND = reserved "ROUND"
sSEQ = reserved "SEQ"
sSIZE = reserved "SIZE"
sSKIP = reserved "SKIP"
sSTOP = reserved "STOP"
sTIMER = reserved "TIMER"
sTIMES = reserved "TIMES"
sTRUE = reserved "TRUE"
sTRUNC = reserved "TRUNC"
sTYPE = reserved "TYPE"
sVAL = reserved "VAL"
sVALOF = reserved "VALOF"
sWHILE = reserved "WHILE"
sWORKSPACE = reserved "WORKSPACE"
sVECSPACE = reserved "VECSPACE"
--}}}
--{{{ markers inserted by the preprocessor
indent, outdent, eol :: OccParser ()
indent = do { plainToken Indent } <?> "indentation increase"
outdent = do { plainToken Outdent } <?> "indentation decrease"
eol = do { plainToken EndOfLine } <?> "end of line"
--}}}
--{{{ helper functions
md :: OccParser Meta
md
= do pos <- getPosition
return $ sourcePosToMeta pos
--{{{ try*
-- These functions let you try a sequence of productions and only retrieve the
-- results from some of them. In the function name, X represents a value
-- that'll be thrown away, and V one that'll be kept; you get back a tuple of
-- the values you wanted.
--
-- There isn't anything particularly unusual going on here; it's just a more
-- succinct way of writing a try (do { ... }) expression.
tryXX :: OccParser a -> OccParser b -> OccParser ()
tryXX a b = try (do { a; b; return () })
tryXV :: OccParser a -> OccParser b -> OccParser b
tryXV a b = try (do { a; b })
tryVX :: OccParser a -> OccParser b -> OccParser a
tryVX a b = try (do { av <- a; b; return av })
tryVV :: OccParser a -> OccParser b -> OccParser (a, b)
tryVV a b = try (do { av <- a; bv <- b; return (av, bv) })
tryXXV :: OccParser a -> OccParser b -> OccParser c -> OccParser c
tryXXV a b c = try (do { a; b; cv <- c; return cv })
tryXVX :: OccParser a -> OccParser b -> OccParser c -> OccParser b
tryXVX a b c = try (do { a; bv <- b; c; return bv })
tryXVV :: OccParser a -> OccParser b -> OccParser c -> OccParser (b, c)
tryXVV a b c = try (do { a; bv <- b; cv <- c; return (bv, cv) })
tryVXX :: OccParser a -> OccParser b -> OccParser c -> OccParser a
tryVXX a b c = try (do { av <- a; b; c; return av })
tryVXV :: OccParser a -> OccParser b -> OccParser c -> OccParser (a, c)
tryVXV a b c = try (do { av <- a; b; cv <- c; return (av, cv) })
tryVVX :: OccParser a -> OccParser b -> OccParser c -> OccParser (a, b)
tryVVX a b c = try (do { av <- a; bv <- b; c; return (av, bv) })
tryXVXV :: OccParser a -> OccParser b -> OccParser c -> OccParser d -> OccParser (b, d)
tryXVXV a b c d = try (do { a; bv <- b; c; dv <- d; return (bv, dv) })
tryXVVX :: OccParser a -> OccParser b -> OccParser c -> OccParser d -> OccParser (b, c)
tryXVVX a b c d = try (do { a; bv <- b; cv <- c; d; return (bv, cv) })
tryVXXV :: OccParser a -> OccParser b -> OccParser c -> OccParser d -> OccParser (a, d)
tryVXXV a b c d = try (do { av <- a; b; c; dv <- d; return (av, dv) })
tryVVXV :: OccParser a -> OccParser b -> OccParser c -> OccParser d -> OccParser (a, b, d)
tryVVXV a b c d = try (do { av <- a; bv <- b; c; dv <- d; return (av, bv, dv) })
tryVXVXX :: OccParser a -> OccParser b -> OccParser c -> OccParser d -> OccParser e -> OccParser (a, c)
tryVXVXX a b c d e = try (do { av <- a; b; cv <- c; d; e; return (av, cv) })
--}}}
--{{{ subscripts
maybeSubscripted :: String -> OccParser a -> (Meta -> A.Subscript -> a -> a) -> (a -> OccParser A.Type) -> OccParser a
maybeSubscripted prodName inner subscripter typer
= do m <- md
v <- inner
t <- typer v
subs <- postSubscripts t
return $ foldl (\var sub -> subscripter m sub var) v subs
<?> prodName
postSubscripts :: A.Type -> OccParser [A.Subscript]
postSubscripts t
= (do sub <- postSubscript t
t' <- subscriptType sub t
rest <- postSubscripts t'
return $ sub : rest)
<|> return []
postSubscript :: A.Type -> OccParser A.Subscript
postSubscript t
= do m <- md
t' <- resolveUserType m t
case t' of
A.Record _ ->
do f <- tryXV sLeft fieldName
sRight
return $ A.SubscriptField m f
A.Array _ _ ->
do e <- tryXV sLeft intExpr
sRight
return $ A.Subscript m A.CheckBoth e
_ -> pzero
maybeSliced :: OccParser a -> (Meta -> A.Subscript -> a -> a) -> (a -> OccParser A.Type) -> OccParser a
maybeSliced inner subscripter typer
= do m <- md
(v, ff1) <- tryXVV sLeft inner fromOrFor
t <- typer v >>= underlyingType m
case t of
(A.Array _ _) -> return ()
_ -> dieP m $ "slice of non-array type " ++ showOccam t
e <- intExpr
sub <- case ff1 of
"FROM" ->
(do f <- tryXV sFOR intExpr
sRight
return $ A.SubscriptFromFor m e f)
<|>
(do sRight
return $ A.SubscriptFrom m e)
"FOR" ->
do sRight
return $ A.SubscriptFor m e
return $ subscripter m sub v
where
fromOrFor :: OccParser String
fromOrFor = (sFROM >> return "FROM") <|> (sFOR >> return "FOR")
--}}}
-- | Parse an optional indented list, where if it's not there we should issue a
-- warning. (This is for things that are legal in the occam spec, but are
-- almost certainly programmer errors.)
maybeIndentedList :: Meta -> String -> OccParser t -> OccParser [t]
maybeIndentedList m msg inner
= do try indent
vs <- many1 inner
outdent
return vs
<|> do addWarning m msg
return []
handleSpecs :: OccParser [A.Specification] -> OccParser a -> (Meta -> A.Specification -> a -> a) -> OccParser a
handleSpecs specs inner specMarker
= do m <- md
ss <- specs
ss' <- mapM scopeInSpec ss
v <- inner
mapM scopeOutSpec ss'
return $ foldl (\e s -> specMarker m s e) v ss'
-- | Run several different parsers with a separator between them.
-- If you give it [a, b, c] and s, it'll parse [a, s, b, s, c] then
-- give you back the results from [a, b, c].
intersperseP :: [OccParser a] -> OccParser b -> OccParser [a]
intersperseP [] _ = return []
intersperseP [f] _
= do a <- f
return [a]
intersperseP (f:fs) sep
= do a <- f
sep
as <- intersperseP fs sep
return $ a : as
-- | Find the type of a table literal given the types of its components.
