
This is quite a big patch, as it reworks a large pass. The three backend passes dealing with sizes stuff have now been merged into one (because the traversal order is important). Instead of generating sizes arrays by blindly appending "_sizes", we now create nonces and store them in the csArraySizes map in CompState, which is a bit less hacky. Added to that, we also generate constant-size arrays (e.g. for [8]) -- which are needed in case we pass the array to a PROC that has a flexible dimension -- at the top of the whole program, and use that array for every variable with that size (so if foo and bar have the same size, we use the same sizes array from the top of the program).
545 lines
24 KiB
Haskell
545 lines
24 KiB
Haskell
{-
|
|
Tock: a compiler for parallel languages
|
|
Copyright (C) 2007, 2008 University of Kent
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation, either version 2 of the License, or (at your
|
|
option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
-}
|
|
|
|
-- | Passes associated with the backends
|
|
module BackendPasses (backendPasses, transformWaitFor) where
|
|
|
|
import Control.Monad.State
|
|
import Data.Generics
|
|
import Data.List
|
|
import qualified Data.Map as Map
|
|
import Data.Maybe
|
|
|
|
import qualified AST as A
|
|
import CompState
|
|
import Errors
|
|
import EvalConstants
|
|
import Metadata
|
|
import Pass
|
|
import PrettyShow
|
|
import qualified Properties as Prop
|
|
import ShowCode
|
|
import Traversal
|
|
import Types
|
|
import Utils
|
|
|
|
backendPasses :: [Pass]
|
|
backendPasses =
|
|
-- Note that removeDirections is only for C, whereas removeUnneededDirections
|
|
-- is for all backends
|
|
[ removeDirectionsForC
|
|
, removeUnneededDirections
|
|
, simplifySlices
|
|
, declareSizesArray
|
|
, fixMinInt
|
|
-- This is not needed unless forking:
|
|
-- , mobileReturn
|
|
]
|
|
|
|
prereq :: [Property]
|
|
prereq = Prop.agg_namesDone ++ Prop.agg_typesDone ++ Prop.agg_functionsGone ++ [Prop.subscriptsPulledUp, Prop.arrayLiteralsExpanded]
|
|
|
|
-- | Remove all variable directions for the C backend.
|
|
-- They're unimportant in occam code once the directions have been checked,
|
|
-- and this somewhat simplifies the work of the later passes.
|
|
removeDirectionsForC :: Pass
|
|
removeDirectionsForC
|
|
= occamAndCOnlyPass "Remove variable directions"
|
|
prereq
|
|
[Prop.directionsRemoved]
|
|
(applyDepthM (return . doVariable))
|
|
where
|
|
doVariable :: A.Variable -> A.Variable
|
|
doVariable (A.DirectedVariable _ _ v) = v
|
|
doVariable v = v
|
|
|
|
-- | Remove variable directions that are superfluous. This prevents confusing
|
|
-- later passes, where the user has written something like:
|
|
-- []CHAN INT da! IS ...:
|
|
-- foo(da!)
|
|
--
|
|
-- The second direction specifier is unneeded, and will confuse passes such as
|
|
-- those adding sizes parameters (which looks for plain variables, since directed
|
|
-- arrays should already have been pulled up).
|
|
removeUnneededDirections :: Pass
|
|
removeUnneededDirections
|
|
= occamOnlyPass "Remove unneeded variable directions"
|
|
prereq
|
|
[]
|
|
(applyDepthM doVariable)
|
|
where
|
|
doVariable :: Transform (A.Variable)
|
|
doVariable whole@(A.DirectedVariable m dir v)
|
|
= do t <- astTypeOf v
|
|
case t of
|
|
A.Chan {} -> return whole
|
|
A.Array _ (A.Chan {}) -> return whole
|
|
A.ChanEnd chanDir _ _ | dir == chanDir -> return v
|
|
A.Array _ (A.ChanEnd chanDir _ _) | dir == chanDir -> return v
|
|
_ -> diePC m $ formatCode "Direction applied to non-channel type: %" t
|
|
doVariable v = return v
|
|
|
|
-- | Turns any literals equivalent to a MOSTNEG back into a MOSTNEG
|
|
-- The reason for doing this is that C (and presumably C++) don't technically (according
|
|
-- to the standard) allow you to write INT_MIN directly as a constant. GCC certainly
|
|
-- warns about it. So this pass takes any MOSTNEG-equivalent values (that will have been
|
|
-- converted to constants in the constant folding earlier) and turns them back
|
|
-- into MOSTNEG, for which the C backend uses INT_MIN and similar, which avoid
|
|
-- this problem.
