tock-mirror/transformations/SimplifyExprs.hs
Adam Sampson 3283b7db41 Remove the Type/AbbrevMode information from Actual*.
It's redundant, since you can always compute them from the variable, and it
makes the code that deals with actuals rather cleaner.

On the other hand, it slightly complicates some of the tests, because any names
you use in an Actual need to be defined...
2008-03-26 18:16:09 +00:00

414 lines
18 KiB
Haskell

{-
Tock: a compiler for parallel languages
Copyright (C) 2007 University of Kent
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 2 of the License, or (at your
option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.
-}
-- | Simplify expressions in the AST.
module SimplifyExprs where
import Control.Monad.State
import Data.Generics
import qualified Data.Map as Map
import qualified AST as A
import CompState
import Errors
import EvalLiterals
import Metadata
import Pass
import qualified Properties as Prop
import ShowCode
import Types
import Utils
simplifyExprs :: [Pass]
simplifyExprs = makePassesDep
[ ("Convert FUNCTIONs to PROCs", functionsToProcs, Prop.agg_namesDone ++ [Prop.expressionTypesChecked, Prop.parUsageChecked,
Prop.functionTypesChecked], [Prop.functionsRemoved])
, ("Convert AFTER to MINUS", removeAfter, [Prop.expressionTypesChecked], [Prop.afterRemoved])
, ("Expand array literals", expandArrayLiterals, [Prop.expressionTypesChecked, Prop.processTypesChecked], [Prop.arrayLiteralsExpanded])
, ("Transform array constructors into initialisation code", transformConstr, Prop.agg_namesDone ++ Prop.agg_typesDone
++ [Prop.subscriptsPulledUp], [Prop.arrayConstructorsRemoved])
, ("Pull up replicator counts for SEQs", pullRepCounts, Prop.agg_namesDone ++ Prop.agg_typesDone, [])
, ("Pull up definitions", pullUp False, Prop.agg_namesDone ++ Prop.agg_typesDone ++ [Prop.functionsRemoved, Prop.seqInputsFlattened], [Prop.functionCallsRemoved, Prop.subscriptsPulledUp])
]
-- ++ makePassesDep' ((== BackendCPPCSP) . csBackend) [("Pull up definitions (C++)", pullUp True, Prop.agg_namesDone ++ [Prop.expressionTypesChecked, Prop.functionsRemoved, Prop.processTypesChecked,Prop.seqInputsFlattened], [Prop.functionCallsRemoved, Prop.subscriptsPulledUp])]
-- | Convert FUNCTION declarations to PROCs.
functionsToProcs :: Data t => t -> PassM t
functionsToProcs = doGeneric `extM` doSpecification
where
doGeneric :: Data t => t -> PassM t
doGeneric = makeGeneric functionsToProcs
doSpecification :: A.Specification -> PassM A.Specification
doSpecification (A.Specification m n (A.Function mf sm rts fs evp))
= do -- Create new names for the return values.
specs <- sequence [makeNonceVariable "return_formal" mf t A.VariableName A.Abbrev | t <- rts]
let names = [n | A.Specification mf n _ <- specs]
-- Note the return types so we can fix calls later.
modify $ (\ps -> ps { csFunctionReturns = Map.insert (A.nameName n) rts (csFunctionReturns ps) })
-- Turn the value process into an assignment process.
let p = vpToSeq m n evp [A.Variable mf n | n <- names]
let st = A.Proc mf sm (fs ++ [A.Formal A.Abbrev t n | (t, n) <- zip rts names]) p
-- Build a new specification and redefine the function.
let spec = A.Specification m n st
let nd = A.NameDef {
A.ndMeta = mf,
A.ndName = A.nameName n,
A.ndOrigName = A.nameName n,
A.ndNameType = A.ProcName,
A.ndType = st,
A.ndAbbrevMode = A.Original,
A.ndPlacement = A.Unplaced
}
defineName n nd
doGeneric spec
doSpecification s = doGeneric s
vpToSeq :: Meta -> A.Name -> Either (A.Structured A.ExpressionList) A.Process -> [A.Variable] -> A.Process
vpToSeq m n (Left el) vs = A.Seq m $ vpToSeq' el vs
vpToSeq _ n (Right p) vs = subst p
where
subst :: Data t => t -> t
subst = doGenericSubst `extT` doAssignSubst
doGenericSubst :: Data t => t -> t
doGenericSubst = gmapT subst `extT` (id :: String -> String) `extT` (id :: Meta -> Meta)
doAssignSubst :: A.Process -> A.Process
doAssignSubst ass@(A.Assign m [A.Variable _ dest] el) = if (A.nameName dest == A.nameName n) then (A.Assign m vs el) else ass
doAssignSubst p = doGenericSubst p
vpToSeq' :: A.Structured A.ExpressionList -> [A.Variable] -> A.Structured A.Process
vpToSeq' (A.Spec m spec s) vs = A.Spec m spec (vpToSeq' s vs)
vpToSeq' (A.ProcThen m p s) vs = A.ProcThen m p (vpToSeq' s vs)
vpToSeq' (A.Only m el) vs = A.Only m $ A.Assign m vs el
-- | Convert AFTER expressions to the equivalent using MINUS (which is how the
-- occam 3 manual defines AFTER).
