
NameType is only really needed in the parser, so this takes it out of NameDef, meaning that later passes defining names no longer need to set an arbitrary NameType for them. The parser gets slightly more complicated (because some productions now have to return a SpecType and a NameType too), but lots of other code gets simpler. The code that removed free names was the only thing outside the parser using NameType, and it now makes a more sensible decision based on the SpecType. Since unscoped names previously didn't have a SpecType at all, I've added an Unscoped constructor to it and arranged matters such that unscoped names now get a proper entry in csNames. Fixes #61.
154 lines
7.2 KiB
Haskell
154 lines
7.2 KiB
Haskell
{-
|
|
Tock: a compiler for parallel languages
|
|
Copyright (C) 2007, 2008 University of Kent
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation, either version 2 of the License, or (at your
|
|
option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
-}
|
|
|
|
-- | Simplify processes.
|
|
module SimplifyProcs (simplifyProcs) where
|
|
|
|
import Control.Monad.State
|
|
import Data.Generics
|
|
import qualified Data.Set as Set
|
|
|
|
import qualified AST as A
|
|
import CompState
|
|
import Metadata
|
|
import Pass
|
|
import qualified Properties as Prop
|
|
import Traversal
|
|
import Types
|
|
|
|
simplifyProcs :: [Pass]
|
|
simplifyProcs = makePassesDep
|
|
[ ("Wrap PAR subprocesses in PROCs", parsToProcs, [Prop.parUsageChecked], [Prop.parsWrapped])
|
|
, ("Remove parallel assignment", removeParAssign, [Prop.parUsageChecked, Prop.functionsRemoved, Prop.functionCallsRemoved], [Prop.assignParRemoved])
|
|
, ("Flatten assignment", flattenAssign, Prop.agg_typesDone ++ [Prop.assignParRemoved], [Prop.assignFlattened])
|
|
]
|
|
|
|
-- | Wrap the subprocesses of PARs in no-arg PROCs.
|
|
parsToProcs :: PassType
|
|
parsToProcs = applyDepthM doProcess
|
|
where
|
|
doProcess :: A.Process -> PassM A.Process
|
|
doProcess (A.Par m pm s)
|
|
= do s' <- doStructured s
|
|
return $ A.Par m pm s'
|
|
doProcess p = return p
|
|
|
|
-- FIXME This should be generic and in Pass.
|
|
doStructured :: A.Structured A.Process -> PassM (A.Structured A.Process)
|
|
doStructured = transformOnly wrapProcess
|
|
where
|
|
wrapProcess m p
|
|
= do s@(A.Specification _ n _) <- makeNonceProc m p
|
|
modify (\cs -> cs { csParProcs = Set.insert n (csParProcs cs) })
|
|
return $ A.Spec m s (A.Only m (A.ProcCall m n []))
|
|
|
|
-- | Turn parallel assignment into multiple single assignments through temporaries.
|
|
removeParAssign :: PassType
|
|
removeParAssign = applyDepthM doProcess
|
|
where
|
|
doProcess :: A.Process -> PassM A.Process
|
|
doProcess (A.Assign m vs@(_:_:_) (A.ExpressionList _ es))
|
|
= do ts <- mapM astTypeOf vs
|
|
specs <- sequence [makeNonceVariable "assign_temp" m t A.Original | t <- ts]
|
|
let temps = [A.Variable m n | A.Specification _ n _ <- specs]
|
|
let first = [A.Assign m [v] (A.ExpressionList m [e]) | (v, e) <- zip temps es]
|
|
let second = [A.Assign m [v] (A.ExpressionList m [A.ExprVariable m v']) | (v, v') <- zip vs temps]
|
|
return $ A.Seq m $ foldl (\s spec -> A.Spec m spec s) (A.Several m (map (A.Only m) (first ++ second))) specs
|
|
doProcess p = return p
|
|
|
|
-- | Turn assignment of arrays and records into multiple assignments.