|
|
fixMinInt :: Pass
|
|
fixMinInt
|
|
= cOrCppOnlyPass "Turn any literals that are equal to MOSTNEG INT back into MOSTNEG INT"
|
|
prereq
|
|
[]
|
|
(applyDepthM doExpression)
|
|
where
|
|
doExpression :: Transform (A.Expression)
|
|
doExpression l@(A.Literal m t (A.IntLiteral m' s))
|
|
= do folded <- constantFold (A.MostNeg m t)
|
|
case folded of
|
|
(A.Literal _ _ (A.IntLiteral _ s'), _, _)
|
|
-> if (s == s')
|
|
then return $ A.MostNeg m t
|
|
else return l
|
|
_ -> return l -- This can happen as some literals retain the Infer
|
|
-- type which fails the constant folding
|
|
doExpression e = return e
|
|
|
|
transformWaitFor :: Pass
|
|
transformWaitFor = cOnlyPass "Transform wait for guards into wait until guards"
|
|
[]
|
|
[Prop.waitForRemoved]
|
|
(applyDepthM doAlt)
|
|
where
|
|
doAlt :: A.Process -> PassM A.Process
|
|
doAlt a@(A.Alt m pri s)
|
|
= do (s',(specs,code)) <- runStateT (transformOnly doWaitFor s) ([],[])
|
|
if (null specs && null code)
|
|
then return a
|
|
else return $ A.Seq m $ foldr addSpec (A.Several m (code ++ [A.Only m $ A.Alt m pri s'])) specs
|
|
doAlt p = return p
|
|
|
|
addSpec :: Data a => (A.Structured a -> A.Structured a) -> A.Structured a -> A.Structured a
|
|
addSpec spec inner = spec inner
|
|
|
|
doWaitFor :: Meta -> A.Alternative -> StateT ([A.Structured A.Process -> A.Structured A.Process], [A.Structured A.Process]) PassM (A.Structured A.Alternative)
|
|
doWaitFor m'' a@(A.Alternative m cond tim (A.InputTimerFor m' e) p)
|
|
= do (specs, init) <- get
|
|
id <- lift $ makeNonce "waitFor"
|
|
let n = A.Name m id
|
|
let var = A.Variable m n
|
|
put (specs ++ [A.Spec m (A.Specification m n (A.Declaration m A.Time))],
|
|
init ++ [A.Only m $ A.Input m tim
|
|
(A.InputTimerRead m (A.InVariable m var)),
|
|
A.Only m $ A.Assign m [var] $ A.ExpressionList m [A.Dyadic m A.Plus (A.ExprVariable m var) e]])
|
|
return $ A.Only m'' $ A.Alternative m cond tim (A.InputTimerAfter m' (A.ExprVariable m' var)) p
|
|
|
|
doWaitFor m a = return $ A.Only m a
|
|
|
|
-- | Declares an array filled with constant sizes
|
|
-- If any extra sizes are declared, will add them to the current context
|
|
getSizes :: Meta -> [A.Expression] -> PassM A.Name
|
|
getSizes m [] = dieP m "Empty list of dimensions in getSizes"
|
|
getSizes m es
|
|
= do ces <- mapM evalIntExpression es
|
|
ss <- getCompState >>* csGlobalSizes
|
|
case Map.lookup ces ss of
|
|
Just n -> return $ A.Name m n
|
|
Nothing -> let base = "sizes" ++ concat (intersperse "_" $ map show ces)
|
|
t = A.Array [A.Dimension $ makeConstant m $ length es] A.Int
|
|
val = A.ArrayListLiteral m $ A.Several m $
|
|
map (A.Only m) $ es
|
|
e = A.Literal m t val
|
|
in do spec@(A.Specification _ n _) <- makeNonceIsExpr base m t e
|
|
addPulled (m, Left spec)
|
|
