
It's redundant, since you can always compute them from the variable, and it makes the code that deals with actuals rather cleaner. On the other hand, it slightly complicates some of the tests, because any names you use in an Actual need to be defined...
1789 lines
64 KiB
Haskell
1789 lines
64 KiB
Haskell
{-
|
|
Tock: a compiler for parallel languages
|
|
Copyright (C) 2007, 2008 University of Kent
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation, either version 2 of the License, or (at your
|
|
option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
-}
|
|
|
|
-- | Generate C code from the mangled AST. Most of the exports here are actually
|
|
-- for GenerateCPPCSP to use
|
|
module GenerateC
|
|
( cgenOps
|
|
, cgenReplicatorLoop
|
|
, cgenType
|
|
, cintroduceSpec
|
|
, cPreReq
|
|
, genComma
|
|
, genCPasses
|
|
, generate
|
|
, generateC
|
|
, genLeftB
|
|
, genMeta
|
|
, genName
|
|
, genRightB
|
|
, seqComma
|
|
, withIf
|
|
) where
|
|
|
|
import Data.Char
|
|
import Data.Generics
|
|
import Data.List
|
|
import Data.Maybe
|
|
import qualified Data.Set as Set
|
|
import Control.Monad.State
|
|
import System.IO
|
|
import Text.Printf
|
|
import Text.Regex
|
|
|
|
import qualified AST as A
|
|
import BackendPasses
|
|
import CompState
|
|
import Errors
|
|
import EvalConstants
|
|
import EvalLiterals
|
|
import GenerateCBased
|
|
import Metadata
|
|
import Pass
|
|
import qualified Properties as Prop
|
|
import ShowCode
|
|
import TLP
|
|
import Types
|
|
import Utils
|
|
|
|
--{{{ passes related to C generation
|
|
genCPasses :: [Pass]
|
|
genCPasses = makePassesDep' ((== BackendC) . csBackend)
|
|
[ ("Transform wait for guards into wait until guards", transformWaitFor, [], [Prop.waitForRemoved])
|
|
]
|
|
--}}}
|
|
|
|
cPreReq :: [Property]
|
|
cPreReq = cCppCommonPreReq ++ [Prop.parsIdentified, Prop.waitForRemoved]
|
|
|
|
--{{{ generator ops
|
|
-- | Operations for the C backend.
|
|
cgenOps :: GenOps
|
|
cgenOps = GenOps {
|
|
declareFree = cdeclareFree,
|
|
declareInit = cdeclareInit,
|
|
genActual = cgenActual,
|
|
genActuals = cgenActuals,
|
|
genAlt = cgenAlt,
|
|
genAllocMobile = cgenAllocMobile,
|
|
genArrayLiteralElems = cgenArrayLiteralElems,
|
|
genArrayStoreName = genName,
|
|
genArraySubscript = cgenArraySubscript,
|
|
genAssert = cgenAssert,
|
|
genAssign = cgenAssign,
|
|
genBytesIn = cgenBytesIn,
|
|
genCase = cgenCase,
|
|
genCheckedConversion = cgenCheckedConversion,
|
|
genClearMobile = cgenClearMobile,
|
|
genConversion = cgenConversion,
|
|
genConversionSymbol = cgenConversionSymbol,
|
|
genDecl = cgenDecl,
|
|
genDeclType = cgenDeclType,
|
|
genDeclaration = cgenDeclaration,
|
|
genDirectedVariable = cgenDirectedVariable,
|
|
genDyadic = cgenDyadic,
|
|
genExpression = cgenExpression,
|
|
genFlatArraySize = cgenFlatArraySize,
|
|
genForwardDeclaration = cgenForwardDeclaration,
|
|
genFuncDyadic = cgenFuncDyadic,
|
|
genFuncMonadic = cgenFuncMonadic,
|
|
genGetTime = cgenGetTime,
|
|
genIf = cgenIf,
|
|
genInput = cgenInput,
|
|
genInputItem = cgenInputItem,
|
|
genIntrinsicFunction = cgenIntrinsicFunction,
|
|
genIntrinsicProc = cgenIntrinsicProc,
|
|
genListAssign = cgenListAssign,
|
|
genListConcat = cgenListConcat,
|
|
genListLiteral = cgenListLiteral,
|
|
genListSize = cgenListSize,
|
|
genLiteral = cgenLiteral,
|
|
genLiteralRepr = cgenLiteralRepr,
|
|
genMissing = cgenMissing,
|
|
genMissingC = (\x -> x >>= cgenMissing),
|
|
genMonadic = cgenMonadic,
|
|
genOutput = cgenOutput,
|
|
genOutputCase = cgenOutputCase,
|
|
genOutputItem = cgenOutputItem,
|
|
genOverArray = cgenOverArray,
|
|
genPar = cgenPar,
|
|
genProcCall = cgenProcCall,
|
|
genProcess = cgenProcess,
|
|
genRecordTypeSpec = cgenRecordTypeSpec,
|
|
genReplicator = cgenReplicator,
|
|
genReplicatorLoop = cgenReplicatorLoop,
|
|
genRetypeSizes = cgenRetypeSizes,
|
|
genSeq = cgenSeq,
|
|
genSimpleDyadic = cgenSimpleDyadic,
|
|
genSimpleMonadic = cgenSimpleMonadic,
|
|
genSizeSuffix = cgenSizeSuffix,
|
|
genSpec = cgenSpec,
|
|
genSpecMode = cgenSpecMode,
|
|
genStop = cgenStop,
|
|
genStructured = cgenStructured,
|
|
genTimerRead = cgenTimerRead,
|
|
genTimerWait = cgenTimerWait,
|
|
genTopLevel = cgenTopLevel,
|
|
genType = cgenType,
|
|
genTypeSymbol = cgenTypeSymbol,
|
|
genUnfoldedExpression = cgenUnfoldedExpression,
|
|
genUnfoldedVariable = cgenUnfoldedVariable,
|
|
genVariable = cgenVariable,
|
|
genVariableAM = cgenVariableAM,
|
|
genVariableUnchecked = cgenVariableUnchecked,
|
|
genWhile = cgenWhile,
|
|
getScalarType = cgetScalarType,
|
|
introduceSpec = cintroduceSpec,
|
|
removeSpec = cremoveSpec
|
|
}
|
|
--}}}
|
|
|
|
--{{{ top-level
|
|
generateC :: Handle -> A.AST -> PassM ()
|
|
generateC = generate cgenOps
|
|
|
|
cgenTopLevel :: A.AST -> CGen ()
|
|
cgenTopLevel s
|
|
= do tell ["#include <tock_support_cif.h>\n"]
|
|
cs <- getCompState
|
|
(tlpName, tlpChans) <- tlpInterface
|
|
chans <- sequence [csmLift $ makeNonce "tlp_channel" | _ <- tlpChans]
|
|
killChans <- sequence [csmLift $ makeNonce "tlp_channel_kill" | _ <- tlpChans]
|
|
workspaces <- sequence [csmLift $ makeNonce "tlp_channel_ws" | _ <- tlpChans]
|
|
|
|
sequence_ $ map (call genForwardDeclaration)
|
|
(listify (const True :: A.Specification -> Bool) s)
|
|
|
|
sequence_ [tell ["extern int ", nameString n, "_stack_size;\n"]
|
|
| n <- Set.toList $ csParProcs cs]
|
|
tell ["extern int "]
|
|
genName tlpName
|
|
tell ["_stack_size;\n"]
|
|
|
|
call genStructured s (\m _ -> tell ["\n#error Invalid top-level item: ", show m])
|
|
|
|
tell ["void tock_main (Workspace wptr) {\n"]
|
|
sequence_ [do tell [" Channel ", c, ";\n"]
|
|
tell [" ChanInit (wptr, &", c, ");\n"]
|
|
| c <- chans ++ killChans]
|
|
tell ["\n"]
|
|
|
|
funcs <- sequence [genTLPHandler tc c kc ws
|
|
| (tc, c, kc, ws) <- zip4 tlpChans chans killChans workspaces]
|
|
|
|
tell [" LightProcBarrier bar;\n\
|
|
\ LightProcBarrierInit (wptr, &bar, ", show $ length chans, ");\n"]
|
|
|
|
sequence_ [tell [" LightProcStart (wptr, &bar, ", ws, ", (Process) ", func, ");\n"]
|
|
| (ws, func) <- zip workspaces funcs]
|
|
|
|
tell ["\n\
|
|
\ "]
|
|
genName tlpName
|
|
tell [" (wptr"]
|
|
sequence_ [tell [", &", c] | c <- chans]
|
|
tell [");\n\
|
|
\\n"]
|
|
sequence_ [tell [" ", func, "_kill (wptr, &", kc, ");\n"]
|
|
| (func, kc) <- zip funcs killChans]
|
|
|
|
let uses_stdin = if TLPIn `elem` (map snd tlpChans) then "true" else "false"
|
|
tell [" LightProcBarrierWait (wptr, &bar);\n\
|
|
\\n\
|
|
\ Shutdown (wptr);\n\
|
|
\}\n\
|
|
\\n\
|
|
\int main (int argc, char *argv[]) {\n\
|
|
\ tock_init_ccsp (", uses_stdin, ");\n\
|
|
\\n\
|
|
\ Workspace p = ProcAllocInitial (0, "]
|
|
genName tlpName
|
|
tell ["_stack_size + 512);\n\
|
|
\ ProcStartInitial (p, tock_main);\n\
|
|
\\n\
|
|
\ // NOTREACHED\n\
|
|
\ return 0;\n\
|
|
\}\n"]
|
|
where
|
|
-- | Allocate a TLP channel handler process, and return the function that
|
|
-- implements it.