removeAfter :: Data t => t -> PassM t
removeAfter = doGeneric `extM` doExpression
where
doGeneric :: Data t => t -> PassM t
doGeneric = makeGeneric removeAfter
doExpression :: A.Expression -> PassM A.Expression
doExpression (A.Dyadic m A.After a b)
= do a' <- removeAfter a
b' <- removeAfter b
t <- typeOfExpression a'
case t of
A.Byte -> do let one = A.Literal m t $ A.IntLiteral m "1"
oneTwoSeven = A.Literal m t $ A.IntLiteral m "127"
return $ A.Dyadic m A.Less (A.Dyadic m A.Minus (A.Dyadic m A.Minus a' b') one) oneTwoSeven
_ -> do let zero = A.Literal m t $ A.IntLiteral m "0"
return $ A.Dyadic m A.More (A.Dyadic m A.Minus a' b') zero
doExpression e = doGeneric e
-- | For array literals that include other arrays, burst them into their elements.
expandArrayLiterals :: Data t => t -> PassM t
expandArrayLiterals = doGeneric `extM` doArrayElem
where
doGeneric :: Data t => t -> PassM t
doGeneric = makeGeneric expandArrayLiterals
doArrayElem :: A.ArrayElem -> PassM A.ArrayElem
doArrayElem ae@(A.ArrayElemExpr e)
= do e' <- expandArrayLiterals e
t <- typeOfExpression e'
case t of
A.Array ds _ -> expand ds e
_ -> doGeneric ae
doArrayElem ae = doGeneric ae
expand :: [A.Dimension] -> A.Expression -> PassM A.ArrayElem
expand [] e = return $ A.ArrayElemExpr e
expand (A.UnknownDimension:_) e
= dieP (findMeta e) "array literal containing non-literal array of unknown size"
expand (A.Dimension n:ds) e
= do -- Because it's an array literal, we must know the size.
size <- evalIntExpression n
elems <- sequence [expand ds (A.SubscriptedExpr m
(A.Subscript m A.NoCheck $
makeConstant m i) e)
| i <- [0 .. size - 1]]
return $ A.ArrayElemArray elems
where m = findMeta e
-- | We pull up the loop (Rep) counts into a temporary expression, whenever the loop
-- count could be modified within the loop. Here are all things that can be replicated:
-- SEQ -- can be altered during the loop, must pull up
-- PAR -- count cannot be modified by code inside the loop (it is used before any PAR branches are run)
-- IF -- cannot be altered during loop; once body executes, loop is effectively broken
-- ALT -- same as IF
-- Therefore, we only need to pull up the counts for sequential replicators
--
-- TODO for simplification, we could avoid pulling up replication counts that are known to be constants
pullRepCounts :: Data t => t -> PassM t
pullRepCounts = doGeneric `extM` doProcess
where
doGeneric :: Data t => t -> PassM t
doGeneric = makeGeneric pullRepCounts
doProcess :: A.Process -> PassM A.Process
doProcess (A.Seq m s) = pullRepCountSeq s >>* A.Seq m
doProcess p = doGeneric p
pullRepCountSeq :: A.Structured A.Process -> PassM (A.Structured A.Process)
pullRepCountSeq (A.Only m p) = doProcess p >>* A.Only m
pullRepCountSeq (A.Spec m sp str)
= do sp' <- pullRepCounts sp
str' <- pullRepCountSeq str
return $ A.Spec m sp' str'
pullRepCountSeq (A.ProcThen m p s)
= do p' <- doProcess p
s' <- pullRepCountSeq s
return $ A.ProcThen m p' s'
pullRepCountSeq (A.Several m ss) = mapM pullRepCountSeq ss >>* A.Several m
pullRepCountSeq (A.Rep m (A.For m' n from for) s)
= do t <- typeOfExpression for
spec@(A.Specification _ nonceName _) <- makeNonceIsExpr "rep_for" m' t for
s' <- pullRepCountSeq s
return $ A.Spec m spec $ A.Rep m (A.For m' n from (A.ExprVariable m' $ A.Variable m' nonceName)) s'
-- Other replicators (such as ForEach)
pullRepCountSeq (A.Rep m rep s)
= do s' <- pullRepCountSeq s
return $ A.Rep m rep s'
transformConstr :: Data t => t -> PassM t
transformConstr = doGeneric `ext1M` doStructured
where
doGeneric :: Data t => t -> PassM t
doGeneric = makeGeneric transformConstr
-- For arrays, this takes a constructor expression:
-- VAL type name IS [i = rep | expr]:
-- ...