modify $ \cs -> cs { csGlobalSizes = Map.insert ces (A.nameName n) ss }
|
|
return n
|
|
|
|
-- Forms a slice that drops a certain amount of elements:
|
|
sliceDrop :: Meta -> Int -> Int -> A.Variable -> A.Variable
|
|
sliceDrop m skip total
|
|
= A.SubscriptedVariable m (A.SubscriptFromFor m A.NoCheck
|
|
(makeConstant m skip) (makeConstant m (total - skip)))
|
|
|
|
-- Used by findVarSizes when it can't descend any further:
|
|
-- The Variable returned will always be Just, but it makes use from findVarSizes
|
|
-- easier
|
|
findSizeForVar :: Meta -> Int -> A.Variable ->
|
|
PassM (Maybe A.Name, Maybe A.Variable, [A.Expression])
|
|
findSizeForVar m skip v
|
|
= do t <- astTypeOf v
|
|
case t of
|
|
A.Array ds _
|
|
| A.UnknownDimension `notElem` ds
|
|
-> do let es = drop skip [e | A.Dimension e <- ds]
|
|
n <- getSizes m es
|
|
return (Just n, Just $ A.Variable m n, es)
|
|
| otherwise
|
|
-> return (Nothing, Just $ sliceDrop m skip (length ds) $ A.VariableSizes m v,
|
|
[A.ExprVariable m $ A.SubscriptedVariable m (A.Subscript m A.NoCheck $ makeConstant
|
|
m i) (A.VariableSizes m v)
|
|
| i <- [skip .. (length ds - 1)]])
|
|
|
|
-- Gets the variable that holds the sizes of the given variable. The first parameter
|
|
-- is the number of dimensions to skip. Assumes simplifySlices has already been
|
|
-- run
|
|
findVarSizes :: Int -> A.Variable -> PassM (Maybe A.Name, Maybe A.Variable, [A.Expression])
|
|
findVarSizes skip v@(A.Variable m _) = findSizeForVar m skip v
|
|
findVarSizes skip (A.DirectedVariable _ _ v) = findVarSizes skip v
|
|
-- Fields are either constant or need a VariableSizes:
|
|
findVarSizes skip v@(A.SubscriptedVariable m (A.SubscriptField {}) _)
|
|
= findSizeForVar m skip v
|
|
-- For a specific subscript, drop one extra dimension off the inner dimensions:
|
|
findVarSizes skip (A.SubscriptedVariable _ (A.Subscript {}) v)
|
|
= findVarSizes (skip + 1) v
|
|
-- This covers all slicing:
|
|
findVarSizes skip v@(A.SubscriptedVariable m (A.SubscriptFromFor _ _ from for) innerV)
|
|
-- If we are skipping at least one dimension, we can ignore slicing:
|
|
| skip > 0 = findVarSizes skip innerV
|
|
| otherwise = do (_, _, _:es) <- findVarSizes 0 innerV
|
|
return (Nothing, Nothing, for : es)
|
|
-- the size of a dereference is the size of the mobile array:
|
|
findVarSizes skip (A.DerefVariable _ v) = findVarSizes skip v
|
|
-- Not sure this should ever happen, but no harm:
|
|
findVarSizes skip (A.VariableSizes m v)
|
|
= do A.Array ds _ <- astTypeOf v
|
|
let es = drop skip [makeConstant m (length ds)]
|
|
n <- getSizes m es
|
|
return (Just n, Just $ A.Variable m n, es)
|
|
|
|
|
|
-- | Declares a _sizes array for every array, statically sized or dynamically sized.
|
|
-- For each record type it declares a _sizes array too.