|
|
genTLPHandler :: (A.Direction, TLPChannel) -> String -> String -> String -> CGen String
|
|
genTLPHandler (_, tc) c kc ws
|
|
= do tell [" Workspace ", ws, " = ProcAlloc (wptr, 3, 1024);\n\
|
|
\ ProcParam (wptr, ", ws, ", 0, &", c, ");\n\
|
|
\ ProcParam (wptr, ", ws, ", 1, &", kc, ");\n\
|
|
\ ProcParam (wptr, ", ws, ", 2, ", fp, ");\n\
|
|
\\n"]
|
|
return func
|
|
where
|
|
(fp, func) = case tc of
|
|
TLPIn -> ("stdin", "tock_tlp_input")
|
|
TLPOut -> ("stdout", "tock_tlp_output")
|
|
TLPError -> ("stderr", "tock_tlp_output")
|
|
--}}}
|
|
|
|
--{{{ utilities
|
|
cgenMissing :: String -> CGen ()
|
|
cgenMissing s = tell ["\n#error Unimplemented: ", s, "\n"]
|
|
|
|
--{{{ simple punctuation
|
|
genComma :: CGen ()
|
|
genComma = tell [","]
|
|
|
|
seqComma :: [CGen ()] -> CGen ()
|
|
seqComma ps = sequence_ $ intersperse genComma ps
|
|
|
|
genLeftB :: CGen ()
|
|
genLeftB = tell ["{"]
|
|
|
|
genRightB :: CGen ()
|
|
genRightB = tell ["}"]
|
|
--}}}
|
|
|
|
-- | Map an operation over every item of an occam array.
|
|
cgenOverArray :: Meta -> A.Variable -> (SubscripterFunction -> Maybe (CGen ())) -> CGen ()
|
|
cgenOverArray m var func
|
|
= do A.Array ds _ <- typeOfVariable var
|
|
specs <- sequence [csmLift $ makeNonceVariable "i" m A.Int A.VariableName A.Original | _ <- ds]
|
|
let indices = [A.Variable m n | A.Specification _ n _ <- specs]
|
|
|
|
let arg = (\var -> foldl (\v s -> A.SubscriptedVariable m s v) var [A.Subscript m A.NoCheck $ A.ExprVariable m i | i <- indices])
|
|
case func arg of
|
|
Just p ->
|
|
do sequence_ [do tell ["for(int "]
|
|
call genVariable i
|
|
tell ["=0;"]
|
|
call genVariable i
|
|
tell ["<"]
|
|
case d of
|
|
A.UnknownDimension ->
|
|
do call genVariable var
|
|
call genSizeSuffix (show v)
|
|
A.Dimension n -> call genExpression n
|
|
tell [";"]
|
|
call genVariable i
|
|
tell ["++){"]
|
|
| (v :: Integer, i, d) <- zip3 [0..] indices ds]
|
|
p
|
|
sequence_ [tell ["}"] | _ <- indices]
|
|
Nothing -> return ()
|
|
|
|
-- | Generate code for one of the Structured types.
|
|
cgenStructured :: Data a => A.Structured a -> (Meta -> a -> CGen ()) -> CGen ()
|
|
cgenStructured (A.Rep _ rep s) def = call genReplicator rep (call genStructured s def)
|
|
cgenStructured (A.Spec _ spec s) def = call genSpec spec (call genStructured s def)
|
|
cgenStructured (A.ProcThen _ p s) def = call genProcess p >> call genStructured s def
|
|
cgenStructured (A.Several _ ss) def = sequence_ [call genStructured s def | s <- ss]
|
|
cgenStructured (A.Only m s) def = def m s
|
|
|
|
--}}}
|
|
|
|
--{{{ metadata
|
|
-- | Turn a Meta into a string literal that can be passed to a function
|
|
-- expecting a const char * argument.
|
|
genMeta :: Meta -> CGen ()
|
|
genMeta m = tell ["\"", show m, "\""]
|
|
--}}}
|
|
|
|
--{{{ names
|
|
nameString :: A.Name -> String
|
|
nameString n = [if c == '.' then '_' else c | c <- A.nameName n]
|
|
|
|
genName :: A.Name -> CGen ()
|
|
genName n = tell [nameString n]
|
|
--}}}
|
|
|
|
--{{{ types
|
|
-- | If a type maps to a simple C type, return Just that; else return Nothing.
|
|
cgetScalarType :: A.Type -> Maybe String
|
|
cgetScalarType A.Bool = Just "bool"
|
|
cgetScalarType A.Byte = Just "uint8_t"
|
|
cgetScalarType A.UInt16 = Just "uint16_t"
|
|
cgetScalarType A.UInt32 = Just "uint32_t"
|
|
cgetScalarType A.UInt64 = Just "uint64_t"
|
|
cgetScalarType A.Int8 = Just "int8_t"
|
|
cgetScalarType A.Int = Just "int"
|
|
cgetScalarType A.Int16 = Just "int16_t"
|
|
cgetScalarType A.Int32 = Just "int32_t"
|
|
cgetScalarType A.Int64 = Just "int64_t"
|
|
cgetScalarType A.Real32 = Just "float"
|
|
cgetScalarType A.Real64 = Just "double"
|
|
cgetScalarType (A.Timer A.OccamTimer) = Just "Time"
|
|
cgetScalarType A.Time = Just "Time"
|
|
cgetScalarType _ = Nothing
|
|
|
|
-- | Generate the C type corresponding to a variable being declared.
|
|
-- It must be possible to use this in arrays.
|
|
cgenType :: A.Type -> CGen ()
|
|
cgenType (A.Array _ t)
|
|
= do call genType t
|
|
case t of
|
|
A.Chan A.DirUnknown _ _ -> tell ["*"]
|
|
_ -> return ()
|
|
tell ["*"]
|
|
cgenType (A.Record n) = genName n
|
|
cgenType (A.Mobile t@(A.Array {})) = call genType t
|
|
cgenType (A.Mobile t) = call genType t >> tell ["*"]
|
|
|
|
-- UserProtocol -- not used
|
|
-- Channels are of type "Channel", but channel-ends are of type "Channel*"
|
|
cgenType (A.Chan A.DirUnknown _ t) = tell ["Channel"]
|
|
cgenType (A.Chan _ _ t) = tell ["Channel*"]
|
|
-- Counted -- not used
|
|
-- Any -- not used
|
|
--cgenType (A.Port t) =
|
|
|
|
--TODO have a pass that declares these list types:
|
|
cgenType t@(A.List {}) = tell [subRegex (mkRegex "[^A-Za-z0-9]") (show t) ""]
|
|
|
|
cgenType t
|
|
= do f <- fget getScalarType
|
|
case f t of
|
|
Just s -> tell [s]
|
|
Nothing -> call genMissingC $ formatCode "genType %" t
|
|
|
|
indexOfFreeDimensions :: [A.Dimension] -> [Int]
|
|
indexOfFreeDimensions = (mapMaybe indexOfFreeDimensions') . (zip [0..])
|
|
where
|
|
indexOfFreeDimensions' :: (Int,A.Dimension) -> Maybe Int
|
|
indexOfFreeDimensions' (_, A.Dimension _) = Nothing
|
|
indexOfFreeDimensions' (n, A.UnknownDimension) = Just n
|
|
|
|
|
|
-- | Generate the number of bytes in a type.
|
|
cgenBytesIn :: Meta -> A.Type -> Either Bool A.Variable -> CGen ()
|
|
cgenBytesIn m t v
|
|
= do case (t, v) of
|
|
(A.Array ds _, Left freeDimensionAllowed) ->
|
|
case (length (indexOfFreeDimensions ds), freeDimensionAllowed) of
|
|
(0,_) -> return ()
|
|
(1,False) -> dieP m "genBytesIn type with unknown dimension, when unknown dimensions are not allowed"
|
|
(1,True) -> return ()
|
|
(_,_) -> dieP m "genBytesIn type with more than one free dimension"
|
|
_ -> return ()
|
|
genBytesIn' t
|
|
where
|
|
genBytesIn' :: A.Type -> CGen ()
|
|
genBytesIn' (A.Array ds t)
|
|
= do mapM_ genBytesInArrayDim (reverse $ zip ds [0..]) --The reverse is simply to match the existing tests
|
|
genBytesIn' t
|
|
|
|
genBytesIn' (A.Record n)
|
|
= do tell ["sizeof("]
|
|
genName n
|
|
tell [")"]
|
|
-- This is so that we can do RETYPES checks on channels; we don't actually
|
|
-- allow retyping between channels and other things.
|
|
genBytesIn' t@(A.Chan {})
|
|
= do tell ["sizeof("]
|
|
call genType t
|
|
tell [")"]
|
|
genBytesIn' t
|
|
= do f <- fget getScalarType
|
|
case f t of
|
|
Just s -> tell ["sizeof(", s, ")"]
|
|
Nothing -> diePC m $ formatCode "genBytesIn' %" t
|
|
|
|
-- FIXME: This could be done by generating an expression for the size,
|
|
-- which is what declareSizesPass has to do -- they should share a helper
|
|
-- function.
|
|
genBytesInArrayDim :: (A.Dimension,Int) -> CGen ()
|
|
genBytesInArrayDim (A.Dimension n, _)
|
|
= do call genExpression n
|
|
tell ["*"]
|
|
genBytesInArrayDim (A.UnknownDimension, i)
|
|
= case v of
|
|
Right rv ->
|
|
do call genVariable rv
|
|
call genSizeSuffix (show i)
|
|
tell ["*"]
|
|
_ -> return ()
|
|
|
|
--}}}
|
|
|
|
--{{{ declarations
|
|
cgenDeclType :: A.AbbrevMode -> A.Type -> CGen ()
|
|
cgenDeclType am t
|
|
= do when (am == A.ValAbbrev) $ tell ["const "]
|
|
call genType t
|
|
case t of
|
|
A.Array _ _ -> return ()
|
|
A.Chan A.DirInput _ _ -> return ()
|
|
A.Chan A.DirOutput _ _ -> return ()
|
|
A.Record _ -> tell ["*const"]
|
|
_ -> when (am == A.Abbrev) $ tell ["*const"]
|
|
|
|
cgenDecl :: A.AbbrevMode -> A.Type -> A.Name -> CGen ()
|
|
cgenDecl am t n
|
|
= do call genDeclType am t
|
|
tell [" "]
|
|
genName n
|
|
--}}}
|
|
|
|
--{{{ conversions
|
|
cgenCheckedConversion :: Meta -> A.Type -> A.Type -> CGen () -> CGen ()
|
|
cgenCheckedConversion m fromT toT exp
|
|
= do tell ["(("]
|
|
call genType toT
|
|
tell [") "]
|
|
if isSafeConversion fromT toT
|
|
then exp
|
|
else do call genTypeSymbol "range_check" fromT
|
|
tell [" ("]
|
|
call genTypeSymbol "mostneg" toT
|
|
tell [", "]
|
|
call genTypeSymbol "mostpos" toT
|
|
tell [", "]
|
|
exp
|
|
tell [", "]
|
|
genMeta m
|
|
tell [")"]
|
|
tell [")"]
|
|
|
|
cgenConversion :: Meta -> A.ConversionMode -> A.Type -> A.Expression -> CGen ()
|
|
cgenConversion m A.DefaultConversion toT e
|
|
= do fromT <- typeOfExpression e
|
|
call genCheckedConversion m fromT toT (call genExpression e)
|
|
cgenConversion m cm toT e
|
|
= do fromT <- typeOfExpression e
|
|
case (isSafeConversion fromT toT, isRealType fromT, isRealType toT) of
|
|
(True, _, _) ->
|
|
-- A safe conversion -- no need for a check.