-- and produces this:
-- type name:
-- PROCTHEN
-- INT indexvar:
-- SEQ
-- indexvar := 0
-- SEQ i = rep
-- SEQ
-- name[indexvar] := expr
-- indexvar := indexvar + 1
-- ...
--
-- For lists, it takes the similar expression and produces:
-- type name:
-- PROCTHEN
-- SEQ i = rep
-- name += [expr]
doStructured :: Data a => A.Structured a -> PassM (A.Structured a)
doStructured (A.Spec m (A.Specification m' n (A.IsExpr _ _ _ expr@(A.ExprConstr m'' (A.RepConstr _ t rep exp)))) scope)
= do scope' <- doGeneric scope
case t of
A.Array {} ->
do indexVarSpec@(A.Specification _ indexName _) <- makeNonceVariable "array_constr_index" m'' A.Int A.VariableName A.Original
let indexVar = A.Variable m'' indexName
return $ declDest $ A.ProcThen m''
(A.Seq m'' $ A.Spec m'' indexVarSpec $
A.Several m'' [assignIndex0 indexVar,
A.Rep m'' rep $ A.Only m'' $ A.Seq m'' $
A.Several m''
[ assignItem indexVar
, incrementIndex indexVar ]
])
scope'
A.List {} ->
return $ declDest $ A.ProcThen m''
(A.Seq m'' $ A.Rep m'' rep $ appendItem)
scope'
_ -> diePC m $ formatCode "Unsupported type for array constructor: %" t
where
declDest :: Data a => A.Structured a -> A.Structured a
declDest = A.Spec m (A.Specification m' n (A.Declaration m' t))
assignIndex0 :: A.Variable -> A.Structured A.Process
assignIndex0 indexVar = A.Only m'' $ A.Assign m'' [indexVar] $
A.ExpressionList m'' [A.Literal m'' A.Int $ A.IntLiteral m'' "0"]
incrementIndex :: A.Variable -> A.Structured A.Process
incrementIndex indexVar = A.Only m'' $ A.Assign m'' [indexVar] $
A.ExpressionList m'' [addOne $ A.ExprVariable m'' indexVar]
assignItem :: A.Variable -> A.Structured A.Process
assignItem indexVar = A.Only m'' $ A.Assign m'' [A.SubscriptedVariable m''
(A.Subscript m'' A.NoCheck $ A.ExprVariable m'' indexVar) $
A.Variable m'' n] $ A.ExpressionList m'' [exp]
appendItem :: A.Structured A.Process
appendItem = A.Only m'' $ A.Assign m'' [A.Variable m'' n] $
A.ExpressionList m'' [A.Dyadic m'' A.Concat
(A.ExprVariable m'' $ A.Variable m'' n)
(A.Literal m'' t $ A.ListLiteral m'' [exp])]
doStructured s = doGeneric s
-- | Find things that need to be moved up to their enclosing Structured, and do
-- so.
pullUp :: Data t => Bool -> t -> PassM t
pullUp pullUpArraysInsideRecords
= doGeneric
`ext1M` doStructured
`extM` doProcess
`extM` doSpecification
`extM` doLiteralRepr
`extM` doExpression
`extM` doVariable
`extM` doExpressionList
where
pullUpRecur :: Data t => t -> PassM t
pullUpRecur = pullUp pullUpArraysInsideRecords
doGeneric :: Data t => t -> PassM t
doGeneric = makeGeneric pullUpRecur
-- | When we encounter a Structured, create a new pulled items state,
-- recurse over it, then apply whatever pulled items we found to it.
doStructured :: Data a => A.Structured a -> PassM (A.Structured a)
doStructured s
= do pushPullContext
-- Recurse over the body, then apply the pulled items to it
s' <- doGeneric s >>= applyPulled
-- ... and restore the original pulled items
popPullContext
return s'
-- | As with doStructured: when we find a process, create a new pulled items
-- context, and if we find any items apply them to it.
doProcess :: A.Process -> PassM A.Process
doProcess p
= do pushPullContext
p' <- doGeneric p
pulled <- havePulled
p'' <- if pulled
then liftM (A.Seq emptyMeta) $ applyPulled (A.Only emptyMeta p')
else return p'
popPullContext
return p''
-- | Filter what can be pulled in Specifications.
doSpecification :: A.Specification -> PassM A.Specification
-- Iss might be SubscriptedVars -- which is fine; the backend can deal with that.