-- This'll always return an Array; the inner type will either be the type of
-- the elements if they're all the same (in which case it's either an array
-- literal, or a record where all the fields are the same type), or Any if
-- they're not (i.e. if it's a record literal or an empty array).
tableType :: Meta -> [A.Type] -> OccParser A.Type
tableType m l = tableType' m (length l) l
where
tableType' m len [t] = return $ addDimensions [A.Dimension len] t
tableType' m len (t1 : rest@(t2 : _))
= if t1 == t2 then tableType' m len rest
else return $ addDimensions [A.Dimension len] A.Any
tableType' m len [] = return $ addDimensions [A.Dimension 0] A.Any
-- | Check that the second dimension can be used in a context where the first
-- is expected.
isValidDimension :: A.Dimension -> A.Dimension -> Bool
isValidDimension A.UnknownDimension A.UnknownDimension = True
isValidDimension A.UnknownDimension (A.Dimension _) = True
isValidDimension (A.Dimension n1) (A.Dimension n2) = n1 == n2
isValidDimension _ _ = False
-- | Check that the second second of dimensions can be used in a context where
-- the first is expected.
areValidDimensions :: [A.Dimension] -> [A.Dimension] -> Bool
areValidDimensions [] [] = True
areValidDimensions (d1:ds1) (d2:ds2)
= if isValidDimension d1 d2
then areValidDimensions ds1 ds2
else False
areValidDimensions _ _ = False
-- | Check that a type we've inferred matches the type we expected.
matchType :: Meta -> A.Type -> A.Type -> OccParser ()
matchType m et rt
= case (et, rt) of
((A.Array ds t), (A.Array ds' t')) ->
if areValidDimensions ds ds'
then matchType m t t'
else bad
_ -> if rt == et then return () else bad
where
bad :: OccParser ()
bad = dieP m $ "type mismatch (got " ++ showOccam rt ++ "; expected " ++ showOccam et ++ ")"
-- | Check that two lists of types match (for example, for parallel assignment).
matchTypes :: Meta -> [A.Type] -> [A.Type] -> OccParser ()
matchTypes m ets rts
= sequence_ [matchType m et rt | (et, rt) <- zip ets rts]
-- | Parse a production inside a particular type context.
inTypeContext :: Maybe A.Type -> OccParser a -> OccParser a
inTypeContext ctx body
= do pushTypeContext ctx
v <- body
popTypeContext
return v
-- | Parse a production with no particular type context (i.e. where we're
-- inside some bit of an expression that means we can't tell what the type is).
noTypeContext :: OccParser a -> OccParser a
noTypeContext = inTypeContext Nothing
--}}}
--{{{ name scoping
findName :: A.Name -> OccParser A.Name
findName thisN
= do st <- get
origN <- case lookup (A.nameName thisN) (csLocalNames st) of
Nothing -> dieP (A.nameMeta thisN) $ "name " ++ A.nameName thisN ++ " not defined"
Just n -> return n
if A.nameType thisN /= A.nameType origN
then dieP (A.nameMeta thisN) $ "expected " ++ show (A.nameType thisN) ++ " (" ++ A.nameName origN ++ " is " ++ show (A.nameType origN) ++ ")"
else return $ thisN { A.nameName = A.nameName origN }
makeUniqueName :: String -> OccParser String
makeUniqueName s
= do st <- get
put $ st { csNameCounter = csNameCounter st + 1 }
return $ s ++ "_u" ++ show (csNameCounter st)
findUnscopedName :: A.Name -> OccParser A.Name
findUnscopedName n@(A.Name m nt s)
= do st <- get
case Map.lookup s (csUnscopedNames st) of
Just s' -> return $ A.Name m nt s'
Nothing ->
do s' <- makeUniqueName s
modify (\st -> st { csUnscopedNames = Map.insert s s' (csUnscopedNames st) })
return $ A.Name m nt s'
scopeIn :: A.Name -> A.SpecType -> A.AbbrevMode -> OccParser A.Name
scopeIn n@(A.Name m nt s) t am
= do st <- getState
s' <- makeUniqueName s
let n' = n { A.nameName = s' }
let nd = A.NameDef {
A.ndMeta = m,
A.ndName = s',
A.ndOrigName = s,
A.ndNameType = A.nameType n',
A.ndType = t,
A.ndAbbrevMode = am,
A.ndPlacement = A.Unplaced
}
defineName n' nd
modify $ (\st -> st {
csLocalNames = (s, n') : (csLocalNames st)
})
return n'
scopeOut :: A.Name -> OccParser ()
scopeOut n@(A.Name m nt s)
= do st <- get
let lns' = case csLocalNames st of
(s, _):ns -> ns
otherwise -> dieInternal (Just m, "scopeOut trying to scope out the wrong name")
put $ st { csLocalNames = lns' }
scopeInRep :: A.Replicator -> OccParser A.Replicator
scopeInRep (A.For m n b c)
= do n' <- scopeIn n (A.Declaration m A.Int) A.ValAbbrev
return $ A.For m n' b c
scopeOutRep :: A.Replicator -> OccParser ()
scopeOutRep (A.For m n b c) = scopeOut n
scopeInSpec :: A.Specification -> OccParser A.Specification
scopeInSpec (A.Specification m n st)
= do n' <- scopeIn n st (abbrevModeOfSpec st)
return $ A.Specification m n' st
scopeOutSpec :: A.Specification -> OccParser ()
scopeOutSpec (A.Specification _ n _) = scopeOut n
scopeInFormal :: A.Formal -> OccParser A.Formal
scopeInFormal (A.Formal am t n)
= do n' <- scopeIn n (A.Declaration (A.nameMeta n) t) am
return (A.Formal am t n')
scopeInFormals :: [A.Formal] -> OccParser [A.Formal]
scopeInFormals fs = mapM scopeInFormal fs
scopeOutFormals :: [A.Formal] -> OccParser ()
scopeOutFormals fs = sequence_ [scopeOut n | (A.Formal am t n) <- fs]
--}}}
--{{{ grammar productions
-- These productions are (now rather loosely) based on the ordered syntax in
-- the occam2.1 manual.
--
-- Each production is allowed to consume the thing it's trying to match.
--{{{ names
anyName :: A.NameType -> OccParser A.Name
anyName nt
= do m <- md
s <- identifier
return $ A.Name m nt s
<?> show nt
name :: A.NameType -> OccParser A.Name
name nt
= do n <- anyName nt
findName n
newName :: A.NameType -> OccParser A.Name
newName nt = anyName nt
channelName, dataTypeName, functionName, portName, procName, protocolName,
recordName, timerName, variableName
:: OccParser A.Name
channelName = name A.ChannelName
dataTypeName = name A.DataTypeName
functionName = name A.FunctionName
portName = name A.PortName
procName = name A.ProcName
protocolName = name A.ProtocolName
recordName = name A.RecordName
timerName = name A.TimerName
variableName = name A.VariableName
newChannelName, newDataTypeName, newFunctionName, newPortName, newProcName, newProtocolName,
newRecordName, newTimerName, newVariableName
:: OccParser A.Name
newChannelName = newName A.ChannelName
newDataTypeName = newName A.DataTypeName
newFunctionName = newName A.FunctionName
newPortName = newName A.PortName
newProcName = newName A.ProcName
newProtocolName = newName A.ProtocolName
newRecordName = newName A.RecordName
newTimerName = newName A.TimerName
newVariableName = newName A.VariableName
-- | A name that isn't scoped.
-- This is for things like record fields: we don't need to track their scope
-- because they're only valid with the particular record they're defined in,
-- but we do need to add a unique suffix so that they don't collide with
-- keywords in the target language
unscopedName :: A.NameType -> OccParser A.Name
unscopedName nt
= do n <- anyName nt
findUnscopedName n
<?> show nt
fieldName, tagName, newFieldName, newTagName :: OccParser A.Name
fieldName = unscopedName A.FieldName
tagName = unscopedName A.TagName
newFieldName = unscopedName A.FieldName
newTagName = unscopedName A.TagName
--}}}
--{{{ types
-- | A sized array of a production.
arrayType :: OccParser A.Type -> OccParser A.Type
arrayType element
= do (s, t) <- tryXVXV sLeft constIntExpr sRight element
sVal <- evalIntExpression s
return $ addDimensions [A.Dimension sVal] t
-- | Either a sized or unsized array of a production.
specArrayType :: OccParser A.Type -> OccParser A.Type
specArrayType element
= arrayType element
<|> do t <- tryXXV sLeft sRight element
return $ addDimensions [A.UnknownDimension] t
dataType :: OccParser A.Type
dataType
= do { sBOOL; return A.Bool }
<|> do { sBYTE; return A.Byte }
<|> do { sINT; return A.Int }
<|> do { sINT16; return A.Int16 }
<|> do { sINT32; return A.Int32 }
<|> do { sINT64; return A.Int64 }
<|> do { sREAL32; return A.Real32 }
<|> do { sREAL64; return A.Real64 }
<|> arrayType dataType
<|> do { n <- try dataTypeName; return $ A.UserDataType n }
<|> do { n <- try recordName; return $ A.Record n }
<?> "data type"
channelType :: OccParser A.Type
channelType
= do { sCHAN; optional sOF; p <- protocol; return $ A.Chan A.DirUnknown A.ChanAttributes {A.caWritingShared = False, A.caReadingShared = False} p }
<|> arrayType channelType
<?> "channel type"
timerType :: OccParser A.Type
timerType
= do { sTIMER; return $ A.Timer }
<|> arrayType timerType
<?> "timer type"
portType :: OccParser A.Type
portType
= do { sPORT; sOF; p <- dataType; return $ A.Port p }
<|> arrayType portType
<?> "port type"
--}}}
--{{{ literals
--{{{ type utilities for literals
-- | Can a literal of type rawT be used as a value of type wantT?
isValidLiteralType :: Meta -> A.Type -> A.Type -> OccParser Bool
isValidLiteralType m rawT wantT
= do underT <- resolveUserType m wantT
case (rawT, underT) of
-- We don't yet know what type we want -- so assume it's OK for now.