|
|
call genCheckedConversion m fromT toT (call genExpression e)
|
|
(_, True, True) ->
|
|
-- Real to real.
|
|
do call genConversionSymbol fromT toT cm
|
|
tell [" ("]
|
|
call genExpression e
|
|
tell [", "]
|
|
genMeta m
|
|
tell [")"]
|
|
(_, True, False) ->
|
|
-- Real to integer -- do real -> int64_t -> int.
|
|
do let exp = do call genConversionSymbol fromT A.Int64 cm
|
|
tell [" ("]
|
|
call genExpression e
|
|
tell [", "]
|
|
genMeta m
|
|
tell [")"]
|
|
call genCheckedConversion m A.Int64 toT exp
|
|
(_, False, True) ->
|
|
-- Integer to real -- do int -> int64_t -> real.
|
|
do call genConversionSymbol A.Int64 toT cm
|
|
tell [" ("]
|
|
call genCheckedConversion m fromT A.Int64 (call genExpression e)
|
|
tell [", "]
|
|
genMeta m
|
|
tell [")"]
|
|
_ -> call genMissing $ "genConversion " ++ show cm
|
|
|
|
cgenConversionSymbol :: A.Type -> A.Type -> A.ConversionMode -> CGen ()
|
|
cgenConversionSymbol fromT toT cm
|
|
= do tell ["occam_convert_"]
|
|
call genType fromT
|
|
tell ["_"]
|
|
call genType toT
|
|
tell ["_"]
|
|
case cm of
|
|
A.Round -> tell ["round"]
|
|
A.Trunc -> tell ["trunc"]
|
|
--}}}
|
|
|
|
--{{{ literals
|
|
cgenLiteral :: A.LiteralRepr -> A.Type -> CGen ()
|
|
cgenLiteral lr t
|
|
= if isStringLiteral lr
|
|
then do tell ["\""]
|
|
let A.ArrayLiteral _ aes = lr
|
|
sequence_ [genByteLiteral s
|
|
| A.ArrayElemExpr (A.Literal _ _ (A.ByteLiteral _ s)) <- aes]
|
|
tell ["\""]
|
|
else call genLiteralRepr lr t
|
|
|
|
-- | Does a LiteralRepr represent something that can be a plain string literal?
|
|
isStringLiteral :: A.LiteralRepr -> Bool
|
|
isStringLiteral (A.ArrayLiteral _ aes)
|
|
= and [case ae of
|
|
A.ArrayElemExpr (A.Literal _ _ (A.ByteLiteral _ _)) -> True
|
|
_ -> False
|
|
| ae <- aes]
|
|
isStringLiteral _ = False
|
|
|
|
genLitSuffix :: A.Type -> CGen ()
|
|
genLitSuffix A.UInt32 = tell ["U"]
|
|
genLitSuffix A.Int64 = tell ["LL"]
|
|
genLitSuffix A.UInt64 = tell ["ULL"]
|
|
genLitSuffix A.Real32 = tell ["F"]
|
|
genLitSuffix _ = return ()
|
|
|
|
cgenListLiteral :: [A.Expression] -> A.Type -> CGen ()
|
|
cgenListLiteral _ _ = call genMissing "C backend does not yet support lists"
|
|
|
|
cgenListSize :: A.Variable -> CGen ()
|
|
cgenListSize _ = call genMissing "C backend does not yet support lists"
|
|
|
|
cgenListAssign :: A.Variable -> A.Expression -> CGen ()
|
|
cgenListAssign _ _ = call genMissing "C backend does not yet support lists"
|
|
|
|
cgenLiteralRepr :: A.LiteralRepr -> A.Type -> CGen ()
|
|
cgenLiteralRepr (A.RealLiteral m s) t = tell [s] >> genLitSuffix t
|
|
cgenLiteralRepr (A.IntLiteral m s) t
|
|
= do genDecimal s
|
|
genLitSuffix t
|
|
cgenLiteralRepr (A.HexLiteral m s) t
|
|
= do f <- fget getScalarType
|
|
ct <- case f t of
|
|
Just ct -> return ct
|
|
Nothing -> diePC m $ formatCode "Non-scalar type for hex literal: " t
|
|
tell ["((",ct,")0x", s]
|
|
genLitSuffix t
|
|
tell [")"]
|
|
cgenLiteralRepr (A.ByteLiteral m s) _ = tell ["'"] >> genByteLiteral s >> tell ["'"]
|
|
cgenLiteralRepr (A.ArrayLiteral m aes) _
|
|
= do genLeftB
|
|
call genArrayLiteralElems aes
|
|
genRightB
|
|
cgenLiteralRepr (A.RecordLiteral _ es) _
|
|
= do genLeftB
|
|
seqComma $ map (call genUnfoldedExpression) es
|
|
genRightB
|
|
cgenLiteralRepr (A.ListLiteral _ es) t = call genListLiteral es t
|
|
|
|
-- | Generate an expression inside a record literal.
|
|
--
|
|
-- This is awkward: the sort of literal that this produces when there's a
|
|
-- variable in here cannot always be compiled at the top level of a C99 program
|
|
-- -- because in C99, an array subscript is not a constant, even if it's a
|
|
-- constant subscript of a constant array. So we need to be sure that when we
|
|
-- use this at the top level, the thing we're unfolding only contains literals.
|
|
-- Yuck!
|
|
cgenUnfoldedExpression :: A.Expression -> CGen ()
|
|
cgenUnfoldedExpression (A.Literal _ t lr)
|
|
= do call genLiteralRepr lr t
|
|
cgenUnfoldedExpression (A.ExprVariable m var) = call genUnfoldedVariable m var
|
|
cgenUnfoldedExpression e = call genExpression e
|
|
|
|
-- | Generate a variable inside a record literal.
|
|
cgenUnfoldedVariable :: Meta -> A.Variable -> CGen ()
|
|
cgenUnfoldedVariable m var
|
|
= do t <- typeOfVariable var
|
|
case t of
|
|
A.Array ds _ ->
|
|
do genLeftB
|
|
unfoldArray ds var
|
|
genRightB
|
|
A.Record _ ->
|
|
do genLeftB
|
|
fs <- recordFields m t
|
|
seqComma [call genUnfoldedVariable m (A.SubscriptedVariable m (A.SubscriptField m n) var)
|
|
| (n, t) <- fs]
|
|
genRightB
|
|
-- We can defeat the usage check here because we know it's safe; *we're*
|
|
-- generating the subscripts.
|
|
-- FIXME Is that actually true for something like [a[x]]?
|
|
_ -> call genVariableUnchecked var
|
|
where
|
|
unfoldArray :: [A.Dimension] -> A.Variable -> CGen ()
|
|
unfoldArray [] v = call genUnfoldedVariable m v
|
|
unfoldArray (A.Dimension e:ds) v
|
|
= do n <- evalIntExpression e
|
|
seqComma $ [unfoldArray ds (A.SubscriptedVariable m (A.Subscript m A.NoCheck $ makeConstant m i) v)
|
|
| i <- [0..(n - 1)]]
|
|
unfoldArray _ _ = dieP m "trying to unfold array with unknown dimension"
|
|
|
|
-- | Generate a decimal literal -- removing leading zeroes to avoid producing
|
|
-- an octal literal!
|
|
genDecimal :: String -> CGen ()
|
|
genDecimal "0" = tell ["0"]
|
|
genDecimal ('0':s) = genDecimal s
|
|
genDecimal ('-':s) = tell ["-"] >> genDecimal s
|
|
genDecimal s = tell [s]
|
|
|
|
cgenArrayLiteralElems :: [A.ArrayElem] -> CGen ()
|
|
cgenArrayLiteralElems aes
|
|
= seqComma $ map genElem aes
|
|
where
|
|
genElem :: A.ArrayElem -> CGen ()
|
|
genElem (A.ArrayElemArray aes) = call genArrayLiteralElems aes
|
|
genElem (A.ArrayElemExpr e) = call genUnfoldedExpression e
|
|
|
|
genByteLiteral :: String -> CGen ()
|
|
genByteLiteral s
|
|
= do c <- evalByte s
|
|
tell [convByte c]
|
|
|
|
convByte :: Char -> String
|
|
convByte '\'' = "\\'"
|
|
convByte '"' = "\\\""
|
|
convByte '\\' = "\\\\"
|
|
convByte '\r' = "\\r"
|
|
convByte '\n' = "\\n"
|
|
convByte '\t' = "\\t"
|
|
convByte c
|
|
| o == 0 = "\\0"
|
|
| (o < 32 || o > 127) = printf "\\%03o" o
|
|
| otherwise = [c]
|
|
where o = ord c
|
|
--}}}
|
|
|
|
--{{{ variables
|
|
{-
|
|
The various types are generated like this:
|
|
|
|
================= Use =================
|
|
Original ValAbbrev Abbrev
|
|
--------------------------------------
|
|
INT x: int x; int x; int *x;
|
|
x x x *x
|
|
|
|
[10]INT xs: int xs[10]; int *xs; int *xs;
|
|
xs xs xs xs
|
|
xs[i] xs[i] xs[i] xs[i]
|
|
|
|
[20][10]INT xss: int xss[20*10]; int *xss; int *xss;
|
|
xss xss xss xss
|
|
xss[i] &xss[i*10] &xss[i*10] &xss[i*10] (where 10 = xss_sizes[1])
|
|
xss[i][j] xss[i*10+j] xss[i*10+j] xss[i*10+j]
|
|
|
|
[6][4][2]INT xsss: int xsss[6*4*2]; int *xsss;
|
|
xsss xsss (as left)
|
|
xsss[i] &xsss[i*4*2]
|
|
xsss[i][j] &xsss[i*4*2+j*2]
|
|
xsss[i][j][k] xsss[i*4*2+j*2+k]
|
|
|
|
MYREC r: MYREC r; MYREC *r; MYREC *r;
|
|
r &r r r
|
|
r[F] (&r)->F (r)->F (r)->F
|
|
|
|
[10]MYREC rs: MYREC rs[10]; MYREC *rs; MYREC *rs;
|
|
rs rs rs rs
|
|
rs[i] &rs[i] &rs[i] &rs[i]
|
|
rs[i][F] (&rs[i])->F (&rs[i])->F (&rs[i])->F
|
|
-- depending on what F is -- if it's another record...