|
|
declareSizesArray :: Pass
|
|
declareSizesArray = occamOnlyPass "Declare array-size arrays"
|
|
(prereq ++ [Prop.slicesSimplified, Prop.arrayConstructorsRemoved])
|
|
[Prop.arraySizesDeclared]
|
|
(passOnlyOnAST "declareSizesArray" $
|
|
\t -> do pushPullContext
|
|
t' <- recurse t >>= applyPulled
|
|
popPullContext
|
|
exts <- getCompState >>* csExternals
|
|
exts' <- sequence [do fs' <- transformExternal (findMeta t) fs
|
|
return $ (n, fs')
|
|
| (n, fs) <- exts]
|
|
modify $ \cs -> cs { csExternals = exts' }
|
|
return t'
|
|
)
|
|
where
|
|
ops :: OpsM PassM
|
|
ops = baseOp `extOpS` doStructured `extOp` doProcess
|
|
recurse, descend :: Data a => Transform a
|
|
recurse = makeRecurse ops
|
|
descend = makeDescend ops
|
|
|
|
defineSizesName :: Meta -> A.Name -> A.SpecType -> PassM ()
|
|
defineSizesName m n spec
|
|
= defineName n $ A.NameDef { A.ndMeta = m
|
|
, A.ndName = A.nameName n
|
|
, A.ndOrigName = A.nameName n
|
|
, A.ndSpecType = spec
|
|
, A.ndAbbrevMode = A.ValAbbrev
|
|
, A.ndNameSource = A.NameNonce
|
|
, A.ndPlacement = A.Unplaced
|
|
}
|
|
|
|
addSizes :: String -> A.Name -> PassM ()
|
|
addSizes k v = modify $ \cs -> cs { csArraySizes = Map.insert k v $ csArraySizes cs }
|
|
|
|
-- | Generate the @_sizes@ array for a 'Retypes' expression.
|
|
retypesSizes :: Meta -> A.Name -> [A.Dimension] -> A.Type -> A.Variable
|
|
-> PassM (A.Name, Maybe A.SpecType)
|
|
retypesSizes m n_sizes ds elemT v@(A.Variable _ nSrc)
|
|
= do biDest <- bytesInType (A.Array ds elemT)
|
|
tSrc <- astTypeOf v
|
|
biSrc <- bytesInType tSrc
|
|
|
|
-- Figure out the size of the source.
|
|
srcSize <-
|
|
case (biSrc, tSrc) of
|
|
-- Fixed-size source -- easy.
|
|
(BIJust size, _) -> return size
|
|
-- Variable-size source -- it must be an array, so multiply
|
|
-- together the dimensions.
|
|
(_, A.Array ds t) ->
|
|
do BIJust elementSize <- bytesInType t
|
|
return $ foldl mulExprs elementSize dSizes
|
|
where
|
|
dSizes = [case d of
|
|
-- Fixed dimension.
|
|
A.Dimension e -> e
|
|
-- Variable dimension -- use the corresponding
|
|
-- element of its _sizes array.
|
|
A.UnknownDimension -> A.ExprVariable m $ specificDimSize i v
|
|
| (d, i) <- zip ds [0..]]
|
|
_ -> dieP m "Cannot compute size of source type"
|
|
|
|
-- Build the _sizes array for the destination.
|
|
sizeSpecType <- return $
|
|
case biDest of
|
|
-- Destination size is fixed -- so we must know the dimensions.
|
|
BIJust _ -> makeSizeSpec m [e | A.Dimension e <- ds]
|
|
-- Destination has one free dimension, so we need to compute
|
|
-- it.
|
|
BIOneFree destSize n ->
|
|
let newDim = A.Dimension $ divExprs srcSize destSize
|
|
ds' = replaceAt n newDim ds in
|
|
makeSizeSpec m [e | A.Dimension e <- ds']
|
|
|
|
return (n_sizes, Just sizeSpecType)
|
|
|
|
varSizes :: Meta -> A.Name -> A.Variable -> PassM (A.Name, Maybe A.SpecType)
|
|
varSizes m n_sizes abbrevV
|
|
= do sizeExpr <- findVarSizes 0 abbrevV
|
|
case sizeExpr of
|
|
-- It was constant, and a new global declaration made, so we just
|
|
-- need to return the name, and no specification
|
|
(Just sizeN, _, _) -> return (sizeN, Nothing)
|
|
-- We can use/slice a previous sizes item, so our abbreviation is
|
|
-- quite simple:
|
|
(Nothing, Just sizeV, _) ->
|
|