(_, A.Any) -> return True
(A.Real32, _) -> return $ isRealType underT
(A.Int, _) -> return $ isIntegerType underT
(A.Byte, _) -> return $ isIntegerType underT
(A.Array (A.Dimension nf:_) _, A.Record _) ->
-- We can't be sure without looking at the literal itself,
-- so we need to do that below.
do fs <- recordFields m wantT
return $ nf == length fs
(A.Array (d1:ds1) t1, A.Array (d2:ds2) t2) ->
-- Check the outermost dimension is OK, then recurse.
-- We can't just look at all the dimensions because this
-- might be an array of a record type, or similar.
if isValidDimension d2 d1
then do rawT' <- trivialSubscriptType m rawT
underT' <- trivialSubscriptType m underT
isValidLiteralType m rawT' underT'
else return False
_ -> return $ rawT == wantT
-- | Apply dimensions from one type to another as far as possible.
-- This should only be used when you know the two types are compatible first
-- (i.e. they've passed isValidLiteralType).
applyDimensions :: A.Type -> A.Type -> A.Type
applyDimensions (A.Array ods _) (A.Array tds t) = A.Array (dims ods tds) t
where
dims :: [A.Dimension] -> [A.Dimension] -> [A.Dimension]
dims (d@(A.Dimension _):ods) (A.UnknownDimension:tds)
= d : dims ods tds
dims (_:ods) (d:tds)
= d : dims ods tds
dims _ ds = ds
applyDimensions _ t = t
-- | Convert a raw array element literal into its real form.
makeArrayElem :: A.Type -> A.ArrayElem -> OccParser A.ArrayElem
makeArrayElem t@(A.Array _ _) (A.ArrayElemArray aes)
= do elemT <- trivialSubscriptType (findMeta aes) t
liftM A.ArrayElemArray $ mapM (makeArrayElem elemT) aes
makeArrayElem _ (A.ArrayElemArray es)
= dieP (findMeta es) $ "unexpected nested array literal"
-- A nested array literal that's still of array type (i.e. it's not a
-- record inside the array) -- collapse it.
makeArrayElem t@(A.Array _ _) (A.ArrayElemExpr (A.Literal _ _ (A.ArrayLiteral m aes)))
= do elemT <- trivialSubscriptType m t
liftM A.ArrayElemArray $ mapM (makeArrayElem elemT) aes
makeArrayElem t (A.ArrayElemExpr e)
= liftM A.ArrayElemExpr $ makeLiteral e t
-- | Given a raw literal and the type that it should be, either produce a
-- literal of that type, or fail with an appropriate error if it's not a valid
-- value of that type.
makeLiteral :: A.Expression -> A.Type -> OccParser A.Expression
-- A literal.
makeLiteral x@(A.Literal m t lr) wantT
= do underT <- resolveUserType m wantT
typesOK <- isValidLiteralType m t wantT
when (not typesOK) $
dieP m $ "default type of literal (" ++ showOccam t ++ ") cannot be coerced to desired type (" ++ showOccam wantT ++ ")"
case (underT, lr) of
-- An array literal.
(A.Array _ _, A.ArrayLiteral ml aes) ->
do elemT <- trivialSubscriptType ml underT
aes' <- mapM (makeArrayElem elemT) aes
return $ A.Literal m (applyDimensions t wantT) (A.ArrayLiteral ml aes')
-- A record literal -- which we need to convert from the raw
-- representation.
(A.Record _, A.ArrayLiteral ml aes) ->
do fs <- recordFields m underT
es <- sequence [case ae of
A.ArrayElemExpr e -> makeLiteral e t
A.ArrayElemArray aes ->
makeLiteral (A.Literal m t $ A.ArrayLiteral ml aes) t
| ((_, t), ae) <- zip fs aes]
return $ A.Literal m wantT (A.RecordLiteral ml es)
-- Some other kind of literal (one of the trivial types).
_ -> return $ A.Literal m wantT lr
-- A subscript; figure out what the type of the thing being subscripted must be
-- and recurse.
makeLiteral (A.SubscriptedExpr m sub e) wantT
= do inWantT <- unsubscriptType sub wantT
e' <- makeLiteral e inWantT
return $ A.SubscriptedExpr m sub e'
-- Something that's not a literal (which we've found inside a table) -- just
-- check it's the right type.
makeLiteral e wantT
= do t <- typeOfExpression e
matchType (findMeta e) wantT t
return e
--}}}
typeDecorator :: OccParser (Maybe A.Type)
typeDecorator
= do sLeftR
t <- dataType
sRightR
return $ Just t
<|> return Nothing
<?> "literal type decorator"
literal :: OccParser A.Expression
literal
= do m <- md
(lr, t) <- untypedLiteral
dec <- typeDecorator
ctx <- getTypeContext
let lit = A.Literal m t lr
case (dec, ctx) of
(Just wantT, _) -> makeLiteral lit wantT
(_, Just wantT) -> makeLiteral lit wantT
_ -> return lit
<?> "literal"
untypedLiteral :: OccParser (A.LiteralRepr, A.Type)
untypedLiteral
= do { r <- real; return (r, A.Real32) }
<|> do { r <- integer; return (r, A.Int) }
<|> do { r <- byte; return (r, A.Byte) }
real :: OccParser A.LiteralRepr
real
= do m <- md
genToken (test m)
<?> "real literal"
where
test m (_, TokRealLiteral s) = Just $ A.RealLiteral m s
test _ _ = Nothing
integer :: OccParser A.LiteralRepr
integer
= do m <- md
genToken (test m)
<?> "integer literal"
where
test m (_, TokIntLiteral s) = Just $ A.IntLiteral m s
test m (_, TokHexLiteral s) = Just $ A.HexLiteral m (drop 1 s)
test _ _ = Nothing
byte :: OccParser A.LiteralRepr
byte
= do m <- md
genToken (test m)
<?> "byte literal"
where
test m (_, TokCharLiteral s)
= case splitStringLiteral m (chop 1 1 s) of [lr] -> Just lr
test _ _ = Nothing
-- | Parse a table -- an array literal which might be subscripted or sliced.
-- (The implication of this is that the type of the expression this parses
-- isn't necessarily an array type -- it might be something like
-- @[1, 2, 3][1]@.)
-- The expression this returns cannot be used directly; it doesn't have array
-- literals collapsed, and record literals are array literals of type []ANY.
table :: OccParser A.Expression
table
= do e <- maybeSubscripted "table" table' A.SubscriptedExpr typeOfExpression
rawT <- typeOfExpression e
ctx <- getTypeContext
case ctx of
Just wantT -> makeLiteral e wantT
_ -> return e
table' :: OccParser A.Expression
table'
= do m <- md
(lr, t) <- tableElems
dec <- typeDecorator
let lit = A.Literal m t lr
case dec of
Just wantT -> makeLiteral lit wantT
_ -> return lit
<|> maybeSliced table A.SubscriptedExpr typeOfExpression
<?> "table'"
tableElems :: OccParser (A.LiteralRepr, A.Type)
tableElems
= do (lr, dim) <- stringLiteral
return (lr, A.Array [dim] A.Byte)
<|> do m <- md
es <- tryXVX sLeft (noTypeContext $ sepBy1 expression sComma) sRight
-- Constant fold early, so that tables have a better chance of
-- becoming constants.