|
|
|
|
CHAN OF INT c: Channel c; Channel *c;
|
|
c &c c
|
|
|
|
[10]CHAN OF INT cs: Channel* cs[10]; Channel **cs;
|
|
cs cs cs
|
|
cs[i] cs[i] cs[i]
|
|
|
|
I suspect there's probably a nicer way of doing this, but as a translation of
|
|
the above table this isn't too horrible...
|
|
-}
|
|
-- | Generate C code for a variable.
|
|
cgenVariable :: A.Variable -> CGen ()
|
|
cgenVariable = cgenVariable' True
|
|
|
|
-- | Generate C code for a variable without doing any range checks.
|
|
cgenVariableUnchecked :: A.Variable -> CGen ()
|
|
cgenVariableUnchecked = cgenVariable' False
|
|
|
|
cgenVariable' :: Bool -> A.Variable -> CGen ()
|
|
cgenVariable' checkValid v
|
|
= do (cg, n) <- inner 0 v Nothing
|
|
addPrefix cg n
|
|
where
|
|
-- The general plan here is to generate the variable, while also
|
|
-- putting in the right prefixes (&/*/**/***/etc).
|
|
-- We use an "indirection level" to record the prefix needed.
|
|
-- 0 means no prefix, -1 means &, 1 means *, 2 means **, etc
|
|
|
|
-- For arrays, we must pass through the inner type of the array
|
|
-- so that we can add the appropriate prefixes before the array
|
|
-- name. That is, we make sure we write (&foo[0]), not
|
|
-- (&foo)[0]
|
|
|
|
inner :: Int -> A.Variable -> Maybe A.Type -> CGen (CGen (), Int)
|
|
inner ind (A.Variable _ n) mt
|
|
= do amN <- abbrevModeOfName n
|
|
(am,t) <- case (amN,mt) of
|
|
-- Channel arrays are special, because they are arrays of abbreviations:
|
|
(_, Just t'@(A.Chan {})) -> return (A.Abbrev, t')
|
|
-- If we are dealing with an array element, treat it as if it had the original abbreviation mode,
|
|
-- regardless of the abbreviation mode of the array:
|
|
(_, Just t') -> return (A.Original, t')
|
|
(am,Nothing) -> do t <- typeOfName n
|
|
return (am, t)
|
|
let ind' = case (am, t, indirectedType t) of
|
|
-- For types that are referred to by pointer (such as records)
|
|
-- we need to take the address:
|
|
(A.Original, _, True) -> ind - 1
|
|
-- If the type is referred to by pointer but is already abbreviated,
|
|
-- no need to change the indirection:
|
|
(_, _, True) -> ind
|
|
-- Undirected channels will already have been handled, so this is for directed:
|
|
(A.Abbrev, A.Chan {}, _) -> ind
|
|
-- Abbreviations of arrays are pointers, just like arrays, so no
|
|
-- need for a * operator:
|
|
(A.Abbrev, A.Array {}, _) -> ind
|
|
(A.Abbrev, _, _) -> ind + 1
|
|
_ -> ind
|
|
return (genName n, ind')
|
|
inner ind (A.DerefVariable _ v) mt
|
|
= do (A.Mobile t) <- typeOfVariable v
|
|
case t of
|
|
A.Array {} -> inner ind v mt
|
|
A.Record {} -> inner ind v mt
|
|
_ -> inner (ind+1) v mt
|
|
inner ind (A.DirectedVariable _ dir v) mt
|
|
= do (cg,n) <- (inner ind v mt)
|
|
return (call genDirectedVariable (addPrefix cg n) dir, 0)
|
|
inner ind sv@(A.SubscriptedVariable m (A.Subscript _ subCheck _) v) mt
|
|
= do (es, v, t') <- collectSubs sv
|
|
t <- if checkValid
|
|
then typeOfVariable sv
|
|
else return t'
|
|
A.Array ds _ <- typeOfVariable v
|
|
(cg, n) <- inner ind v (Just t)
|
|
let check = if checkValid then subCheck else A.NoCheck
|
|
return ((if (length ds /= length es) then tell ["&"] else return ()) >> cg
|
|
>> call genArraySubscript check v (map (\e -> (findMeta e, call genExpression e)) es), n)
|
|
inner ind sv@(A.SubscriptedVariable _ (A.SubscriptField m n) v) mt
|
|
= do (cg, ind') <- inner ind v mt
|
|
t <- typeOfVariable sv
|
|
let outerInd :: Int
|
|
outerInd = if indirectedType t then -1 else 0
|
|
return (addPrefix (addPrefix cg ind' >> tell ["->"] >> genName n) outerInd, 0)
|
|
|
|
inner ind sv@(A.SubscriptedVariable m (A.SubscriptFromFor m' start count) v) mt
|
|
= return (
|
|
do tell ["(&"]
|
|
join $ liftM fst $ inner ind v mt
|
|
call genArraySubscript A.NoCheck v [(m',
|
|
do tell ["occam_check_slice("]
|
|
call genExpression start
|
|
genComma
|
|
call genExpression count
|
|
genComma
|
|
call genExpression (A.SizeVariable m' v)
|
|
genComma
|
|
genMeta m'
|
|
tell [")"]
|
|
)]
|
|
tell [")"], 0)
|
|
|
|
addPrefix :: CGen () -> Int -> CGen ()
|
|
addPrefix cg 0 = cg
|
|
addPrefix cg n = tell ["(", getPrefix n] >> cg >> tell [")"]
|
|
|
|
getPrefix :: Int -> String
|
|
getPrefix 0 = ""
|
|
getPrefix (-1) = "&"
|
|
getPrefix n = if n > 0 then replicate n '*' else "#error Negative prefix lower than -1"
|
|
|
|
-- | Collect all the plain subscripts on a variable, so we can combine them.
|
|
collectSubs :: A.Variable -> CGen ([A.Expression], A.Variable, A.Type)
|
|
collectSubs (A.SubscriptedVariable m (A.Subscript _ _ e) v)
|
|
= do (es', v', t') <- collectSubs v
|
|
t <- trivialSubscriptType m t'
|
|
return (es' ++ [e], v', t)
|
|
collectSubs v = do t <- typeOfVariable v
|
|
return ([], v, t)
|
|
|
|
|
|
indirectedType :: A.Type -> Bool
|
|
indirectedType (A.Record {}) = True
|
|
indirectedType (A.Chan A.DirUnknown _ _) = True
|
|
indirectedType _ = False
|
|
|
|
cgenDirectedVariable :: CGen () -> A.Direction -> CGen ()
|
|
cgenDirectedVariable var _ = var
|
|
|
|
cgenArraySubscript :: A.SubscriptCheck -> A.Variable -> [(Meta, CGen ())] -> CGen ()
|
|
cgenArraySubscript check v es
|
|
= do t <- typeOfVariable v
|
|
let numDims = case t of A.Array ds _ -> length ds
|
|
tell ["["]
|
|
sequence_ $ intersperse (tell ["+"]) $ genPlainSub (genDynamicDim v) es [0..(numDims - 1)]
|
|
tell ["]"]
|
|
where
|
|
genDynamicDim :: A.Variable -> Int -> CGen ()
|
|
genDynamicDim v i = call genVariable v >> call genSizeSuffix (show i)
|
|
|
|
-- | Generate the individual offsets that need adding together to find the
|
|
-- right place in the array.
|
|
-- FIXME This is obviously not the best way to factor this, but I figure a
|
|
-- smart C compiler should be able to work it out...