doSpecification (A.Specification m n (A.Is m' am t v))
= do v' <- doGeneric v -- note doGeneric rather than pullUp
return $ A.Specification m n (A.Is m' am t v')
-- IsExprs might be SubscriptedExprs, and if so we have to convert them.
doSpecification (A.Specification m n (A.IsExpr m' am t e))
= do e' <- doExpression' e -- note doExpression' rather than pullUp
return $ A.Specification m n (A.IsExpr m' am t e')
-- Convert RetypesExpr into Retypes of a variable.
doSpecification (A.Specification m n (A.RetypesExpr m' am toT e))
= do e' <- doExpression e
fromT <- typeOfExpression e'
spec@(A.Specification _ n' _) <- makeNonceIsExpr "retypes_expr" m' fromT e'
addPulled $ (m', Left spec)
return $ A.Specification m n (A.Retypes m' am toT (A.Variable m' n'))
doSpecification s = doGeneric s
-- | Filter what can be pulled in LiteralReprs.
doLiteralRepr :: A.LiteralRepr -> PassM A.LiteralRepr
-- FIXME: We could do away with ArrayElem and have a rule like the below
-- for nested array literals.
-- Don't pull up array expressions that are fields of record literals.
doLiteralRepr (A.RecordLiteral m es)
= do es' <- mapM (if pullUpArraysInsideRecords then doExpression else doExpression') es -- note doExpression' rather than pullUp
return $ A.RecordLiteral m es'
doLiteralRepr lr = doGeneric lr
-- | Pull array expressions that aren't already non-subscripted variables.
doExpression :: A.Expression -> PassM A.Expression
doExpression e
= do e' <- doExpression' e
t <- typeOfExpression e'
case t of
A.Array _ _ ->
case e' of
A.ExprVariable _ (A.Variable _ _) -> return e'
A.ExprVariable _ (A.DirectedVariable _ _ _) -> return e'
--TODO work out whether to pull up DerefVariable
_ -> pull t e'
_ -> return e'
where
pull :: A.Type -> A.Expression -> PassM A.Expression
pull t e
= do let m = findMeta e
spec@(A.Specification _ n _) <- makeNonceIsExpr "array_expr" m t e
addPulled $ (m, Left spec)
return $ A.ExprVariable m (A.Variable m n)
-- | Pull any variable subscript that results in an array.
doVariable :: A.Variable -> PassM A.Variable
doVariable v@(A.SubscriptedVariable m _ _)
= do v' <- doGeneric v
t <- typeOfVariable v'
case t of
A.Array _ _ ->
do origAM <- abbrevModeOfVariable v'
let am = makeAbbrevAM origAM
spec@(A.Specification _ n _) <- makeNonceIs "array_slice" m t am v'
addPulled $ (m, Left spec)
return $ A.Variable m n
_ -> return v'
doVariable v = doGeneric v
-- | Convert a FUNCTION call into some variables and a PROC call.
convertFuncCall :: Meta -> A.Name -> [A.Expression] -> PassM [A.Variable]
convertFuncCall m n es
= do es' <- pullUpRecur es
ets <- sequence [typeOfExpression e | e <- es']
ps <- get
rts <- Map.lookup (A.nameName n) (csFunctionReturns ps)
specs <- sequence [makeNonceVariable "return_actual" m t A.VariableName A.Original | t <- rts]
sequence_ [addPulled $ (m, Left spec) | spec <- specs]
let names = [n | A.Specification _ n _ <- specs]
let vars = [A.Variable m n | n <- names]
let call = A.ProcCall m n (map A.ActualExpression es' ++ map A.ActualVariable vars)
addPulled $ (m, Right call)
return vars
doExpression' :: A.Expression -> PassM A.Expression
-- Convert single-valued function calls.
doExpression' (A.FunctionCall m n es)
= do [v] <- convertFuncCall m n es
return $ A.ExprVariable m v
-- Convert SubscriptedExprs into SubscriptedVariables.
doExpression' (A.SubscriptedExpr m s e)
= do e' <- pullUpRecur e
s' <- pullUpRecur s
t <- typeOfExpression e'
spec@(A.Specification _ n _) <- makeNonceIsExpr "subscripted_expr" m t e'
addPulled $ (m, Left spec)
return $ A.ExprVariable m (A.SubscriptedVariable m s' (A.Variable m n))
doExpression' e = doGeneric e
doExpressionList :: A.ExpressionList -> PassM A.ExpressionList
-- Convert multi-valued function calls.
doExpressionList (A.FunctionCallList m n es)
= do vs <- convertFuncCall m n es
return $ A.ExpressionList m [A.ExprVariable m v | v <- vs]
doExpressionList el = doGeneric el