(es', _, _) <- liftM unzip3 $ sequence [constantFold e | e <- es]
ets <- mapM typeOfExpression es'
defT <- tableType m ets
return (A.ArrayLiteral m (map A.ArrayElemExpr es'), defT)
<?> "table elements"
stringLiteral :: OccParser (A.LiteralRepr, A.Dimension)
stringLiteral
= do m <- md
cs <- stringCont <|> stringLit
let aes = [A.ArrayElemExpr $ A.Literal m' A.Byte c
| c@(A.ByteLiteral m' _) <- cs]
return (A.ArrayLiteral m aes, A.Dimension $ length cs)
<?> "string literal"
where
stringCont :: OccParser [A.LiteralRepr]
stringCont
= do m <- md
s <- genToken test
rest <- stringCont <|> stringLit
return $ (splitStringLiteral m s) ++ rest
where
test (_, TokStringCont s) = Just (chop 1 2 s)
test _ = Nothing
stringLit :: OccParser [A.LiteralRepr]
stringLit
= do m <- md
s <- genToken test
return $ splitStringLiteral m s
where
test (_, TokStringLiteral s) = Just (chop 1 1 s)
test _ = Nothing
-- | Parse a string literal.
-- FIXME: This should decode the occam escapes.
splitStringLiteral :: Meta -> String -> [A.LiteralRepr]
splitStringLiteral m cs = ssl cs
where
ssl [] = []
ssl ('*':'#':a:b:cs)
= (A.ByteLiteral m ['*', '#', a, b]) : ssl cs
ssl ('*':'\n':cs)
= (A.ByteLiteral m $ tail $ dropWhile (/= '*') cs) : ssl cs
ssl ('*':c:cs)
= (A.ByteLiteral m ['*', c]) : ssl cs
ssl (c:cs)
= (A.ByteLiteral m [c]) : ssl cs
--}}}
--{{{ expressions
expressionList :: [A.Type] -> OccParser A.ExpressionList
expressionList types
= functionMulti types
<|> do m <- md
es <- intersperseP (map expressionOfType types) sComma
return $ A.ExpressionList m es
-- XXX: Value processes are not supported (because nobody uses them and they're hard to parse)
<?> "expression list"
expression :: OccParser A.Expression
expression
= do m <- md
o <- monadicOperator
v <- operand
return $ A.Monadic m o v
<|> do { m <- md; sMOSTPOS; t <- dataType; return $ A.MostPos m t }
<|> do { m <- md; sMOSTNEG; t <- dataType; return $ A.MostNeg m t }
<|> sizeExpr
<|> do m <- md
(l, o) <- tryVV operand dyadicOperator
t <- typeOfExpression l
r <- operandOfType t
return $ A.Dyadic m o l r
<|> do m <- md
(l, o) <- tryVV operand shiftOperator
r <- operandOfType A.Int
return $ A.Dyadic m o l r
<|> do m <- md
(l, o) <- tryVV (noTypeContext operand) comparisonOperator
t <- typeOfExpression l
r <- operandOfType t
return $ A.Dyadic m o l r
<|> do m <- md
(l, o) <- tryVV operand dyadicOperator
t <- typeOfExpression l
r <- operandOfType t
return $ A.Dyadic m o l r
<|> associativeOpExpression
<|> conversion
<|> operand
<?> "expression"
arrayConstructor :: OccParser A.Expression
arrayConstructor
= do m <- md
sLeft
r <- replicator
sBar
r' <- scopeInRep r
ctx <- getTypeContext
subCtx <- case ctx of
Just t@(A.Array _ _) -> trivialSubscriptType m t >>* Just
_ -> return Nothing
e <- inTypeContext subCtx expression
scopeOutRep r'
sRight
return $ A.ExprConstr m $ A.RepConstr m r' e
<?> "array constructor expression"
associativeOpExpression :: OccParser A.Expression
associativeOpExpression
= do m <- md
(l, o) <- tryVV operand associativeOperator
tl <- typeOfExpression l
r <- associativeOpExpression <|> operand
tr <- typeOfExpression r
matchType m tl tr
return $ A.Dyadic m o l r
<?> "associative operator expression"
sizeExpr :: OccParser A.Expression
sizeExpr
= do m <- md
sSIZE
do { t <- dataType; return $ A.SizeType m t }
<|> do v <- noTypeContext operand
return $ A.SizeExpr m v
<|> do v <- noTypeContext (channel <|> timer <|> port)
return $ A.SizeVariable m v
<?> "SIZE expression"
--{{{ type-constrained expressions
expressionOfType :: A.Type -> OccParser A.Expression
expressionOfType wantT
= do e <- inTypeContext (Just wantT) expression
t <- typeOfExpression e
matchType (findMeta e) wantT t
return e
intExpr :: OccParser A.Expression
intExpr = expressionOfType A.Int <?> "integer expression"
booleanExpr :: OccParser A.Expression
booleanExpr = expressionOfType A.Bool <?> "boolean expression"
constExprOfType :: A.Type -> OccParser A.Expression
constExprOfType wantT
= do e <- expressionOfType wantT
(e', isConst, (m,msg)) <- constantFold e
when (not isConst) $
dieReport (m,"expression is not constant (" ++ msg ++ ")")
return e'
constIntExpr :: OccParser A.Expression
constIntExpr = constExprOfType A.Int <?> "constant integer expression"
operandOfType :: A.Type -> OccParser A.Expression
operandOfType wantT
= do o <- inTypeContext (Just wantT) operand
t <- typeOfExpression o
matchType (findMeta o) wantT t
return o
--}}}
--{{{ functions
functionNameValued :: Bool -> OccParser A.Name
functionNameValued isMulti
= do n <- functionName
rts <- returnTypesOfFunction n
case (rts, isMulti) of
([_], False) -> return n
((_:_:_), True) -> return n
_ -> pzero
<?> "function name"
functionActuals :: [A.Formal] -> OccParser [A.Expression]
functionActuals fs
= do let actuals = [expressionOfType t <?> "actual for " ++ show n
| A.Formal _ t n <- fs]
es <- intersperseP actuals sComma
return es
functionSingle :: OccParser A.Expression
functionSingle
= do m <- md
n <- tryVX (functionNameValued False) sLeftR
A.Function _ _ _ fs _ <- specTypeOfName n
as <- functionActuals fs
sRightR
return $ A.FunctionCall m n as
<?> "single-valued function call"
functionMulti :: [A.Type] -> OccParser A.ExpressionList
functionMulti types
= do m <- md
n <- tryVX (functionNameValued True) sLeftR
A.Function _ _ _ fs _ <- specTypeOfName n
as <- functionActuals fs
sRightR
rts <- returnTypesOfFunction n
matchTypes m types rts
return $ A.FunctionCallList m n as
<?> "multi-valued function call"
--}}}
--{{{ intrinsic functions
intrinsicFunctionName :: Bool -> OccParser (String, [A.Type], [A.Formal])
intrinsicFunctionName isMulti
= do n <- anyName A.FunctionName
let s = A.nameName n
case (lookup s intrinsicFunctions, isMulti) of
(Nothing, _) -> pzero
(Just ([_], _), True) -> pzero
(Just ((_:_:_), _), False) -> pzero
(Just (rts, tns), _) ->
return (s, rts, [A.Formal A.ValAbbrev t (A.Name emptyMeta A.VariableName n)
| (t, n) <- tns])
<?> "intrinsic function name"
intrinsicFunctionSingle :: OccParser A.Expression
intrinsicFunctionSingle
= do m <- md
(s, _, fs) <- tryVX (intrinsicFunctionName False) sLeftR
as <- functionActuals fs
sRightR
return $ A.IntrinsicFunctionCall m s as
<?> "single-valued intrinsic function call"
-- No support for multi-valued intrinsic functions, because I don't think there
-- are likely to be any, and supporting them in the C backend is slightly
-- tricky.