|
|
genPlainSub :: (Int -> CGen ()) -> [(Meta, CGen ())] -> [Int] -> [CGen ()]
|
|
genPlainSub _ [] _ = []
|
|
genPlainSub genDim ((m,e):es) (sub:subs)
|
|
= gen : genPlainSub genDim es subs
|
|
where
|
|
gen = sequence_ $ intersperse (tell ["*"]) $ genSub : genChunks
|
|
genSub
|
|
= case check of
|
|
A.NoCheck -> e
|
|
A.CheckBoth ->
|
|
do tell ["occam_check_index("]
|
|
e
|
|
tell [","]
|
|
genDim sub
|
|
tell [","]
|
|
genMeta m
|
|
tell [")"]
|
|
A.CheckUpper ->
|
|
do tell ["occam_check_index_upper("]
|
|
e
|
|
tell [","]
|
|
genDim sub
|
|
tell [","]
|
|
genMeta m
|
|
tell [")"]
|
|
A.CheckLower ->
|
|
do tell ["occam_check_index_lower("]
|
|
e
|
|
tell [","]
|
|
genMeta m
|
|
tell [")"]
|
|
genChunks = map genDim subs
|
|
--}}}
|
|
|
|
--{{{ expressions
|
|
cgenExpression :: A.Expression -> CGen ()
|
|
cgenExpression (A.Monadic m op e) = call genMonadic m op e
|
|
cgenExpression (A.Dyadic m op e f) = call genDyadic m op e f
|
|
cgenExpression (A.MostPos m t) = call genTypeSymbol "mostpos" t
|
|
cgenExpression (A.MostNeg m t) = call genTypeSymbol "mostneg" t
|
|
--cgenExpression (A.SizeType m t)
|
|
cgenExpression (A.SizeExpr m e)
|
|
= do call genExpression e
|
|
call genSizeSuffix "0"
|
|
cgenExpression (A.SizeVariable m v)
|
|
= do t <- typeOfVariable v
|
|
case t of
|
|
A.Array (d:_) _ ->
|
|
case d of
|
|
A.Dimension n -> call genExpression n
|
|
A.UnknownDimension -> do call genVariable v
|
|
call genSizeSuffix "0"
|
|
A.List _ ->
|
|
call genListSize v
|
|
cgenExpression (A.Conversion m cm t e) = call genConversion m cm t e
|
|
cgenExpression (A.ExprVariable m v) = call genVariable v
|
|
cgenExpression (A.Literal _ t lr) = call genLiteral lr t
|
|
cgenExpression (A.True m) = tell ["true"]
|
|
cgenExpression (A.False m) = tell ["false"]
|
|
--cgenExpression (A.FunctionCall m n es)
|
|
cgenExpression (A.IntrinsicFunctionCall m s es) = call genIntrinsicFunction m s es
|
|
--cgenExpression (A.SubscriptedExpr m s e)
|
|
--cgenExpression (A.BytesInExpr m e)
|
|
cgenExpression (A.BytesInType m t) = call genBytesIn m t (Left False)
|
|
--cgenExpression (A.OffsetOf m t n)
|
|
--cgenExpression (A.ExprConstr {})
|
|
cgenExpression (A.AllocMobile m t me) = call genAllocMobile m t me
|
|
cgenExpression t = call genMissing $ "genExpression " ++ show t
|
|
|
|
cgenSizeSuffix :: String -> CGen ()
|
|
cgenSizeSuffix dim = tell ["_sizes[", dim, "]"]
|
|
|
|
cgenTypeSymbol :: String -> A.Type -> CGen ()
|
|
cgenTypeSymbol s t
|
|
= do f <- fget getScalarType
|
|
case (t, f t) of
|
|
(A.Time, _) -> tell ["occam_", s, "_time"]
|
|
(_, Just ct) -> tell ["occam_", s, "_", ct]
|
|
(_, Nothing) -> call genMissingC $ formatCode "genTypeSymbol %" t
|
|
|
|
cgenIntrinsicFunction :: Meta -> String -> [A.Expression] -> CGen ()
|
|
cgenIntrinsicFunction m s es
|
|
= do tell ["occam_", s, " ("]
|
|
sequence [call genExpression e >> genComma | e <- es]
|
|
genMeta m
|
|
tell [")"]
|
|
--}}}
|
|
|
|
--{{{ operators
|
|
cgenSimpleMonadic :: String -> A.Expression -> CGen ()
|
|
cgenSimpleMonadic s e
|
|
= do tell ["(", s]
|
|
call genExpression e
|
|
tell [")"]
|
|
|
|
cgenFuncMonadic :: Meta -> String -> A.Expression -> CGen ()
|
|
cgenFuncMonadic m s e
|
|
= do t <- typeOfExpression e
|
|
call genTypeSymbol s t
|
|
tell [" ("]
|
|
call genExpression e
|
|
tell [", "]
|
|
genMeta m
|
|
tell [")"]
|
|
|
|
cgenMonadic :: Meta -> A.MonadicOp -> A.Expression -> CGen ()
|
|
cgenMonadic m A.MonadicSubtr e = call genFuncMonadic m "negate" e
|
|
cgenMonadic _ A.MonadicMinus e = call genSimpleMonadic "-" e
|
|
cgenMonadic _ A.MonadicBitNot e = call genSimpleMonadic "~" e
|
|
cgenMonadic _ A.MonadicNot e = call genSimpleMonadic "!" e
|
|
|
|
cgenSimpleDyadic :: String -> A.Expression -> A.Expression -> CGen ()
|
|
cgenSimpleDyadic s e f
|
|
= do tell ["("]
|
|
call genExpression e
|
|
tell [" ", s, " "]
|
|
call genExpression f
|
|
tell [")"]
|
|
|
|
cgenFuncDyadic :: Meta -> String -> A.Expression -> A.Expression -> CGen ()
|
|
cgenFuncDyadic m s e f
|
|
= do t <- typeOfExpression e
|
|
call genTypeSymbol s t
|
|
tell [" ("]
|
|
call genExpression e
|
|
tell [", "]
|
|
call genExpression f
|
|
tell [", "]
|
|
genMeta m
|
|
tell [")"]
|
|
|
|
cgenDyadic :: Meta -> A.DyadicOp -> A.Expression -> A.Expression -> CGen ()
|
|
cgenDyadic m A.Add e f = call genFuncDyadic m "add" e f
|
|
cgenDyadic m A.Subtr e f = call genFuncDyadic m "subtr" e f
|
|
cgenDyadic m A.Mul e f = call genFuncDyadic m "mul" e f
|
|
cgenDyadic m A.Div e f = call genFuncDyadic m "div" e f
|
|
cgenDyadic m A.Rem e f = call genFuncDyadic m "rem" e f
|
|
cgenDyadic m A.Plus e f = call genFuncDyadic m "plus" e f
|
|
cgenDyadic m A.Minus e f = call genFuncDyadic m "minus" e f
|
|
cgenDyadic m A.Times e f = call genFuncDyadic m "times" e f
|
|
cgenDyadic m A.LeftShift e f = call genFuncDyadic m "lshift" e f
|
|
cgenDyadic m A.RightShift e f = call genFuncDyadic m "rshift" e f
|
|
cgenDyadic _ A.BitAnd e f = call genSimpleDyadic "&" e f
|
|
cgenDyadic _ A.BitOr e f = call genSimpleDyadic "|" e f
|
|
cgenDyadic _ A.BitXor e f = call genSimpleDyadic "^" e f
|
|
cgenDyadic _ A.And e f = call genSimpleDyadic "&&" e f
|
|
cgenDyadic _ A.Or e f = call genSimpleDyadic "||" e f
|
|
cgenDyadic _ A.Eq e f = call genSimpleDyadic "==" e f
|
|
cgenDyadic _ A.NotEq e f = call genSimpleDyadic "!=" e f
|
|
cgenDyadic _ A.Less e f = call genSimpleDyadic "<" e f
|
|
cgenDyadic _ A.More e f = call genSimpleDyadic ">" e f
|
|
cgenDyadic _ A.LessEq e f = call genSimpleDyadic "<=" e f
|
|
cgenDyadic _ A.MoreEq e f = call genSimpleDyadic ">=" e f
|
|
cgenDyadic _ A.Concat e f = call genListConcat e f
|
|
--}}}
|
|
|
|
cgenListConcat :: A.Expression -> A.Expression -> CGen ()
|
|
cgenListConcat _ _ = call genMissing "C backend does not yet support lists"
|
|
|
|
--{{{ input/output items
|
|
cgenInputItem :: A.Variable -> A.InputItem -> CGen ()
|
|
cgenInputItem c (A.InCounted m cv av)
|
|
= do call genInputItem c (A.InVariable m cv)
|
|
t <- typeOfVariable av
|
|
tell ["ChanIn(wptr,"]
|
|
call genVariable c
|
|
tell [","]
|
|
call genVariableAM av A.Abbrev
|
|
tell [","]
|
|
subT <- trivialSubscriptType m t
|
|
call genVariable cv
|
|
tell ["*"]
|
|
call genBytesIn m subT (Right av)
|
|
tell [");"]
|
|
cgenInputItem c (A.InVariable m v)
|
|
= do t <- typeOfVariable v
|
|
let rhs = call genVariableAM v A.Abbrev
|
|
case t of
|
|
A.Int ->
|
|
do tell ["ChanInInt(wptr,"]
|
|
call genVariable c
|
|
tell [","]
|
|
rhs
|
|
tell [");"]
|
|
_ ->
|
|
do tell ["ChanIn(wptr,"]
|
|
call genVariable c
|
|
tell [","]
|
|
rhs
|
|
tell [","]
|
|
call genBytesIn m t (Right v)
|
|
tell [");"]
|
|
|
|
cgenOutputItem :: A.Variable -> A.OutputItem -> CGen ()
|
|
cgenOutputItem c (A.OutCounted m ce ae)
|
|
= do call genOutputItem c (A.OutExpression m ce)
|
|
t <- typeOfExpression ae
|
|
case ae of
|
|
A.ExprVariable m v ->
|
|
do tell ["ChanOut(wptr,"]
|
|
call genVariable c
|
|
tell [","]
|
|
call genVariableAM v A.Abbrev
|
|
tell [","]
|
|
subT <- trivialSubscriptType m t
|
|
call genExpression ce
|
|
tell ["*"]
|
|
call genBytesIn m subT (Right v)
|
|
tell [");"]
|
|
cgenOutputItem c (A.OutExpression m e)
|
|
= do t <- typeOfExpression e
|
|
case (t, e) of
|
|
(A.Int, _) ->
|
|
do tell ["ChanOutInt(wptr,"]
|
|
call genVariable c
|
|
tell [","]
|
|
call genExpression e
|
|
tell [");"]
|
|
(_, A.ExprVariable _ v) ->
|
|
do tell ["ChanOut(wptr,"]
|
|
call genVariable c
|
|
tell [","]
|
|
call genVariableAM v A.Abbrev
|
|
tell [","]
|
|
call genBytesIn m t (Right v)
|
|
tell [");"]
|
|
--}}}
|
|
|
|
--{{{ replicators
|
|
cgenReplicator :: A.Replicator -> CGen () -> CGen ()
|
|
cgenReplicator rep body
|
|
= do tell ["for("]
|
|
call genReplicatorLoop rep
|
|
tell ["){"]
|
|
body
|
|
tell ["}"]
|
|
|
|
isZero :: A.Expression -> Bool
|
|
isZero (A.Literal _ A.Int (A.IntLiteral _ "0")) = True
|
|
isZero _ = False
|
|
|
|
cgenReplicatorLoop :: A.Replicator -> CGen ()
|
|
cgenReplicatorLoop (A.For m index base count)
|
|
= if isZero base
|
|
then simple
|
|
else general
|
|
where
|
|
simple :: CGen ()
|
|
simple
|
|
= do tell ["int "]
|
|
genName index
|
|
tell ["=0;"]
|
|
genName index
|
|
tell ["<"]
|
|
call genExpression count
|
|
tell [";"]
|
|
genName index
|
|
tell ["++"]
|
|
|
|
general :: CGen ()
|
|
general
|
|
= do counter <- csmLift $ makeNonce "replicator_count"
|
|
tell ["int ", counter, "="]
|
|
call genExpression count
|
|
tell [","]
|
|
genName index
|
|
tell ["="]
|
|
call genExpression base
|
|
tell [";", counter, ">0;", counter, "--,"]
|
|
genName index
|
|
tell ["++"]
|
|
cgenReplicatorLoop _ = cgenMissing "ForEach loops not yet supported in the C backend"
|
|
--}}}
|
|
|
|
--{{{ abbreviations
|
|
|
|
cgenVariableAM :: A.Variable -> A.AbbrevMode -> CGen ()
|
|
cgenVariableAM v am
|
|
= do when (am == A.Abbrev) $
|
|
do t <- typeOfVariable v
|
|
case (indirectedType t, t) of
|
|
(True, _) -> return ()
|
|
(False, A.Array {}) -> return ()
|
|
_ -> tell ["&"]
|
|
call genVariable v
|
|
|
|
-- | Generate the size part of a RETYPES\/RESHAPES abbrevation of a variable.
