tock-mirror/backends/BackendPasses.hs

409 lines
19 KiB
Haskell

{-
Tock: a compiler for parallel languages
Copyright (C) 2007, 2008 University of Kent
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 2 of the License, or (at your
option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.
-}
-- | Passes associated with the backends
module BackendPasses (addSizesActualParameters, addSizesFormalParameters, declareSizesArray, simplifySlices, squashArrays, transformWaitFor) where
import Control.Monad.State
import Data.Generics
import qualified Data.Map as Map
import qualified AST as A
import CompState
import Errors
import EvalConstants
import Metadata
import Pass
import PrettyShow
import qualified Properties as Prop
import ShowCode
import Traversal
import Types
import Utils
squashArrays :: [Pass]
squashArrays =
[ removeDirections
, removeUnneededDirections
, simplifySlices
, declareSizesArray
, addSizesFormalParameters
, addSizesActualParameters
, fixMinInt
]
prereq :: [Property]
prereq = Prop.agg_namesDone ++ Prop.agg_typesDone ++ Prop.agg_functionsGone ++ [Prop.subscriptsPulledUp, Prop.arrayLiteralsExpanded]
-- | Remove all variable directions.
-- They're unimportant in occam code once the directions have been checked,
-- and this somewhat simplifies the work of the later passes.
removeDirections :: Pass
removeDirections
= occamAndCOnlyPass "Remove variable directions"
prereq
[Prop.directionsRemoved]
(applyDepthM (return . doVariable))
where
doVariable :: A.Variable -> A.Variable
doVariable (A.DirectedVariable _ _ v) = v
doVariable v = v
-- | Remove variable directions that are superfluous. This prevents confusing
-- later passes, where the user has written something like:
-- []CHAN INT da! IS ...:
-- foo(da!)
--
-- The second direction specifier is unneeded, and will confuse passes such as
-- those adding sizes parameters (which looks for plain variables, since directed
-- arrays should already have been pulled up).
removeUnneededDirections :: Pass
removeUnneededDirections
= occamOnlyPass "Remove unneeded variable directions"
prereq
[]
(applyDepthM doVariable)
where
doVariable :: Transform (A.Variable)
doVariable whole@(A.DirectedVariable m dir v)
= do t <- astTypeOf v
case t of
A.Chan {} -> return whole
A.Array _ (A.Chan {}) -> return whole
A.ChanEnd chanDir _ _ | dir == chanDir -> return v
A.Array _ (A.ChanEnd chanDir _ _) | dir == chanDir -> return v
_ -> diePC m $ formatCode "Direction applied to non-channel type: %" t
doVariable v = return v
-- | Turns any literals equivalent to a MOSTNEG back into a MOSTNEG
-- The reason for doing this is that C (and presumably C++) don't technically (according
-- to the standard) allow you to write INT_MIN directly as a constant. GCC certainly
-- warns about it. So this pass takes any MOSTNEG-equivalent values (that will have been
-- converted to constants in the constant folding earlier) and turns them back
-- into MOSTNEG, for which the C backend uses INT_MIN and similar, which avoid
-- this problem.
fixMinInt :: Pass
fixMinInt
= cOrCppOnlyPass "Turn any literals that are equal to MOSTNEG INT back into MOSTNEG INT"
prereq
[]
(applyDepthM doExpression)
where
doExpression :: Transform (A.Expression)
doExpression l@(A.Literal m t (A.IntLiteral m' s))
= do folded <- constantFold (A.MostNeg m t)
case folded of
(A.Literal _ _ (A.IntLiteral _ s'), _, _)
-> if (s == s')
then return $ A.MostNeg m t
else return l
_ -> return l -- This can happen as some literals retain the Infer
-- type which fails the constant folding
doExpression e = return e
transformWaitFor :: Pass
transformWaitFor = cOnlyPass "Transform wait for guards into wait until guards"
[]
[Prop.waitForRemoved]
(applyDepthM doAlt)
where
doAlt :: A.Process -> PassM A.Process
doAlt a@(A.Alt m pri s)
= do (s',(specs,code)) <- runStateT (transformOnly doWaitFor s) ([],[])
if (null specs && null code)
then return a
else return $ A.Seq m $ foldr addSpec (A.Several m (code ++ [A.Only m $ A.Alt m pri s'])) specs
doAlt p = return p
addSpec :: Data a => (A.Structured a -> A.Structured a) -> A.Structured a -> A.Structured a
addSpec spec inner = spec inner
doWaitFor :: Meta -> A.Alternative -> StateT ([A.Structured A.Process -> A.Structured A.Process], [A.Structured A.Process]) PassM (A.Structured A.Alternative)
doWaitFor m'' a@(A.Alternative m cond tim (A.InputTimerFor m' e) p)
= do (specs, init) <- get
id <- lift $ makeNonce "waitFor"
let n = A.Name m id
let var = A.Variable m n
put (specs ++ [A.Spec m (A.Specification m n (A.Declaration m A.Time))],
init ++ [A.Only m $ A.Input m tim
(A.InputTimerRead m (A.InVariable m var)),
A.Only m $ A.Assign m [var] $ A.ExpressionList m [A.Dyadic m A.Plus (A.ExprVariable m var) e]])
return $ A.Only m'' $ A.Alternative m cond tim (A.InputTimerAfter m' (A.ExprVariable m' var)) p
doWaitFor m a = return $ A.Only m a
append_sizes :: A.Name -> A.Name
append_sizes n = n {A.nameName = A.nameName n ++ "_sizes"}
-- | Declares a _sizes array for every array, statically sized or dynamically sized.