--}}}
monadicOperator :: OccParser A.MonadicOp
monadicOperator
= do { reserved "-"; return A.MonadicSubtr }
<|> do { sMINUS; return A.MonadicMinus }
<|> do { reserved "~" <|> sBITNOT; return A.MonadicBitNot }
<|> do { sNOT; return A.MonadicNot }
<?> "monadic operator"
dyadicOperator :: OccParser A.DyadicOp
dyadicOperator
= do { reserved "+"; return A.Add }
<|> do { reserved "-"; return A.Subtr }
<|> do { reserved "*"; return A.Mul }
<|> do { reserved "/"; return A.Div }
<|> do { reserved "\\"; return A.Rem }
<|> do { sREM; return A.Rem }
<|> do { sMINUS; return A.Minus }
<|> do { reserved "/\\" <|> sBITAND; return A.BitAnd }
<|> do { reserved "\\/" <|> sBITOR; return A.BitOr }
<|> do { reserved "><"; return A.BitXor }
<?> "dyadic operator"
-- These always need an INT on their right-hand side.
shiftOperator :: OccParser A.DyadicOp
shiftOperator
= do { reserved "<<"; return A.LeftShift }
<|> do { reserved ">>"; return A.RightShift }
<?> "shift operator"
-- These always return a BOOL, so we have to deal with them specially for type
-- context.
comparisonOperator :: OccParser A.DyadicOp
comparisonOperator
= do { reserved "="; return A.Eq }
<|> do { reserved "<>"; return A.NotEq }
<|> do { reserved "<"; return A.Less }
<|> do { reserved ">"; return A.More }
<|> do { reserved "<="; return A.LessEq }
<|> do { reserved ">="; return A.MoreEq }
<|> do { sAFTER; return A.After }
<?> "comparison operator"
associativeOperator :: OccParser A.DyadicOp
associativeOperator
= do { sAND; return A.And }
<|> do { sOR; return A.Or }
<|> do { sPLUS; return A.Plus }
<|> do { sTIMES; return A.Times }
<?> "associative operator"
conversion :: OccParser A.Expression
conversion
= do m <- md
t <- dataType
baseT <- underlyingType m t
(c, o) <- conversionMode
ot <- typeOfExpression o
baseOT <- underlyingType m ot
c <- case (isPreciseConversion baseOT baseT, c) of
(False, A.DefaultConversion) ->
dieP m "imprecise conversion must specify ROUND or TRUNC"
(False, _) -> return c
(True, A.DefaultConversion) -> return c
(True, _) ->
do addWarning m "precise conversion specifies ROUND or TRUNC; ignored"
return A.DefaultConversion
return $ A.Conversion m c t o
<?> "conversion"
conversionMode :: OccParser (A.ConversionMode, A.Expression)
conversionMode
= do { sROUND; o <- noTypeContext operand; return (A.Round, o) }
<|> do { sTRUNC; o <- noTypeContext operand; return (A.Trunc, o) }
<|> do { o <- noTypeContext operand; return (A.DefaultConversion, o) }
<?> "conversion mode and operand"
--}}}
--{{{ operands
operand :: OccParser A.Expression
operand
= maybeSubscripted "operand" operand' A.SubscriptedExpr typeOfExpression
operand' :: OccParser A.Expression
operand'
= do { m <- md; v <- variable; return $ A.ExprVariable m v }
<|> literal
<|> do { sLeftR; e <- expression; sRightR; return e }
-- XXX value process
<|> functionSingle
<|> intrinsicFunctionSingle
<|> do m <- md
sBYTESIN
sLeftR
(try (do { o <- noTypeContext operand; sRightR; return $ A.BytesInExpr m o }))
<|> do { t <- dataType; sRightR; return $ A.BytesInType m t }
<|> do { m <- md; sOFFSETOF; sLeftR; t <- dataType; sComma; f <- fieldName; sRightR; return $ A.OffsetOf m t f }
<|> do { m <- md; sTRUE; return $ A.True m }
<|> do { m <- md; sFALSE; return $ A.False m }
<|> table
<|> arrayConstructor
<?> "operand"
--}}}
--{{{ variables, channels, timers, ports
variable :: OccParser A.Variable
variable
= maybeSubscripted "variable" variable' A.SubscriptedVariable typeOfVariable
variable' :: OccParser A.Variable
variable'
= do { m <- md; n <- try variableName; return $ A.Variable m n }
<|> maybeSliced variable A.SubscriptedVariable typeOfVariable
<?> "variable'"
variableOfType :: A.Type -> OccParser A.Variable
variableOfType wantT
= do v <- variable
t <- typeOfVariable v
matchType (findMeta v) wantT t
return v
channel :: OccParser A.Variable
channel
= maybeSubscripted "channel" channel' A.SubscriptedVariable typeOfVariable
<?> "channel"
channel' :: OccParser A.Variable
channel'
= do { m <- md; n <- try channelName; return $ A.Variable m n }
<|> maybeSliced channel A.SubscriptedVariable typeOfVariable
<?> "channel'"
channelOfType :: A.Type -> OccParser A.Variable
channelOfType wantT
= do c <- channel
t <- typeOfVariable c
matchType (findMeta c) wantT t
return c
timer :: OccParser A.Variable
timer
= maybeSubscripted "timer" timer' A.SubscriptedVariable typeOfVariable
<?> "timer"
timer' :: OccParser A.Variable
timer'
= do { m <- md; n <- try timerName; return $ A.Variable m n }
<|> maybeSliced timer A.SubscriptedVariable typeOfVariable
<?> "timer'"
port :: OccParser A.Variable
port
= maybeSubscripted "port" port' A.SubscriptedVariable typeOfVariable
<?> "port"
port' :: OccParser A.Variable
port'
= do { m <- md; n <- try portName; return $ A.Variable m n }
<|> maybeSliced port A.SubscriptedVariable typeOfVariable
<?> "port'"
portOfType :: A.Type -> OccParser A.Variable
portOfType wantT
= do p <- port
t <- typeOfVariable p
matchType (findMeta p) wantT t
return p
--}}}
--{{{ protocols
protocol :: OccParser A.Type
protocol
= do { n <- try protocolName ; return $ A.UserProtocol n }
<|> simpleProtocol
<?> "protocol"
simpleProtocol :: OccParser A.Type
simpleProtocol
= do { l <- tryVX dataType sColons; sLeft; sRight; r <- dataType; return $ A.Counted l r }
<|> dataType
<|> do { sANY; return $ A.Any }
<?> "simple protocol"
sequentialProtocol :: OccParser [A.Type]
sequentialProtocol
= do { l <- try $ sepBy1 simpleProtocol sSemi; return l }
<?> "sequential protocol"
taggedProtocol :: OccParser (A.Name, [A.Type])
taggedProtocol
= do { t <- tryVX newTagName eol; return (t, []) }
<|> do { t <- newTagName; sSemi; sp <- sequentialProtocol; eol; return (t, sp) }
<?> "tagged protocol"
--}}}
--{{{ replicators
replicator :: OccParser A.Replicator
replicator
= do m <- md
n <- tryVX newVariableName sEq
b <- intExpr
sFOR
c <- intExpr
return $ A.For m n b c
<?> "replicator"
--}}}
--{{{ specifications, declarations, allocations
allocation :: OccParser [A.Specification]
allocation
= do m <- md
sPLACE
n <- try variableName <|> try channelName <|> portName
p <- placement
sColon
eol
nd <- lookupNameOrError n $ dieP m ("Attempted to PLACE unknown variable: " ++ (show $ A.nameName n))
defineName n $ nd { A.ndPlacement = p }
return []
<?> "allocation"
placement :: OccParser A.Placement
placement
= do e <- tryXV (optional sAT) intExpr
return $ A.PlaceAt e
<|> do tryXX sIN sWORKSPACE
return $ A.PlaceInWorkspace
<|> do tryXX sIN sVECSPACE
return $ A.PlaceInVecspace
<?> "placement"
specification :: OccParser [A.Specification]
specification
= do { m <- md; (ns, d) <- declaration; return [A.Specification m n d | n <- ns] }
<|> do { a <- abbreviation; return [a] }
<|> do { d <- definition; return [d] }
<?> "specification"
declaration :: OccParser ([A.Name], A.SpecType)
declaration
= declOf dataType newVariableName
<|> declOf channelType newChannelName
<|> declOf timerType newTimerName
<|> declOf portType newPortName
<?> "declaration"
declOf :: OccParser A.Type -> OccParser A.Name -> OccParser ([A.Name], A.SpecType)
declOf spec newName
= do m <- md
(d, ns) <- tryVVX spec (sepBy1 newName sComma) sColon
eol
return (ns, A.Declaration m d)
abbreviation :: OccParser A.Specification
abbreviation
= valIsAbbrev
<|> initialIsAbbrev
<|> isAbbrev newVariableName variable
<|> isAbbrev newChannelName channel
<|> chanArrayAbbrev
<|> isAbbrev newTimerName timer
<|> isAbbrev newPortName port
<?> "abbreviation"
valIsAbbrev :: OccParser A.Specification
valIsAbbrev
= do m <- md
(n, t, e) <- do { n <- tryXVX sVAL newVariableName sIS; e <- expression; sColon; eol; t <- typeOfExpression e; return (n, t, e) }
<|> do { (s, n) <- tryXVVX sVAL dataSpecifier newVariableName sIS; e <- expressionOfType s; sColon; eol; return (n, s, e) }
-- Do constant folding early, so that we can use names defined this
-- way as constants elsewhere.