do t <- astTypeOf sizeV
|
|
return (n_sizes, Just $ A.Is m A.ValAbbrev t (A.ActualVariable sizeV))
|
|
-- We have to declare a full array of sizes:
|
|
(Nothing, Nothing, es) -> return (n_sizes, Just $ makeSizeSpec m es)
|
|
|
|
makeSizeSpec :: Meta -> [A.Expression] -> A.SpecType
|
|
makeSizeSpec m es = A.Is m A.ValAbbrev t (A.ActualExpression e)
|
|
where
|
|
e = A.Literal m t lit
|
|
lit = A.ArrayListLiteral m $ A.Several m $ map (A.Only m) es
|
|
t = A.Array [A.Dimension $ makeConstant m (length es)] A.Int
|
|
|
|
doStructured :: Data a => A.Structured a -> PassM (A.Structured a)
|
|
doStructured str@(A.Spec m sp@(A.Specification m' n spec) s)
|
|
= do t <- typeOfSpec spec
|
|
case (spec, t) of
|
|
(_, Just (A.Array ds elemT)) ->
|
|
-- nonce_sizes is a suggested name, may not actually be used:
|
|
do nonce_sizes <- makeNonce (A.nameName n ++ "_sizes") >>* A.Name m
|
|
let varSize = varSizes m nonce_sizes
|
|
(n_sizes, msizeSpec) <-
|
|
case spec of
|
|
-- TODO I think retyping a channel array ends up
|
|
-- here, and probably isn't handled right
|
|
A.Retypes _ _ _ v -> retypesSizes m' nonce_sizes ds elemT v
|
|
A.Is _ _ _ (A.ActualVariable v) -> varSize v
|
|
A.Is _ _ _ (A.ActualExpression (A.ExprVariable _ v)) -> varSize v
|
|
-- For all other cases, we should be able to figure
|
|
-- out the size from ourself:
|
|
_ -> varSize (A.Variable m n)
|
|
addSizes (A.nameName n) n_sizes
|
|
maybe (return ()) (defineSizesName m n_sizes) msizeSpec
|
|
s' <- recurse s
|
|
return (maybe id (A.Spec m . A.Specification m n_sizes) msizeSpec $ A.Spec m sp s')
|
|
(A.Proc m' sm args body, _) ->
|
|
do -- We descend into the scope first, so that all the actuals get
|
|
-- fixed before the formals:
|
|
s' <- recurse s
|
|
(args', newargs) <- transformFormals False m args
|
|
sequence_ [defineSizesName m' n (A.Declaration m' t)
|
|
| A.Formal _ t n <- newargs]
|
|
-- We descend into the body after the formals have been
|
|
-- processed, but before our spec is updated (to avoid
|
|
-- problems for recursive PROCs with arrays.
|
|
body' <- recurse body
|
|
let newspec = A.Proc m' sm args' body'
|
|
modify (\cs -> cs {csNames = Map.adjust (\nd -> nd { A.ndSpecType = newspec })
|
|
(A.nameName n) (csNames cs)})
|
|
return $ A.Spec m (A.Specification m n newspec) s'
|
|
_ -> descend str
|
|
doStructured s = descend s
|
|
|
|
transformExternal :: Meta -> [A.Formal] -> PassM [A.Formal]
|
|
transformExternal m args
|
|
= do (args', newargs) <- transformFormals True m args
|
|
sequence_ [defineSizesName m n (A.Declaration m t)
|
|
| A.Formal _ t n <- newargs]
|
|
return args'
|
|
|
|
transformFormals :: Bool -> Meta -> [A.Formal] -> PassM ([A.Formal], [A.Formal])
|
|
transformFormals _ _ [] = return ([],[])
|
|
transformFormals ext m ((f@(A.Formal am t n)):fs)
|
|
= case (t, ext) of
|
|
-- For occam PROCs, only bother adding the extra formal if the dimension
|
|
-- is unknown:
|
|
(A.Array ds _, False)
|
|
| A.UnknownDimension `elem` ds ->
|
|
do let sizeType = A.Array [makeDimension m $ length ds] A.Int
|
|
n_sizes <- makeNonce (A.nameName n ++ "_sizes") >>* A.Name m
|
|
addSizes (A.nameName n) n_sizes
|
|
let newf = A.Formal A.ValAbbrev sizeType n_sizes
|
|
(rest, moreNew) <- transformFormals ext m fs
|
|