-- For each record type it declares a _sizes array too.
declareSizesArray :: Pass
declareSizesArray = occamOnlyPass "Declare array-size arrays"
(prereq ++ [Prop.slicesSimplified, Prop.arrayConstructorsRemoved])
[Prop.arraySizesDeclared]
(applyDepthSM doStructured)
where
defineSizesName :: Meta -> A.Name -> A.SpecType -> PassM ()
defineSizesName m n spec
= defineName n $ A.NameDef { A.ndMeta = m
, A.ndName = A.nameName n
, A.ndOrigName = A.nameName n
, A.ndSpecType = spec
, A.ndAbbrevMode = A.ValAbbrev
, A.ndNameSource = A.NameNonce
, A.ndPlacement = A.Unplaced
}
-- Strips all the array subscripts from a variable:
findInnerVar :: A.Variable -> (Maybe A.Expression, A.Variable)
findInnerVar wv@(A.SubscriptedVariable m sub v) = case sub of
A.SubscriptField {} -> (Nothing, wv)
A.SubscriptFromFor _ _ _ for -> (Just for, snd $ findInnerVar v) -- Keep the outer most
A.Subscript {} -> findInnerVar v
findInnerVar (A.DirectedVariable _ _ v) = findInnerVar v
findInnerVar v = (Nothing, v)
-- | Generate the @_sizes@ array for a 'Retypes' expression.
retypesSizes :: Meta -> A.Name -> [A.Dimension] -> A.Type -> A.Variable -> PassM A.Specification
retypesSizes m n_sizes ds elemT v@(A.Variable _ nSrc)
= do biDest <- bytesInType (A.Array ds elemT)
tSrc <- astTypeOf v
biSrc <- bytesInType tSrc
-- Figure out the size of the source.
srcSize <-
case (biSrc, tSrc) of
-- Fixed-size source -- easy.
(BIJust size, _) -> return size
-- Variable-size source -- it must be an array, so multiply
-- together the dimensions.
(_, A.Array ds t) ->
do BIJust elementSize <- bytesInType t
return $ foldl mulExprs elementSize dSizes
where
srcSizes = A.Variable m $ append_sizes nSrc
dSizes = [case d of
-- Fixed dimension.
A.Dimension e -> e
-- Variable dimension -- use the corresponding
-- element of its _sizes array.
A.UnknownDimension ->
A.ExprVariable m $ A.SubscriptedVariable m (A.Subscript m A.NoCheck $ makeConstant m i) srcSizes
| (d, i) <- zip ds [0..]]
_ -> dieP m "Cannot compute size of source type"
-- Build the _sizes array for the destination.
sizeSpecType <-
case biDest of
-- Destination size is fixed -- so we must know the dimensions.
BIJust _ ->
return $ makeStaticSizeSpec m n_sizes ds
-- Destination has one free dimension, so we need to compute
-- it.