(e', _, _) <- constantFold e
return $ A.Specification m n $ A.IsExpr m A.ValAbbrev t e'
<?> "VAL IS abbreviation"
initialIsAbbrev :: OccParser A.Specification
initialIsAbbrev
= do m <- md
(t, n) <- tryXVVX sINITIAL dataSpecifier newVariableName sIS
e <- expressionOfType t
sColon
eol
return $ A.Specification m n $ A.IsExpr m A.Original t e
<?> "INITIAL IS abbreviation"
isAbbrev :: OccParser A.Name -> OccParser A.Variable -> OccParser A.Specification
isAbbrev newName oldVar
= do m <- md
(n, v) <- tryVXV newName sIS oldVar
sColon
eol
t <- typeOfVariable v
return $ A.Specification m n $ A.Is m A.Abbrev t v
<|> do m <- md
(s, n, v) <- tryVVXV specifier newName sIS oldVar
sColon
eol
t <- typeOfVariable v
matchType m s t
return $ A.Specification m n $ A.Is m A.Abbrev s v
<?> "IS abbreviation"
chanArrayAbbrev :: OccParser A.Specification
chanArrayAbbrev
= do m <- md
(n, cs) <- tryVXXV newChannelName sIS sLeft (sepBy1 channel sComma)
sRight
sColon
eol
ts <- mapM typeOfVariable cs
t <- tableType m ts
case t of
(A.Array _ (A.Chan {})) -> return ()
_ -> dieP m $ "types do not match in channel array abbreviation"
return $ A.Specification m n $ A.IsChannelArray m t cs
<|> do m <- md
(ct, s, n) <- try (do s <- channelSpecifier
n <- newChannelName
sIS
sLeft
ct <- trivialSubscriptType m s
case ct of
A.Chan {} -> return (ct, s, n)
_ -> pzero)
cs <- sepBy1 (channelOfType ct) sComma
sRight
sColon
eol
return $ A.Specification m n $ A.IsChannelArray m s cs
<?> "channel array abbreviation"
specMode :: OccParser () -> OccParser A.SpecMode
specMode keyword
= do tryXX sINLINE keyword
return A.InlineSpec
<|> do keyword
return A.PlainSpec
<?> "specification mode"
definition :: OccParser A.Specification
definition
= do m <- md
sDATA
sTYPE
do { n <- tryVX newDataTypeName sIS; t <- dataType; sColon; eol; return $ A.Specification m n (A.DataType m t) }
<|> do { n <- newRecordName; eol; indent; rec <- structuredType; outdent; sColon; eol; return $ A.Specification m n rec }
<|> do m <- md
sPROTOCOL
n <- newProtocolName
do { sIS; p <- sequentialProtocol; sColon; eol; return $ A.Specification m n $ A.Protocol m p }
<|> do { eol; indent; sCASE; eol; ps <- maybeIndentedList m "empty CASE protocol" taggedProtocol; outdent; sColon; eol; return $ A.Specification m n $ A.ProtocolCase m ps }
<|> do m <- md
sm <- specMode sPROC
n <- newProcName
fs <- formalList
eol
indent
fs' <- scopeInFormals fs
p <- process
scopeOutFormals fs'
outdent
sColon
eol
return $ A.Specification m n $ A.Proc m sm fs' p
<|> do m <- md
(rs, sm) <- tryVV (sepBy1 dataType sComma) (specMode sFUNCTION)
n <- newFunctionName
fs <- formalList
do { sIS; fs' <- scopeInFormals fs; el <- expressionList rs; scopeOutFormals fs'; sColon; eol; return $ A.Specification m n $ A.Function m sm rs fs' (Left $ A.Only m el) }
<|> do { eol; indent; fs' <- scopeInFormals fs; vp <- valueProcess rs; scopeOutFormals fs'; outdent; sColon; eol; return $ A.Specification m n $ A.Function m sm rs fs' (Left vp) }
<|> retypesAbbrev
<?> "definition"
retypesReshapes :: OccParser ()
retypesReshapes
= sRETYPES <|> sRESHAPES
retypesAbbrev :: OccParser A.Specification
retypesAbbrev
= do m <- md
(s, n) <- tryVVX dataSpecifier newVariableName retypesReshapes
v <- variable
sColon
eol
origT <- typeOfVariable v
checkRetypes m origT s
return $ A.Specification m n $ A.Retypes m A.Abbrev s v
<|> do m <- md
(s, n) <- tryVVX channelSpecifier newChannelName retypesReshapes
c <- channel
sColon
eol
origT <- typeOfVariable c
checkRetypes m origT s
return $ A.Specification m n $ A.Retypes m A.Abbrev s c
<|> do m <- md
(s, n) <- tryXVVX sVAL dataSpecifier newVariableName retypesReshapes
e <- expression
sColon
eol
origT <- typeOfExpression e
checkRetypes m origT s
return $ A.Specification m n $ A.RetypesExpr m A.ValAbbrev s e
<?> "RETYPES/RESHAPES abbreviation"
-- | Check that a RETYPES\/RESHAPES is safe.
checkRetypes :: Meta -> A.Type -> A.Type -> OccParser ()
-- Retyping channels is always "safe".
checkRetypes _ (A.Chan {}) (A.Chan {}) = return ()
checkRetypes m fromT toT
= do bf <- bytesInType fromT
bt <- bytesInType toT
case (bf, bt) of
(BIJust a, BIJust b) ->
when (a /= b) $ dieP m "size mismatch in RETYPES"
(BIJust a, BIOneFree b _) ->
when (not ((b <= a) && (a `mod` b == 0))) $ dieP m "size mismatch in RETYPES"
(_, BIManyFree) ->
dieP m "multiple free dimensions in RETYPES/RESHAPES type"
-- Otherwise we have to do a runtime check.
_ -> return ()
dataSpecifier :: OccParser A.Type
dataSpecifier
= dataType
<|> specArrayType dataSpecifier
<?> "data specifier"
channelSpecifier :: OccParser A.Type
channelSpecifier
= channelType
<|> specArrayType channelSpecifier
<?> "channel specifier"
timerSpecifier :: OccParser A.Type
timerSpecifier
= timerType
<|> specArrayType timerSpecifier
<?> "timer specifier"
portSpecifier :: OccParser A.Type
portSpecifier
= portType
<|> specArrayType portSpecifier
<?> "port specifier"
specifier :: OccParser A.Type
specifier
= dataType
<|> channelType
<|> timerType
<|> portType
<|> specArrayType specifier
<?> "specifier"
--{{{ PROCs and FUNCTIONs
formalList :: OccParser [A.Formal]
formalList
= do m <- md
sLeftR
fs <- option [] formalArgSet
sRightR
return fs
<?> "formal list"
formalItem :: OccParser (A.AbbrevMode, A.Type) -> OccParser A.Name -> OccParser [A.Formal]
formalItem spec name
= do (am, t) <- spec
names am t
where
names :: A.AbbrevMode -> A.Type -> OccParser [A.Formal]
names am t
= do n <- name
fs <- tail am t
return $ (A.Formal am t n) : fs
tail :: A.AbbrevMode -> A.Type -> OccParser [A.Formal]
tail am t
= do sComma
-- We must try formalArgSet first here, so that we don't
-- accidentally parse a DATA TYPE name thinking it's a formal
-- name.
formalArgSet <|> names am t
<|> return []
-- | Parse a set of formal arguments.