|
|
cgenRetypeSizes :: Meta -> A.Type -> A.Name -> A.Type -> A.Variable -> CGen ()
|
|
cgenRetypeSizes _ (A.Chan {}) _ (A.Chan {}) _ = return ()
|
|
cgenRetypeSizes m destT destN srcT srcV
|
|
= let size = do tell ["occam_check_retype("]
|
|
call genBytesIn m srcT (Right srcV)
|
|
tell [","]
|
|
call genBytesIn m destT (Left True)
|
|
tell [","]
|
|
genMeta m
|
|
tell [")"]
|
|
isVarArray = case destT of
|
|
A.Array ds _ -> A.UnknownDimension `elem` ds
|
|
_ -> False in
|
|
if isVarArray
|
|
then size >> tell [";"]
|
|
else
|
|
do tell ["if("]
|
|
size
|
|
tell ["!=1){"]
|
|
call genStop m "size mismatch in RETYPES"
|
|
tell ["}"]
|
|
|
|
-- | Generate the right-hand side of an abbreviation of an expression.
|
|
abbrevExpression :: A.AbbrevMode -> A.Type -> A.Expression -> CGen ()
|
|
abbrevExpression am t@(A.Array _ _) e
|
|
= case e of
|
|
A.ExprVariable _ v -> call genVariableAM v am
|
|
A.Literal _ t@(A.Array _ _) r -> call genExpression e
|
|
_ -> call genMissing "array expression abbreviation"
|
|
abbrevExpression am _ e = call genExpression e
|
|
--}}}
|
|
|
|
--{{{ specifications
|
|
cgenSpec :: A.Specification -> CGen () -> CGen ()
|
|
cgenSpec spec body
|
|
= do call introduceSpec spec
|
|
body
|
|
call removeSpec spec
|
|
|
|
-- | Generate a declaration of a new variable.
|
|
cgenDeclaration :: A.Type -> A.Name -> Bool -> CGen ()
|
|
cgenDeclaration at@(A.Array ds t) n False
|
|
= do call genType t
|
|
tell [" "]
|
|
case t of
|
|
A.Chan A.DirUnknown _ _ ->
|
|
do genName n
|
|
tell ["_storage"]
|
|
call genFlatArraySize ds
|
|
tell [";"]
|
|
call genType t
|
|
tell ["* "]
|
|
_ -> return ()
|
|
call genArrayStoreName n
|
|
call genFlatArraySize ds
|
|
tell [";"]
|
|
cgenDeclaration (A.Array ds t) n True
|
|
= do call genType t
|
|
tell [" "]
|
|
call genArrayStoreName n
|
|
call genFlatArraySize ds
|
|
tell [";"]
|
|
cgenDeclaration t n _
|
|
= do call genType t
|
|
tell [" "]
|
|
genName n
|
|
tell [";"]
|
|
|
|
-- | Generate the size of the C array that an occam array of the given
|
|
-- dimensions maps to.
|
|
cgenFlatArraySize :: [A.Dimension] -> CGen ()
|
|
cgenFlatArraySize ds
|
|
= do tell ["["]
|
|
sequence $ intersperse (tell ["*"])
|
|
[call genExpression n | A.Dimension n <- ds]
|
|
tell ["]"]
|
|
-- FIXME: genBytesInArrayDim could share with this
|
|
|
|
-- | Initialise an item being declared.
|
|
cdeclareInit :: Meta -> A.Type -> A.Variable -> Maybe (CGen ())
|
|
cdeclareInit _ (A.Chan A.DirUnknown _ _) var
|
|
= Just $ do tell ["ChanInit(wptr,"]
|
|
call genVariableUnchecked var
|
|
tell [");"]
|
|
cdeclareInit m t@(A.Array ds t') var
|
|
= Just $ do case t' of
|
|
A.Chan A.DirUnknown _ _ ->
|
|
do tell ["tock_init_chan_array("]
|
|
call genVariableUnchecked var
|
|
tell ["_storage,"]
|
|
call genVariableUnchecked var
|
|
tell [","]
|
|
sequence_ $ intersperse (tell ["*"])
|
|
[call genExpression n | A.Dimension n <- ds]
|
|
-- FIXME: and again
|
|
tell [");"]
|
|
_ -> return ()
|
|
fdeclareInit <- fget declareInit
|
|
init <- return (\sub -> fdeclareInit m t' (sub var))
|
|
call genOverArray m var init
|
|
cdeclareInit m rt@(A.Record _) var
|
|
= Just $ do fs <- recordFields m rt
|
|
sequence_ [initField t (A.SubscriptedVariable m (A.SubscriptField m n) var)
|
|
| (n, t) <- fs]
|
|
where
|
|
initField :: A.Type -> A.Variable -> CGen ()
|
|
initField t v = do fdeclareInit <- fget declareInit
|
|
doMaybe $ fdeclareInit m t v
|
|
cdeclareInit _ _ _ = Nothing
|
|
|
|
-- | Free a declared item that's going out of scope.
|
|
cdeclareFree :: Meta -> A.Type -> A.Variable -> Maybe (CGen ())
|
|
cdeclareFree _ _ _ = Nothing
|
|
|
|
{-
|
|
Original Abbrev
|
|
INT x IS y: int *x = &y; int *x = &(*y);
|
|
[]INT xs IS ys: int *xs = ys; int *xs = ys;
|
|
const int xs_sizes[] = ys_sizes;
|
|
|
|
CHAN OF INT c IS d: Channel *c = d;
|
|
|
|
[10]CHAN OF INT cs: Channel tmp[10];
|
|
Channel *cs[10];
|
|
for (...) { cs[i] = &tmp[i]; ChanInit(cs[i]); }
|
|
const int cs_sizes[] = { 10 };
|
|
[]CHAN OF INT ds IS cs: Channel **ds = cs;
|
|
const int *ds_sizes = cs_sizes;
|
|
-}
|
|
cintroduceSpec :: A.Specification -> CGen ()
|
|
cintroduceSpec (A.Specification m n (A.Declaration _ t))
|
|
= do call genDeclaration t n False
|
|
fdeclareInit <- fget declareInit
|
|
case fdeclareInit m t (A.Variable m n) of
|
|
Just p -> p
|
|
Nothing -> return ()
|
|
cintroduceSpec (A.Specification _ n (A.Is _ am t v))
|
|
= do let rhs = call genVariableAM v am
|
|
call genDecl am t n
|
|
tell ["="]
|
|
rhs
|
|
tell [";"]
|
|
cintroduceSpec (A.Specification _ n (A.IsExpr _ am t e))
|
|
= do let rhs = abbrevExpression am t e
|
|
case (am, t, e) of
|
|
(A.ValAbbrev, A.Array _ ts, A.Literal _ _ _) ->
|
|
-- For "VAL []T a IS [vs]:", we have to use [] rather than * in the
|
|
-- declaration, since you can't say "int *foo = {vs};" in C.
|
|
do tell ["const "]
|
|
call genType ts
|
|
tell [" "]
|
|
genName n
|
|
tell ["[] = "]
|
|
rhs
|
|
tell [";\n"]
|
|
(A.ValAbbrev, A.Record _, A.Literal _ _ _) ->
|
|
-- Record literals are even trickier, because there's no way of
|
|
-- directly writing a struct literal in C that you can use -> on.
|
|
do tmp <- csmLift $ makeNonce "record_literal"
|
|
tell ["const "]
|
|
call genType t
|
|
tell [" ", tmp, " = "]
|
|
rhs
|
|
tell [";\n"]
|
|
call genDecl am t n
|
|
tell [" = &", tmp, ";\n"]
|
|
_ ->
|
|
do call genDecl am t n
|
|
tell [" = "]
|
|
rhs
|
|
tell [";\n"]
|
|
cintroduceSpec (A.Specification _ n (A.IsChannelArray _ (A.Array _ c) cs))
|
|
= do call genType c
|
|
tell ["*"]
|
|
call genArrayStoreName n
|
|
tell ["[]={"]
|
|
seqComma (map (call genVariable) cs)
|
|
tell ["};"]
|
|
cintroduceSpec (A.Specification _ _ (A.DataType _ _)) = return ()
|
|
cintroduceSpec (A.Specification _ _ (A.RecordType _ _ _)) = return ()
|
|
cintroduceSpec (A.Specification _ n (A.Protocol _ _)) = return ()
|
|
cintroduceSpec (A.Specification _ n (A.ProtocolCase _ ts))
|
|
= do tell ["typedef enum{"]
|
|
seqComma [genName tag >> tell ["_"] >> genName n | (tag, _) <- ts]
|
|
-- You aren't allowed to have an empty enum.
|
|
when (ts == []) $
|
|
tell ["empty_protocol_"] >> genName n
|
|
tell ["}"]
|
|
genName n
|
|
tell [";"]
|
|
cintroduceSpec (A.Specification _ n st@(A.Proc _ _ _ _))
|
|
= genProcSpec n st False
|
|
cintroduceSpec (A.Specification _ n (A.Retypes m am t v))
|
|
= do origT <- typeOfVariable v
|
|
let rhs = call genVariableAM v A.Abbrev
|
|
call genDecl am t n
|
|
tell ["="]
|
|
-- For scalar types that are VAL abbreviations (e.g. VAL INT64),
|
|
-- we need to dereference the pointer that abbrevVariable gives us.