BIOneFree destSize n ->
let newDim = A.Dimension $ divExprs srcSize destSize
ds' = replaceAt n newDim ds in
return $ makeStaticSizeSpec m n_sizes ds'
defineSizesName m n_sizes sizeSpecType
return $ A.Specification m n_sizes sizeSpecType
abbrevVarSizes :: Meta -> A.Name -> [A.Dimension] -> A.Variable -> PassM A.Specification
abbrevVarSizes m n_sizes ds outerV
= do -- Find the inner most variable (i.e. strip all the array subscripts)
let (sliceSize, innerV) = findInnerVar outerV
-- Figure out the _sizes variable to abbreviate; either the _sizes variable corresponding
-- to the abbreviation source (for everything but record fields)
-- or the globally declared record field _sizes constant
varSrcSizes <- case innerV of
A.Variable _ srcN -> return (A.Variable m $ append_sizes srcN)
A.SubscriptedVariable _ (A.SubscriptField _ fieldName) recordV ->
do A.Record recordName <- astTypeOf recordV
return (A.Variable m $ A.Name m $ A.nameName recordName ++ A.nameName fieldName ++ "_sizes")
A.DirectedVariable _ _ (A.Variable _ srcN) -> return (A.Variable m
$ append_sizes srcN)
_ -> diePC m $ formatCode "Cannot handle variable % in abbrevVarSizes" innerV
-- Get the dimensions of the source variable:
innerVT <- astTypeOf innerV
srcDs <- case innerVT of
(A.Array srcDs _) -> return srcDs
_ -> diePC m $ formatCode ("Unexpected type in abbrev var"
++ " (%) in declareSizesArray: %") innerV innerVT
-- Calculate the correct subscript into the source _sizes variable to get to the dimensions for the destination:
let sizeDiff = length srcDs - length ds
subSrcSizeVar = A.SubscriptedVariable m (A.SubscriptFromFor m A.NoCheck (makeConstant m sizeDiff) (makeConstant m $ length ds)) varSrcSizes
sizeType = A.Array [makeDimension m $ length ds] A.Int
sizeExpr = case sliceSize of
Just exp -> let subDims = [A.SubscriptedVariable m (A.Subscript m A.NoCheck $ makeConstant m n) varSrcSizes | n <- [1 .. (length srcDs - 1)]] in
A.Literal m sizeType $ A.ArrayListLiteral m $ A.Several m $
A.Only m exp : map (A.Only m . A.ExprVariable m) subDims
Nothing -> A.ExprVariable m subSrcSizeVar
sizeSpecType = A.IsExpr m A.ValAbbrev sizeType sizeExpr
defineSizesName m n_sizes sizeSpecType
return $ A.Specification m n_sizes sizeSpecType
doStructured :: Data a => A.Structured a -> PassM (A.Structured a)
doStructured str@(A.Spec m sp@(A.Specification m' n spec) s)
= do t <- typeOfSpec spec
case (spec, t) of
(_, Just (A.Array ds elemT)) ->
do let n_sizes = append_sizes n
let defineStaticSizes ds
= do let st = makeStaticSizeSpec m' n_sizes ds
defineSizesName m' n_sizes st
return $ A.Specification m' n_sizes st
sizeSpec <-
if elem A.UnknownDimension ds
-- At least one unknown dimension:
then case spec of
-- TODO I think retyping a channel array ends up
-- here, and probably isn't handled right
A.Retypes _ _ _ v ->
retypesSizes m' n_sizes ds elemT v
A.Is _ _ _ v ->
abbrevVarSizes m n_sizes ds v
A.IsChannelArray _ _ vs ->
defineStaticSizes [makeDimension m' (length vs)]
A.IsExpr _ _ _ (A.ExprVariable _ v) ->
abbrevVarSizes m n_sizes ds v
-- The dimensions in a literal should all be
-- static:
A.IsExpr _ _ _ (A.Literal _ (A.Array ds' _) _) ->
defineStaticSizes ds'
_ ->
dieP m $ "Could not handle unknown array spec: "
++ pshow spec
-- Everything is statically sized:
else defineStaticSizes ds
return (A.Spec m sizeSpec $ A.Spec m sp $ s)
(A.RecordType m _ fs, _) ->
do fieldDeclarations <-
foldM (declareFieldSizes (A.nameName n) m) s fs
return $ A.Spec m sp fieldDeclarations
_ -> return str
doStructured s = return s
makeStaticSizeSpec :: Meta -> A.Name -> [A.Dimension] -> A.SpecType
makeStaticSizeSpec m n ds = makeDynamicSizeSpec m n es
where
es = [case d of A.Dimension e -> e | d <- ds]
makeDynamicSizeSpec :: Meta -> A.Name -> [A.Expression] -> A.SpecType