|
|
flattenAssign :: PassType
|
|
flattenAssign = makeRecurse ops
|
|
where
|
|
ops :: Ops
|
|
ops = extOpD (extOpSD baseOp ops doStructured) ops doProcess
|
|
|
|
doProcess :: A.Process -> PassM A.Process
|
|
doProcess (A.Assign m [v] (A.ExpressionList m' [e]))
|
|
= do t <- astTypeOf v
|
|
assign m t v m' e
|
|
doProcess p = return p
|
|
|
|
doStructured :: Data a => A.Structured a -> PassM (A.Structured a)
|
|
doStructured (A.Spec m (A.Specification m' n t@(A.RecordType _ _ fs)) s)
|
|
= do procSpec <- recordCopyProc n m fs
|
|
return $ A.Spec m (A.Specification m' n t) (procSpec s)
|
|
doStructured s = return s
|
|
|
|
assign :: Meta -> A.Type -> A.Variable -> Meta -> A.Expression -> PassM A.Process
|
|
assign m t@(A.Array _ _) v m' e = complexAssign m t v m' e
|
|
assign m t@(A.Record _) v m' e = complexAssign m t v m' e
|
|
assign m _ v m' e = return $ A.Assign m [v] (A.ExpressionList m' [e])
|
|
|
|
complexAssign :: Meta -> A.Type -> A.Variable -> Meta -> A.Expression -> PassM A.Process
|
|
complexAssign m t v m' e
|
|
= do -- Abbreviate the source and destination, to avoid doing the
|
|
-- subscript each time.
|
|
destAM <- liftM makeAbbrevAM $ abbrevModeOfVariable v
|
|
dest@(A.Specification _ destN _) <-
|
|
makeNonceIs "assign_dest" m t destAM v
|
|
let destV = A.Variable m destN
|
|
src@(A.Specification _ srcN _) <-
|
|
makeNonceIsExpr "assign_src" m' t e
|
|
let srcV = A.Variable m' srcN
|
|
|
|
body <- case t of
|
|
A.Array _ _ ->
|
|
-- Array assignments become a loop with an assignment
|
|
-- inside.
|
|
do counter <- makeNonceCounter "i" m
|
|
let zero = A.Literal m A.Int $ A.IntLiteral m "0"
|
|
let rep = A.For m counter zero
|
|
(A.SizeVariable m srcV)
|
|
itemT <- trivialSubscriptType m t
|
|
-- Don't need to check bounds, as we'll always be within bounds
|
|
let sub = A.Subscript m A.NoCheck (A.ExprVariable m
|
|
(A.Variable m counter))
|
|
inner <- assign m itemT
|
|
(A.SubscriptedVariable m sub destV) m'
|
|
(A.ExprVariable m'
|
|
(A.SubscriptedVariable m' sub srcV))
|
|
return $ A.Rep m rep $ A.Only m inner
|
|
A.Record n ->
|
|
return $ A.Only m $ A.ProcCall m (n {A.nameName = "copy_" ++ A.nameName n})
|
|
[A.ActualVariable destV, A.ActualVariable srcV]
|
|
|
|
return $ A.Seq m $ A.Spec m src $ A.Spec m dest body
|
|
|
|
-- TODO could make this a separate pass if we wanted (to be run first)
|
|
recordCopyProc :: Data a => A.Name -> Meta -> [(A.Name, A.Type)] -> PassM (A.Structured a -> A.Structured a)
|
|
recordCopyProc n m fs
|
|
-- Record assignments become a sequence of
|
|
-- assignments, one for each field.
|
|
= do let t = A.Record n
|
|
(A.Specification _ nonceLHS _) <- makeNonceVariable "record_copy_arg" m t A.Abbrev
|
|
let destV = A.Variable m nonceLHS
|
|
(A.Specification _ nonceRHS _) <- makeNonceVariable "record_copy_arg" m t A.Abbrev
|
|
let srcV = A.Variable m nonceRHS
|
|
assigns <-
|
|
sequence [do let sub = A.SubscriptField m fName
|
|
assign m fType
|
|
(A.SubscriptedVariable m sub destV) m
|
|
(A.ExprVariable m
|
|
(A.SubscriptedVariable m sub srcV))
|
|
| (fName, fType) <- fs]
|
|
let code = A.Seq m $ A.Several m $ map (A.Only m) assigns
|
|
|
|
return (A.Spec m (A.Specification m (n {A.nameName = "copy_" ++ A.nameName n})
|
|
(A.Proc m A.InlineSpec [A.Formal A.Abbrev t nonceLHS, A.Formal A.ValAbbrev t nonceRHS] code)))
|