formalArgSet :: OccParser [A.Formal]
formalArgSet
= formalItem formalVariableType newVariableName
<|> formalItem (aa channelSpecifier) newChannelName
<|> formalItem (aa timerSpecifier) newTimerName
<|> formalItem (aa portSpecifier) newPortName
where
aa :: OccParser A.Type -> OccParser (A.AbbrevMode, A.Type)
aa = liftM (\t -> (A.Abbrev, t))
formalVariableType :: OccParser (A.AbbrevMode, A.Type)
formalVariableType
= do sVAL
s <- dataSpecifier
return (A.ValAbbrev, s)
<|> do s <- dataSpecifier
return (A.Abbrev, s)
<?> "formal variable type"
valueProcess :: [A.Type] -> OccParser (A.Structured A.ExpressionList)
valueProcess rs
= do m <- md
sVALOF
eol
indent
p <- process
sRESULT
el <- expressionList rs
eol
outdent
return $ A.ProcThen m p (A.Only m el)
<|> handleSpecs specification (valueProcess rs) A.Spec
<?> "value process"
--}}}
--{{{ RECORDs
structuredType :: OccParser A.SpecType
structuredType
= do m <- md
isPacked <- recordKeyword
eol
indent
fs <- many1 structuredTypeField
outdent
return $ A.RecordType m isPacked (concat fs)
<?> "structured type"
recordKeyword :: OccParser Bool
recordKeyword
= do { sPACKED; sRECORD; return True }
<|> do { sRECORD; return False }
structuredTypeField :: OccParser [(A.Name, A.Type)]
structuredTypeField
= do t <- dataType
fs <- sepBy1 newFieldName sComma
sColon
eol
return [(f, t) | f <- fs]
<?> "structured type field"
--}}}
--}}}
--{{{ processes
process :: OccParser A.Process
process
= assignment
<|> caseInput
<|> inputProcess
<|> output
<|> do { m <- md; sSKIP; eol; return $ A.Skip m }
<|> do { m <- md; sSTOP; eol; return $ A.Stop m }
<|> seqProcess
<|> ifProcess
<|> caseProcess
<|> whileProcess
<|> parallel
<|> altProcess
<|> procInstance
<|> intrinsicProc
<|> handleSpecs (allocation <|> specification) process
(\m s p -> A.Seq m (A.Spec m s (A.Only m p)))
<?> "process"
--{{{ assignment (:=)
assignment :: OccParser A.Process
assignment
= do m <- md
vs <- tryVX (sepBy1 variable sComma) sAssign
-- We ignore dimensions here because we do the check at runtime.
ts <- sequence [liftM removeFixedDimensions $ typeOfVariable v | v <- vs]
es <- expressionList ts
eol
return $ A.Assign m vs es
<?> "assignment"
--}}}
--{{{ input (?)
inputProcess :: OccParser A.Process
inputProcess
= do m <- md
(c, i) <- input
return $ A.Input m c i
<?> "input process"
input :: OccParser (A.Variable, A.InputMode)
input
= channelInput
<|> timerInput
<|> do m <- md
p <- tryVX port sQuest
A.Port t <- typeOfVariable p
v <- variableOfType t
eol
return (p, A.InputSimple m [A.InVariable m v])
<?> "input"
channelInput :: OccParser (A.Variable, A.InputMode)
channelInput
= do m <- md
c <- tryVX channel sQuest
pis <- protocolItems c
case pis of
Left ts ->
do is <- intersperseP (map inputItem ts) sSemi
eol
return (c, A.InputSimple m is)
Right nts ->
do sCASE
tl <- taggedList nts
eol
return (c, A.InputCase m (A.Only m (tl (A.Skip m))))
<?> "channel input"
timerInput :: OccParser (A.Variable, A.InputMode)
timerInput
= do m <- md
c <- tryVX timer sQuest
do { v <- variableOfType A.Int; eol; return (c, A.InputTimerRead m (A.InVariable m v)) }
<|> do { sAFTER; e <- intExpr; eol; return (c, A.InputTimerAfter m e) }
<?> "timer input"
taggedList :: [(A.Name, [A.Type])] -> OccParser (A.Process -> A.Variant)
taggedList nts
= do m <- md
tag <- tagName
ts <- checkJust (Just m, "unknown tag in protocol") $ lookup tag nts
is <- sequence [sSemi >> inputItem t | t <- ts]
return $ A.Variant m tag is
<?> "tagged list"
inputItem :: A.Type -> OccParser A.InputItem
inputItem t
= case t of
(A.Counted ct it) ->
do m <- md
v <- variableOfType ct
sColons
w <- variableOfType (addDimensions [A.UnknownDimension] it)
return $ A.InCounted m v w
A.Any ->
do m <- md
v <- variable
return $ A.InVariable m v
_ ->
do m <- md
v <- variableOfType t
return $ A.InVariable m v
<?> "input item"
--}}}
--{{{ variant input (? CASE)
caseInputItems :: A.Variable -> OccParser [(A.Name, [A.Type])]
caseInputItems c
= do pis <- protocolItems c
case pis of
Left _ -> dieP (findMeta c) "CASE input on channel of non-variant protocol"
Right nts -> return nts
caseInput :: OccParser A.Process
caseInput
= do m <- md
c <- tryVX channel (do {sQuest; sCASE; eol})
nts <- caseInputItems c
vs <- maybeIndentedList m "empty ? CASE" (variant nts)
return $ A.Input m c (A.InputCase m (A.Several m vs))
<?> "case input"
variant :: [(A.Name, [A.Type])] -> OccParser (A.Structured A.Variant)
variant nts
= do m <- md
tl <- taggedList nts
eol
indent
p <- process
outdent
return $ A.Only m (tl p)
<|> handleSpecs specification (variant nts) A.Spec
<?> "variant"
--}}}
--{{{ output (!)
output :: OccParser A.Process
output
= channelOutput
<|> do m <- md
p <- tryVX port sBang
A.Port t <- typeOfVariable p
e <- expressionOfType t
eol
return $ A.Output m p [A.OutExpression m e]
<?> "output"
channelOutput :: OccParser A.Process
channelOutput
= do m <- md
c <- tryVX channel sBang
-- This is an ambiguity in the occam grammar; you can't tell in "a ! b"
-- whether b is a variable or a tag, without knowing the type of a.