return (f : newf : rest, newf : moreNew)
|
|
-- But even if all the dimensions are known, we must still add the sizes
|
|
-- as a global thingy:
|
|
| otherwise ->
|
|
do (Just n_sizes, _, _) <- findVarSizes 0 (A.Variable m n)
|
|
addSizes (A.nameName n) n_sizes
|
|
(rest, moreNew) <- transformFormals ext m fs
|
|
return (f : rest, moreNew)
|
|
-- For externals, we always add extra formals:
|
|
(A.Array ds _, True) ->
|
|
do params <- replicateM (length ds) $ makeNonce "ext_size"
|
|
let newfs = map (A.Formal A.ValAbbrev A.Int . A.Name m) params
|
|
(rest, moreNew) <- transformFormals ext m fs
|
|
return (f : newfs ++ rest, newfs ++ moreNew)
|
|
_ -> do (rest, new) <- transformFormals ext m fs
|
|
return (f : rest, new)
|
|
|
|
|
|
doProcess :: A.Process -> PassM A.Process
|
|
doProcess (A.ProcCall m n params)
|
|
= do ext <- getCompState >>* csExternals >>* lookup (A.nameName n) >>* isJust
|
|
A.Proc _ _ fs _ <- specTypeOfName n
|
|
concatMapM (transformActual ext) (zip fs params) >>* A.ProcCall m n
|
|
doProcess p = descend p
|
|
|
|
transformActual :: Bool -> (A.Formal, A.Actual) -> PassM [A.Actual]
|
|
transformActual ext (A.Formal _ t _, a@(A.ActualVariable v))
|
|
= transformActualVariable ext t a v
|
|
transformActual ext (A.Formal _ t _, a@(A.ActualExpression (A.ExprVariable _ v)))
|
|
= transformActualVariable ext t a v
|
|
transformActual _ (_, a) = return [a]
|
|
|
|
transformActualVariable :: Bool -> A.Type -> A.Actual -> A.Variable -> PassM [A.Actual]
|
|
transformActualVariable ext t a v
|
|
= case (t, ext) of
|
|
-- Note that t is the formal type, not the type of the actual
|
|
(A.Array ds _, False) | A.UnknownDimension `elem` ds ->
|
|
do sizeV <- sizes v
|
|
return [a, A.ActualVariable sizeV]
|
|
(A.Array ds _, True) ->
|
|
let acts = map (sub $ A.VariableSizes m v) [0 .. (length ds - 1)]
|
|
in return $ a : acts
|
|
_ -> return [a]
|
|
where
|
|
sizes v@(A.Variable m n)
|
|
= do ss <- getCompState >>* csArraySizes
|
|
case Map.lookup (A.nameName n) ss of
|
|
Just n_sizes -> return $ A.Variable m n_sizes
|
|
Nothing -> return $ A.VariableSizes m v
|
|
sizes (A.DerefVariable _ v) = sizes v
|
|
|
|
m = findMeta v
|
|
|
|
sub v n = A.ActualVariable $ A.SubscriptedVariable m
|
|
(A.Subscript m A.NoCheck $ makeConstant m n)
|
|
v
|
|
|
|
-- | Transforms all slices into the FromFor form.
|
|
simplifySlices :: Pass
|
|
simplifySlices = occamOnlyPass "Simplify array slices"
|
|
prereq
|
|
[Prop.slicesSimplified]
|
|
(applyDepthM doVariable)
|
|
where
|
|
doVariable :: A.Variable -> PassM A.Variable
|
|
doVariable (A.SubscriptedVariable m (A.SubscriptFor m' check for) v)
|
|
= return (A.SubscriptedVariable m (A.SubscriptFromFor m' check (makeConstant m' 0) for) v)
|
|
doVariable (A.SubscriptedVariable m (A.SubscriptFrom m' check from) v)
|
|
= do A.Array (d:_) _ <- astTypeOf v
|
|
limit <- case d of
|
|
A.Dimension n -> return n
|
|
A.UnknownDimension -> return $ A.ExprVariable m $ specificDimSize 0 v
|
|
return (A.SubscriptedVariable m (A.SubscriptFromFor m' check from (A.Dyadic m A.Subtr limit from)) v)
|
|
doVariable v = return v
|
|
|
|
-- | Finds all processes that have a MOBILE parameter passed in Abbrev mode, and
|
|
-- add the communication back at the end of the process.