|
|
let deref = case (am, t) of
|
|
(_, A.Array _ _) -> False
|
|
(_, A.Chan {}) -> False
|
|
(_, A.Record {}) -> False
|
|
(A.ValAbbrev, _) -> True
|
|
_ -> False
|
|
when deref $ tell ["*"]
|
|
tell ["("]
|
|
call genDeclType am t
|
|
when deref $ tell ["*"]
|
|
tell [")"]
|
|
rhs
|
|
tell [";"]
|
|
call genRetypeSizes m t n origT v
|
|
--cintroduceSpec (A.Specification _ n (A.RetypesExpr _ am t e))
|
|
cintroduceSpec n = call genMissing $ "introduceSpec " ++ show n
|
|
|
|
cgenRecordTypeSpec :: A.Name -> Bool -> [(A.Name, A.Type)] -> CGen ()
|
|
cgenRecordTypeSpec n b fs
|
|
= do tell ["typedef struct{"]
|
|
sequence_ [call genDeclaration t n True | (n, t) <- fs]
|
|
tell ["}"]
|
|
when b $ tell [" occam_struct_packed "]
|
|
genName n
|
|
tell [";"]
|
|
|
|
cgenForwardDeclaration :: A.Specification -> CGen ()
|
|
cgenForwardDeclaration (A.Specification _ n st@(A.Proc _ _ _ _))
|
|
= genProcSpec n st True
|
|
cgenForwardDeclaration (A.Specification _ n (A.RecordType _ b fs))
|
|
= call genRecordTypeSpec n b fs
|
|
cgenForwardDeclaration _ = return ()
|
|
|
|
cremoveSpec :: A.Specification -> CGen ()
|
|
cremoveSpec (A.Specification m n (A.Declaration _ t))
|
|
= do fdeclareFree <- fget declareFree
|
|
case fdeclareFree m t var of
|
|
Just p -> p
|
|
Nothing -> return ()
|
|
where
|
|
var = A.Variable m n
|
|
cremoveSpec _ = return ()
|
|
|
|
cgenSpecMode :: A.SpecMode -> CGen ()
|
|
cgenSpecMode A.PlainSpec = return ()
|
|
cgenSpecMode A.InlineSpec = tell ["inline "]
|
|
--}}}
|
|
|
|
--{{{ formals, actuals, and calling conventions
|
|
prefixComma :: [CGen ()] -> CGen ()
|
|
prefixComma cs = sequence_ [genComma >> c | c <- cs]
|
|
|
|
cgenActuals :: [A.Actual] -> CGen ()
|
|
cgenActuals as = prefixComma (map (call genActual) as)
|
|
|
|
cgenActual :: A.Actual -> CGen ()
|
|
cgenActual actual = seqComma $ realActuals actual
|
|
|
|
-- | Return generators for all the real actuals corresponding to a single
|
|
-- actual.
|
|
realActuals :: A.Actual -> [CGen ()]
|
|
realActuals (A.ActualExpression e)
|
|
= [call genExpression e]
|
|
realActuals (A.ActualVariable v)
|
|
= [do am <- abbrevModeOfVariable v
|
|
call genVariableAM v am]
|
|
|
|
-- | Return (type, name) generator pairs for all the real formals corresponding
|
|
-- to a single formal.
|
|
realFormals :: A.Formal -> [(CGen (), CGen ())]
|
|
realFormals (A.Formal am t n)
|
|
= [(call genDeclType am t, genName n)]
|
|
|
|
-- | Generate a Proc specification, which maps to a C function.
|
|
-- This will use ProcGetParam if the Proc is in csParProcs, or the normal C
|
|
-- calling convention otherwise.
|
|
genProcSpec :: A.Name -> A.SpecType -> Bool -> CGen ()
|
|
genProcSpec n (A.Proc _ sm fs p) forwardDecl
|
|
= do cs <- getCompState
|
|
let (header, params) = if n `Set.member` csParProcs cs
|
|
then (genParHeader, genParParams)
|
|
else (genNormalHeader, return ())
|
|
header
|
|
if forwardDecl
|
|
then tell [";\n"]
|
|
else do tell ["{\n"]
|
|
params
|
|
call genProcess p
|
|
tell ["}\n"]
|
|
where
|
|
rfs = concatMap realFormals fs
|
|
|
|
genParHeader :: CGen ()
|
|
genParHeader
|
|
= do -- These can't be inlined, since they're only used as function
|
|
-- pointers.
|
|
tell ["void "]
|
|
genName n
|
|
tell [" (Workspace wptr)"]
|
|
|
|
genParParams :: CGen ()
|
|
genParParams
|
|
= sequence_ [do t
|
|
tell [" "]
|
|
n
|
|
tell [" = ProcGetParam (wptr, " ++ show num ++ ", "]
|
|
t
|
|
tell [");\n"]
|
|
| (num, (t, n)) <- zip [(0 :: Int) ..] rfs]
|
|
|
|
genNormalHeader :: CGen ()
|
|
genNormalHeader
|
|
= do call genSpecMode sm
|
|
tell ["void "]
|
|
genName n
|
|
tell [" (Workspace wptr"]
|
|
sequence_ [do tell [", "]
|
|
t
|
|
tell [" "]
|
|
n
|
|
| (t, n) <- rfs]
|
|
tell [")"]
|
|
|
|
-- | Generate a ProcAlloc for a PAR subprocess, returning a nonce for the
|
|
-- workspace pointer and the name of the function to call.
|
|
cgenProcAlloc :: A.Name -> [A.Actual] -> CGen (String, CGen ())
|
|
cgenProcAlloc n as
|
|
= do let ras = concatMap realActuals as
|
|
|
|
ws <- csmLift $ makeNonce "workspace"
|
|
tell ["Workspace ", ws, " = ProcAlloc (wptr, ", show $ length ras, ", "]
|
|
genName n
|
|
tell ["_stack_size);\n"]
|
|
|
|
sequence_ [do tell ["ProcParam (wptr, ", ws, ", ", show num, ", "]
|
|
ra
|
|
tell [");\n"]
|
|
| (num, ra) <- zip [(0 :: Int)..] ras]
|
|
|
|
return (ws, genName n)
|
|
--}}}
|
|
|
|
--{{{ processes
|
|
cgenProcess :: A.Process -> CGen ()
|
|
cgenProcess p = case p of
|
|
A.Assign m vs es -> call genAssign m vs es
|
|
A.Input m c im -> call genInput c im
|
|
A.Output m c ois -> call genOutput c ois
|
|
A.OutputCase m c t ois -> call genOutputCase c t ois
|
|
A.Skip m -> tell ["/* skip */\n"]
|
|
A.Stop m -> call genStop m "STOP process"
|
|
A.Seq _ s -> call genSeq s
|
|
A.If m s -> call genIf m s
|
|
A.Case m e s -> call genCase m e s
|
|
A.While m e p -> call genWhile e p
|
|
A.Par m pm s -> call genPar pm s
|
|
-- PROCESSOR does nothing special.
|
|
A.Processor m e p -> call genProcess p
|
|
A.Alt m b s -> call genAlt b s
|
|
A.ProcCall m n as -> call genProcCall n as
|
|
A.IntrinsicProcCall m s as -> call genIntrinsicProc m s as
|
|
|
|
--{{{ assignment
|
|
cgenAssign :: Meta -> [A.Variable] -> A.ExpressionList -> CGen ()
|
|
cgenAssign m [v] (A.ExpressionList _ [e])
|
|
= do t <- typeOfVariable v
|
|
f <- fget getScalarType
|
|
case f t of
|
|
Just _ -> doAssign v e
|
|
Nothing -> case t of
|
|
-- Assignment of channel-ends, but not channels, is possible (at least in Rain):
|
|
A.Chan A.DirInput _ _ -> doAssign v e
|
|
A.Chan A.DirOutput _ _ -> doAssign v e
|
|
A.List _ -> call genListAssign v e
|
|
_ -> call genMissingC $ formatCode "assignment of type %" t
|
|
where
|
|
doAssign :: A.Variable -> A.Expression -> CGen ()
|
|
doAssign v e
|
|
= do call genVariable v
|
|
tell ["="]
|
|
call genExpression e
|
|
tell [";"]
|
|
cgenAssign m _ _ = call genMissing "Cannot perform assignment with multiple destinations or multiple sources"
|
|
|
|
--}}}
|
|
--{{{ input
|
|
cgenInput :: A.Variable -> A.InputMode -> CGen ()
|
|
cgenInput c im
|
|
= do case im of
|
|
A.InputTimerRead m (A.InVariable m' v) -> call genTimerRead c v
|
|
A.InputTimerAfter m e -> call genTimerWait e
|
|
A.InputSimple m is -> sequence_ $ map (call genInputItem c) is
|
|
_ -> call genMissing $ "genInput " ++ show im
|
|
|
|
cgenTimerRead :: A.Variable -> A.Variable -> CGen ()
|
|
cgenTimerRead _ v = cgenGetTime v
|
|
|
|
cgenTimerWait :: A.Expression -> CGen ()
|
|
cgenTimerWait e
|
|
= do tell ["TimerWait(wptr,"]
|
|
call genExpression e
|
|
tell [");"]
|
|
|
|
cgenGetTime :: A.Variable -> CGen ()
|
|
cgenGetTime v
|
|
= do call genVariable v
|
|
tell [" = TimerRead(wptr);"]
|
|
|
|
--}}}
|
|
--{{{ output
|
|
cgenOutput :: A.Variable -> [A.OutputItem] -> CGen ()
|
|
cgenOutput c ois = sequence_ $ map (call genOutputItem c) ois
|
|
|
|
cgenOutputCase :: A.Variable -> A.Name -> [A.OutputItem] -> CGen ()
|
|
cgenOutputCase c tag ois
|
|
= do t <- typeOfVariable c
|
|
let proto = case t of A.Chan _ _ (A.UserProtocol n) -> n
|
|
tell ["ChanOutInt(wptr,"]
|
|
call genVariable c
|
|
tell [","]
|
|
genName tag
|
|
tell ["_"]
|
|
genName proto
|
|
tell [");"]
|
|
call genOutput c ois
|
|
--}}}
|
|
--{{{ stop
|
|
cgenStop :: Meta -> String -> CGen ()
|
|
cgenStop m s
|
|
= do tell ["occam_stop("]
|
|
genMeta m
|
|
tell [",1,\"", s, "\");"]
|
|
--}}}
|
|
--{{{ seq
|
|
cgenSeq :: A.Structured A.Process -> CGen ()
|
|
cgenSeq s = call genStructured s doP
|
|
where
|
|
doP _ p = call genProcess p
|
|
--}}}
|
|
--{{{ if
|
|
cgenIf :: Meta -> A.Structured A.Choice -> CGen ()
|
|
cgenIf m s
|
|
= do label <- csmLift $ makeNonce "if_end"
|
|
tell ["/*",label,"*/"]
|
|
genIfBody label s
|
|
call genStop m "no choice matched in IF process"
|
|
tell [label, ":;"]
|
|
where
|
|
genIfBody :: String -> A.Structured A.Choice -> CGen ()
|
|
genIfBody label s = call genStructured s doC
|
|
where
|
|
doC m (A.Choice m' e p)
|
|
= do tell ["if("]
|
|
call genExpression e
|
|
tell ["){"]
|
|
call genProcess p
|
|
tell ["goto ", label, ";"]
|
|
tell ["}"]
|
|
--}}}
|
|
--{{{ case
|
|
cgenCase :: Meta -> A.Expression -> A.Structured A.Option -> CGen ()
|
|
cgenCase m e s
|
|
= do tell ["switch("]
|
|
call genExpression e
|
|
tell ["){"]
|
|
seenDefault <- genCaseBody (return ()) s
|
|
when (not seenDefault) $
|
|
do tell ["default:"]
|
|
call genStop m "no option matched in CASE process"
|
|
tell ["}"]
|
|
where
|
|
genCaseBody :: CGen () -> A.Structured A.Option -> CGen Bool
|
|
genCaseBody coll (A.Spec _ spec s)
|
|
= genCaseBody (call genSpec spec coll) s
|
|
genCaseBody coll (A.Only _ (A.Option _ es p))
|
|
= do sequence_ [tell ["case "] >> call genExpression e >> tell [":"] | e <- es]
|
|
tell ["{"]
|
|
coll
|
|
call genProcess p
|
|
tell ["}break;"]
|
|
return False
|
|
genCaseBody coll (A.Only _ (A.Else _ p))
|
|
= do tell ["default:"]
|
|
tell ["{"]
|
|
coll
|
|
call genProcess p
|
|
tell ["}break;"]
|
|
return True
|
|
genCaseBody coll (A.Several _ ss)
|
|
= do seens <- mapM (genCaseBody coll) ss
|
|
return $ or seens
|
|
--}}}
|
|
--{{{ while
|
|
cgenWhile :: A.Expression -> A.Process -> CGen ()
|
|
cgenWhile e p
|
|
= do tell ["while("]
|
|
call genExpression e
|
|
tell ["){"]
|
|
call genProcess p
|
|
tell ["}"]
|
|
--}}}
|
|
--{{{ par
|
|
-- FIXME: The ParMode is now ignored (as it is in occ21), so PRI PAR behaves
|
|
-- the same as PAR.