makeDynamicSizeSpec m n es = sizeSpecType
where
sizeType = A.Array [makeDimension m $ length es] A.Int
sizeLit = A.Literal m sizeType $ A.ArrayListLiteral m $ A.Several m $ map (A.Only m) es
sizeSpecType = A.IsExpr m A.ValAbbrev sizeType sizeLit
declareFieldSizes :: Data a => String -> Meta -> A.Structured a -> (A.Name, A.Type) -> PassM (A.Structured a)
declareFieldSizes prep m inner (n, A.Array ds _)
= do let n_sizes = n {A.nameName = prep ++ A.nameName n}
sizeSpecType = makeStaticSizeSpec m n_sizes ds
defineSizesName m n_sizes sizeSpecType
return $ A.Spec m (A.Specification m n_sizes sizeSpecType) inner
declareFieldSizes _ _ s _ = return s
-- | A pass for adding _sizes parameters to PROC arguments
-- TODO in future, only add _sizes for variable-sized parameters
addSizesFormalParameters :: Pass
addSizesFormalParameters = occamOnlyPass "Add array-size arrays to PROC headers"
(prereq ++ [Prop.arraySizesDeclared])
[]
(applyDepthM doSpecification)
where
doSpecification :: A.Specification -> PassM A.Specification
doSpecification (A.Specification m n (A.Proc m' sm args body))
= do (args', newargs) <- transformFormals m args
let newspec = A.Proc m' sm args' body
modify (\cs -> cs {csNames = Map.adjust (\nd -> nd { A.ndSpecType = newspec }) (A.nameName n) (csNames cs)})
mapM_ (recordArg m') newargs
return $ A.Specification m n newspec
doSpecification st = return st
recordArg :: Meta -> A.Formal -> PassM ()
recordArg m (A.Formal am t n)
= defineName n $ A.NameDef {
A.ndMeta = m
,A.ndName = A.nameName n
,A.ndOrigName = A.nameName n
,A.ndSpecType = A.Declaration m t
,A.ndAbbrevMode = A.ValAbbrev
,A.ndNameSource = A.NameNonce
,A.ndPlacement = A.Unplaced}
transformFormals :: Meta -> [A.Formal] -> PassM ([A.Formal], [A.Formal])
transformFormals _ [] = return ([],[])
transformFormals m ((f@(A.Formal am t n)):fs)
= case t of
A.Array ds _ -> do let sizeType = A.Array [makeDimension m $ length ds] A.Int
let newf = A.Formal A.ValAbbrev sizeType (append_sizes n)
(rest, moreNew) <- transformFormals m fs
return (f : newf : rest, newf : moreNew)
_ -> do (rest, new) <- transformFormals m fs
return (f : rest, new)
-- | A pass for adding _sizes parameters to actuals in PROC calls
addSizesActualParameters :: Pass
addSizesActualParameters = occamOnlyPass "Add array-size arrays to PROC calls"
(prereq ++ [Prop.arraySizesDeclared])
[]
(applyDepthM doProcess)
where
doProcess :: A.Process -> PassM A.Process
doProcess (A.ProcCall m n params)
= concatMapM transformActual params >>* A.ProcCall m n
doProcess p = return p
transformActual :: A.Actual -> PassM [A.Actual]
transformActual a@(A.ActualVariable v)
= transformActualVariable a v
transformActual a@(A.ActualExpression (A.ExprVariable _ v))
= transformActualVariable a v
transformActual a = return [a]
transformActualVariable :: A.Actual -> A.Variable -> PassM [A.Actual]
transformActualVariable a v@(A.Variable m n)
= do t <- astTypeOf v
case t of
A.Array ds _ ->
return [a, A.ActualVariable a_sizes]
_ -> return [a]
where
a_sizes = A.Variable m (append_sizes n)
transformActualVariable a _ = return [a]
-- | Transforms all slices into the FromFor form.
simplifySlices :: Pass
simplifySlices = occamOnlyPass "Simplify array slices"
prereq
[Prop.slicesSimplified]
(applyDepthM doVariable)
where
doVariable :: A.Variable -> PassM A.Variable
doVariable (A.SubscriptedVariable m (A.SubscriptFor m' check for) v)
= return (A.SubscriptedVariable m (A.SubscriptFromFor m' check (makeConstant m' 0) for) v)
doVariable (A.SubscriptedVariable m (A.SubscriptFrom m' check from) v)
= do A.Array (d:_) _ <- astTypeOf v
limit <- case d of
A.Dimension n -> return n
A.UnknownDimension -> return $ A.SizeVariable m' v
return (A.SubscriptedVariable m (A.SubscriptFromFor m' check from (A.Dyadic m A.Subtr limit from)) v)
doVariable v = return v