pis <- protocolItems c
case pis of
Left ts ->
do os <- intersperseP (map outputItem ts) sSemi
eol
return $ A.Output m c os
Right nts ->
do tag <- tagName
ts <- checkJust (Just m, "unknown tag in protocol") $ lookup tag nts
os <- sequence [sSemi >> outputItem t | t <- ts]
eol
return $ A.OutputCase m c tag os
<?> "channel output"
outputItem :: A.Type -> OccParser A.OutputItem
outputItem t
= case t of
(A.Counted ct it) ->
do m <- md
a <- expressionOfType ct
sColons
b <- expressionOfType (addDimensions [A.UnknownDimension] it)
return $ A.OutCounted m a b
A.Any ->
do m <- md
e <- expression
t <- typeOfExpression e
return $ A.OutExpression m e
_ ->
do m <- md
e <- expressionOfType t
return $ A.OutExpression m e
<?> "output item"
--}}}
--{{{ SEQ
seqProcess :: OccParser A.Process
seqProcess
= do m <- md
sSEQ
do { eol; ps <- maybeIndentedList m "empty SEQ" process; return $ A.Seq m (A.Several m (map (A.Only m) ps)) }
<|> do { r <- replicator; eol; indent; r' <- scopeInRep r; p <- process; scopeOutRep r'; outdent; return $ A.Seq m (A.Rep m r' (A.Only m p)) }
<?> "SEQ process"
--}}}
--{{{ IF
ifProcess :: OccParser A.Process
ifProcess
= do m <- md
c <- conditional
return $ A.If m c
<?> "IF process"
conditional :: OccParser (A.Structured A.Choice)
conditional
= do m <- md
sIF
do { eol; cs <- maybeIndentedList m "empty IF" ifChoice; return $ A.Several m cs }
<|> do { r <- replicator; eol; indent; r' <- scopeInRep r; c <- ifChoice; scopeOutRep r'; outdent; return $ A.Rep m r' c }
<?> "conditional"
ifChoice :: OccParser (A.Structured A.Choice)
ifChoice
= guardedChoice
<|> conditional
<|> handleSpecs specification ifChoice A.Spec
<?> "choice"
guardedChoice :: OccParser (A.Structured A.Choice)
guardedChoice
= do m <- md
b <- booleanExpr
eol
indent
p <- process
outdent
return $ A.Only m (A.Choice m b p)
<?> "guarded choice"
--}}}
--{{{ CASE
caseProcess :: OccParser A.Process
caseProcess
= do m <- md
sCASE
sel <- expression
t <- typeOfExpression sel
t' <- underlyingType m t
when (not $ isCaseableType t') $ dieP m "case selector has non-CASEable type"
eol
os <- maybeIndentedList m "empty CASE" (caseOption t)
return $ A.Case m sel (A.Several m os)
<?> "CASE process"
caseOption :: A.Type -> OccParser (A.Structured A.Option)
caseOption t
= do m <- md
ces <- tryVX (sepBy (constExprOfType t) sComma) eol
indent
p <- process
outdent
return $ A.Only m (A.Option m ces p)
<|> do m <- md
sELSE
eol
indent
p <- process
outdent
return $ A.Only m (A.Else m p)
<|> handleSpecs specification (caseOption t) A.Spec
<?> "option"
--}}}
--{{{ WHILE
whileProcess :: OccParser A.Process
whileProcess
= do m <- md
sWHILE
b <- booleanExpr
eol
indent
p <- process
outdent
return $ A.While m b p
<?> "WHILE process"
--}}}
--{{{ PAR
parallel :: OccParser A.Process
parallel
= do m <- md
isPri <- parKeyword
do { eol; ps <- maybeIndentedList m "empty PAR" process; return $ A.Par m isPri (A.Several m (map (A.Only m) ps)) }
<|> do { r <- replicator; eol; indent; r' <- scopeInRep r; p <- process; scopeOutRep r'; outdent; return $ A.Par m isPri (A.Rep m r' (A.Only m p)) }
<|> processor
<?> "PAR process"
parKeyword :: OccParser A.ParMode
parKeyword
= do { sPAR; return A.PlainPar }
<|> do { tryXX sPRI sPAR; return A.PriPar }
<|> do { tryXX sPLACED sPAR; return A.PlacedPar }
-- XXX PROCESSOR as a process isn't really legal, surely?
processor :: OccParser A.Process
processor
= do m <- md
sPROCESSOR
e <- intExpr
eol
indent
p <- process
outdent
return $ A.Processor m e p
<?> "PLACED PAR process"
--}}}
--{{{ ALT
altProcess :: OccParser A.Process
altProcess
= do m <- md
(isPri, a) <- alternation
return $ A.Alt m isPri a
<?> "ALT process"
alternation :: OccParser (Bool, A.Structured A.Alternative)
alternation
= do m <- md
isPri <- altKeyword
do { eol; as <- maybeIndentedList m "empty ALT" alternative; return (isPri, A.Several m as) }
<|> do { r <- replicator; eol; indent; r' <- scopeInRep r; a <- alternative; scopeOutRep r'; outdent; return (isPri, A.Rep m r' a) }
<?> "alternation"
altKeyword :: OccParser Bool
altKeyword
= do { sALT; return False }
<|> do { tryXX sPRI sALT; return True }
-- The reason the CASE guards end up here is because they have to be handled
-- specially: you can't tell until parsing the guts of the CASE what the processes
-- are.
alternative :: OccParser (A.Structured A.Alternative)
alternative
-- FIXME: Check we don't have PRI ALT inside ALT.
= do (isPri, a) <- alternation
return a
-- These are special cases to deal with c ? CASE inside ALTs -- the normal
-- guards are below.
<|> do m <- md
(b, c) <- tryVXVXX booleanExpr sAmp channel sQuest (sCASE >> eol)
nts <- caseInputItems c
vs <- maybeIndentedList m "empty ? CASE" (variant nts)
return $ A.Only m (A.AlternativeCond m b c (A.InputCase m $ A.Several m vs) (A.Skip m))
<|> do m <- md
c <- tryVXX channel sQuest (sCASE >> eol)
nts <- caseInputItems c
vs <- maybeIndentedList m "empty ? CASE" (variant nts)
return $ A.Only m (A.Alternative m c (A.InputCase m $ A.Several m vs) (A.Skip m))
<|> guardedAlternative
<|> handleSpecs specification alternative A.Spec
<?> "alternative"
guardedAlternative :: OccParser (A.Structured A.Alternative)
guardedAlternative
= do m <- md
makeAlt <- guard
indent
p <- process
outdent
return $ A.Only m (makeAlt p)
<?> "guarded alternative"
guard :: OccParser (A.Process -> A.Alternative)
guard
= do m <- md
(c, im) <- input
return $ A.Alternative m c im
<|> do m <- md
b <- tryVX booleanExpr sAmp
do { (c, im) <- input; return $ A.AlternativeCond m b c im }
<|> do { sSKIP; eol; return $ A.AlternativeSkip m b }
<?> "guard"
--}}}
--{{{ PROC calls
procInstance :: OccParser A.Process
procInstance
= do m <- md
n <- tryVX procName sLeftR
st <- specTypeOfName n
let fs = case st of A.Proc _ _ fs _ -> fs
as <- actuals fs
sRightR
eol
return $ A.ProcCall m n as
<?> "PROC instance"
actuals :: [A.Formal] -> OccParser [A.Actual]
actuals fs = intersperseP (map actual fs) sComma
actual :: A.Formal -> OccParser A.Actual
actual (A.Formal am t n)
= do case am of
A.ValAbbrev ->
do e <- expressionOfType t
return $ A.ActualExpression t e
_ ->
case stripArrayType t of
A.Chan {} -> var (channelOfType t)
A.Timer -> var timer
A.Port _ -> var (portOfType t)
_ -> var (variableOfType t)
<?> "actual of type " ++ showOccam t ++ " for " ++ show n
where
var inner = liftM (A.ActualVariable am t) inner
--}}}
--{{{ intrinsic PROC call
intrinsicProcName :: OccParser (String, [A.Formal])
intrinsicProcName
= do n <- anyName A.ProcName
let s = A.nameName n
case lookup s intrinsicProcs of
Just atns -> return (s, [A.Formal am t (A.Name emptyMeta A.VariableName n)
| (am, t, n) <- atns])
Nothing -> pzero
intrinsicProc :: OccParser A.Process
intrinsicProc
= do m <- md
(s, fs) <- tryVX intrinsicProcName sLeftR
as <- actuals fs
sRightR
eol
return $ A.IntrinsicProcCall m s as
<?> "intrinsic PROC instance"
--}}}
--}}}
--{{{ top-level forms
-- | An item at the top level is either a specification, or the end of the
-- file.
topLevelItem :: OccParser A.AST
topLevelItem
= handleSpecs (allocation <|> specification) topLevelItem
(\m s inner -> A.Spec m s inner)
<|> do m <- md
eof
-- Stash the current locals so that we can either restore them
-- when we get back to the file we included this one from, or
-- pull the TLP name from them at the end.
modify $ (\ps -> ps { csMainLocals = csLocalNames ps })
return $ A.Several m []
-- | A source file is a series of nested specifications.
-- The later specifications must be in scope for the earlier ones.
-- We represent this as an 'AST' -- a @Structured ()@.
sourceFile :: OccParser (A.AST, [WarningReport], CompState)
sourceFile
= do p <- topLevelItem
(w, s) <- getState
return (p, w, s)
--}}}
--}}}
--{{{ entry points for the parser itself
-- | Parse a token stream with the given production.
runTockParser :: [Token] -> OccParser t -> CompState -> PassM t
runTockParser toks prod cs
= do case runParser prod ([], cs) "" toks of
Left err ->
-- If a position was encoded into the message, use that;
-- else use the parser position.
let errMeta = sourcePosToMeta $ errorPos err
(msgMeta, msg) = unpackMeta $ show err
m = Just errMeta >> msgMeta
in dieReport (m, "Parse error: " ++ msg)
Right r -> return r
-- | Parse an occam program.
parseOccamProgram :: [Token] -> PassM A.AST
parseOccamProgram toks
= do cs <- get
(p, ws, cs') <- runTockParser toks sourceFile cs
put cs'
mapM_ warnReport ws
return p
--}}}