|
|
cgenPar :: A.ParMode -> A.Structured A.Process -> CGen ()
|
|
cgenPar pm s
|
|
= do (count, _, _) <- constantFold $ countStructured s
|
|
|
|
bar <- csmLift $ makeNonce "par_barrier"
|
|
tell ["LightProcBarrier ", bar, ";\n"]
|
|
tell ["LightProcBarrierInit (wptr, &", bar, ", "]
|
|
call genExpression count
|
|
tell [");\n"]
|
|
|
|
call genStructured s (startP bar)
|
|
|
|
tell ["LightProcBarrierWait (wptr, &", bar, ");\n"]
|
|
|
|
where
|
|
startP :: String -> Meta -> A.Process -> CGen ()
|
|
startP bar _ (A.ProcCall _ n as)
|
|
= do (ws, func) <- cgenProcAlloc n as
|
|
tell ["LightProcStart (wptr, &", bar, ", ", ws, ", "]
|
|
func
|
|
tell [");\n"]
|
|
--}}}
|
|
--{{{ alt
|
|
cgenAlt :: Bool -> A.Structured A.Alternative -> CGen ()
|
|
cgenAlt isPri s
|
|
= do id <- csmLift $ makeNonce "alt_id"
|
|
tell ["int ", id, " = 0;\n"]
|
|
|
|
let isTimerAlt = containsTimers s
|
|
tell [if isTimerAlt then "TimerAlt" else "Alt", " (wptr);\n"]
|
|
tell ["{\n"]
|
|
genAltEnable id s
|
|
tell ["}\n"]
|
|
|
|
-- Like occ21, this is always a PRI ALT, so we can use it for both.
|
|
tell [if isTimerAlt then "TimerAltWait" else "AltWait", " (wptr);\n"]
|
|
tell [id, " = 0;\n"]
|
|
tell ["{\n"]
|
|
genAltDisable id s
|
|
tell ["}\n"]
|
|
|
|
fired <- csmLift $ makeNonce "alt_fired"
|
|
tell ["int ", fired, " = AltEnd (wptr);\n"]
|
|
tell [id, " = 0;\n"]
|
|
label <- csmLift $ makeNonce "alt_end"
|
|
tell ["{\n"]
|
|
genAltProcesses id fired label s
|
|
tell ["}\n"]
|
|
tell [label, ":\n;\n"]
|
|
where
|
|
containsTimers :: A.Structured A.Alternative -> Bool
|
|
containsTimers (A.Rep _ _ s) = containsTimers s
|
|
containsTimers (A.Spec _ _ s) = containsTimers s
|
|
containsTimers (A.ProcThen _ _ s) = containsTimers s
|
|
containsTimers (A.Only _ a)
|
|
= case a of
|
|
A.Alternative _ _ (A.InputTimerRead _ _) _ -> True
|
|
A.Alternative _ _ (A.InputTimerAfter _ _) _ -> True
|
|
_ -> False
|
|
containsTimers (A.Several _ ss) = or $ map containsTimers ss
|
|
|
|
genAltEnable :: String -> A.Structured A.Alternative -> CGen ()
|
|
genAltEnable id s = call genStructured s doA
|
|
where
|
|
doA _ alt
|
|
= case alt of
|
|
A.Alternative _ c im _ -> doIn c im
|
|
A.AlternativeCond _ e c im _ -> withIf e $ doIn c im
|
|
A.AlternativeSkip _ e _ -> withIf e $ tell ["AltEnableSkip (wptr,", id, "++);\n"]
|
|
|
|
doIn c im
|
|
= do case im of
|
|
A.InputTimerRead _ _ -> call genMissing "timer read in ALT"
|
|
A.InputTimerAfter _ time ->
|
|
do tell ["AltEnableTimer (wptr,", id, "++,"]
|
|
call genExpression time
|
|
tell [");\n"]
|
|
_ ->
|
|
do tell ["AltEnableChannel (wptr,", id, "++,"]
|
|
call genVariable c
|
|
tell [");\n"]
|
|
|
|
genAltDisable :: String -> A.Structured A.Alternative -> CGen ()
|
|
genAltDisable id s = call genStructured s doA
|
|
where
|
|
doA _ alt
|
|
= case alt of
|
|
A.Alternative _ c im _ -> doIn c im
|
|
A.AlternativeCond _ e c im _ -> withIf e $ doIn c im
|
|
A.AlternativeSkip _ e _ -> withIf e $ tell ["AltDisableSkip (wptr,", id, "++);\n"]
|
|
|
|
doIn c im
|
|
= do case im of
|
|
A.InputTimerRead _ _ -> call genMissing "timer read in ALT"
|
|
A.InputTimerAfter _ time ->
|
|
do tell ["AltDisableTimer (wptr,", id, "++, "]
|
|
call genExpression time
|
|
tell [");\n"]
|
|
_ ->
|
|
do tell ["AltDisableChannel (wptr,", id, "++, "]
|
|
call genVariable c
|
|
tell [");\n"]
|
|
|
|
genAltProcesses :: String -> String -> String -> A.Structured A.Alternative -> CGen ()
|
|
genAltProcesses id fired label s = call genStructured s doA
|
|
where
|
|
doA _ alt
|
|
= case alt of
|
|
A.Alternative _ c im p -> doIn c im p
|
|
A.AlternativeCond _ e c im p -> withIf e $ doIn c im p
|
|
A.AlternativeSkip _ e p -> withIf e $ doCheck (call genProcess p)
|
|
|
|
doIn c im p
|
|
= do case im of
|
|
A.InputTimerRead _ _ -> call genMissing "timer read in ALT"
|
|
A.InputTimerAfter _ _ -> doCheck (call genProcess p)
|
|
_ -> doCheck (call genInput c im >> call genProcess p)
|
|
|
|
doCheck body
|
|
= do tell ["if (", id, "++ == ", fired, ") {\n"]
|
|
body
|
|
tell ["goto ", label, ";\n"]
|
|
tell ["}\n"]
|
|
|
|
withIf :: A.Expression -> CGen () -> CGen ()
|
|
withIf cond body
|
|
= do tell ["if ("]
|
|
call genExpression cond
|
|
tell [") {\n"]
|
|
body
|
|
tell ["}\n"]
|
|
--}}}
|
|
--{{{ proc call
|
|
cgenProcCall :: A.Name -> [A.Actual] -> CGen ()
|
|
cgenProcCall n as
|
|
= do genName n
|
|
tell [" (wptr"]
|
|
call genActuals as
|
|
tell [");\n"]
|
|
--}}}
|
|
--{{{ intrinsic procs
|
|
cgenIntrinsicProc :: Meta -> String -> [A.Actual] -> CGen ()
|
|
cgenIntrinsicProc m "ASSERT" [A.ActualExpression e] = call genAssert m e
|
|
cgenIntrinsicProc _ "RESCHEDULE" [] = tell ["Reschedule (wptr);\n"]
|
|
cgenIntrinsicProc _ s _ = call genMissing $ "intrinsic PROC " ++ s
|
|
|
|
cgenAssert :: Meta -> A.Expression -> CGen ()
|
|
cgenAssert m e
|
|
= do tell ["if (!"]
|
|
call genExpression e
|
|
tell [") {\n"]
|
|
call genStop m "assertion failed"
|
|
tell ["}\n"]
|
|
--}}}
|
|
--}}}
|
|
|
|
--{{{ mobiles
|
|
cgenAllocMobile :: Meta -> A.Type -> Maybe A.Expression -> CGen()
|
|
cgenAllocMobile m (A.Mobile t) Nothing = tell ["malloc("] >> call genBytesIn m t (Left False) >> tell [")"]
|
|
--TODO add a pass, just for C, that pulls out the initialisation expressions for mobiles
|
|
-- into a subsequent assignment
|
|
cgenAllocMobile _ _ _ = call genMissing "Mobile allocation with initialising-expression"
|
|
|
|
cgenClearMobile :: Meta -> A.Variable -> CGen ()
|
|
cgenClearMobile _ v
|
|
= do tell ["if("]
|
|
genVar
|
|
tell ["!=NULL){free("]
|
|
genVar
|
|
tell [");"]
|
|
genVar
|
|
tell ["=NULL;}"]
|
|
where
|
|
genVar = call genVariable v
|
|
|
|
--}}}
|