|
|
mobileReturn :: Pass
|
|
mobileReturn = cOnlyPass "Add MOBILE returns" [] [] recurse
|
|
where
|
|
ops = baseOp `extOpS` doStructured `extOp` doProcess
|
|
|
|
descend, recurse :: Data a => Transform a
|
|
descend = makeDescend ops
|
|
recurse = makeRecurse ops
|
|
|
|
ignoreProc :: A.Name -> PassM Bool
|
|
ignoreProc n
|
|
= do nd <- lookupName n
|
|
return $ "copy_" `isPrefixOf` A.ndOrigName nd -- Bit of a hard-hack
|
|
|
|
doProcess :: Transform A.Process
|
|
doProcess (A.ProcCall m n as)
|
|
= do sp <- specTypeOfName n
|
|
fs <- case sp of
|
|
A.Proc _ _ fs _ -> return fs
|
|
_ -> dieP m "PROC with unknown spec-type"
|
|
ig <- ignoreProc n
|
|
if ig
|
|
then return $ A.ProcCall m n as
|
|
else do (surr, as') <- addChansAct m $ zip fs as
|
|
return $ surr $ A.ProcCall m n as'
|
|
doProcess p = descend p
|
|
|
|
chanT t = A.Chan (A.ChanAttributes A.Unshared A.Unshared) t
|
|
|
|
addChansAct :: Meta -> [(A.Formal, A.Actual)] -> PassM (A.Process -> A.Process, [A.Actual])
|
|
addChansAct _ [] = return (id, [])
|
|
addChansAct m ((A.Formal am t n, a):fas)
|
|
= do isMobile <- isMobileType t
|
|
(recF, recAS) <- addChansAct m fas
|
|
case (am, isMobile) of
|
|
(A.Abbrev, True)
|
|
-> do sp@(A.Specification _ c _) <- defineNonce m (A.nameName n)
|
|
(A.Declaration m $ chanT t) A.Original
|
|
let av = getV a
|
|
return (\p -> A.Seq m $ A.Spec m sp $ A.Several m
|
|
[A.Only m (recF p)
|
|
,A.Only m $ A.Input m (A.Variable m c) $
|
|
A.InputSimple m [A.InVariable m av]]
|
|
, a : A.ActualVariable (A.Variable m c) : recAS)
|
|
_ -> return (recF, a : recAS)
|
|
|
|
getV (A.ActualVariable v) = v
|
|
getV (A.ActualExpression (A.ExprVariable _ v)) = v
|
|
|
|
addChansForm :: Meta -> [A.Formal] -> PassM ([A.Process], [A.Formal])
|
|
addChansForm _ [] = return ([], [])
|
|
addChansForm m (f@(A.Formal am t n):fs)
|
|
= do (ps, fs') <- addChansForm m fs
|
|
isMobile <- isMobileType t
|
|
case (am, isMobile) of
|
|
(A.Abbrev, True)
|
|
-> do A.Specification _ c _ <- defineNonce m (A.nameName n)
|
|
(A.Declaration m $ chanT t) A.Abbrev
|
|
modifyName n $ \nd -> nd {A.ndAbbrevMode = A.Original}
|
|
return ( ps ++ [A.Output m (A.Variable m c)
|
|
[A.OutExpression m
|
|
$ A.ExprVariable m $ A.Variable m n]]
|
|
, A.Formal A.Original t n : A.Formal A.Abbrev (chanT t) c : fs')
|
|
_ -> return (ps, f : fs')
|
|
|
|
doStructured :: Data a => Transform (A.Structured a)
|
|
doStructured s@(A.Spec msp (A.Specification m n (A.Proc m' sm fs pr)) scope)
|
|
= do pr' <- recurse pr
|
|
-- We do the scope first, so that all the callers are updated before
|
|
-- we fix our state:
|
|
scope' <- recurse scope
|
|
ig <- ignoreProc n
|
|
if ig
|
|
then return $ A.Spec msp (A.Specification m n (A.Proc m' sm fs pr')) scope'
|
|
else do (ps, fs') <- addChansForm m fs
|
|
let newSpec = A.Proc m' sm fs' (A.Seq m' $ A.Several m' $
|
|
map (A.Only m') $ pr' : ps)
|
|
modifyName n (\nd -> nd {A.ndSpecType = newSpec})
|
|
return $ A.Spec msp (A.Specification m n newSpec) scope'
|
|
doStructured s = descend s
|