tock-mirror/frontends/RainTypesTest.hs

490 lines
22 KiB
Haskell

{-
Tock: a compiler for parallel languages
Copyright (C) 2007 University of Kent
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 2 of the License, or (at your
option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.
-}
-- | A module testing things from the RainTypes module.
module RainTypesTest where
import Control.Monad.State
import Control.Monad.Error
import Control.Monad.Writer
import Data.Generics
import Test.HUnit hiding (State)
import qualified AST as A
import CompState
import Errors
import Metadata
import Pass
import Pattern
import RainTypes
import TagAST
import TestUtils
import TreeUtils
import Types
import Utils
m :: Meta
m = emptyMeta
-- | Tests that constants in expressions are folded properly. TODO these tests could do with a lot of expanding.
-- It may even be easiest to use QuickCheck for the testing.
constantFoldTest :: Test
constantFoldTest = TestList
[
foldVar 0 $ Var "x"
,foldVar 1 $ Dy (Var "x") A.Plus (lit 0)
,foldCon 100 (lit 2) (Dy (lit 1) A.Plus (lit 1))
,foldCon 101 (lit 65537) (Dy (lit 2) A.Plus (lit 65535))
,foldCon 102 (lit (- two63)) (Dy (lit $ two63 - 1) A.Plus (lit 1))
,foldCon 110 (Dy (Var "x") A.Plus (lit 2)) (Dy (Var "x") A.Plus (Dy (lit 1) A.Plus (lit 1)))
]
where
two63 :: Integer
two63 = 9223372036854775808
foldVar :: Int -> ExprHelper -> Test
foldVar n e = TestCase $ testPass ("constantFoldTest " ++ show n) (buildExprPattern e) (constantFoldPass $ buildExpr e) state
foldCon :: Int -> ExprHelper -> ExprHelper -> Test
foldCon n exp orig = TestCase $ testPass ("constantFoldTest " ++ show n) (buildExprPattern exp) (constantFoldPass $ buildExpr orig) state
state :: State CompState ()
state = return ()
lit :: Integer -> ExprHelper
lit n = Lit $ int64Literal n
-- | Tests that integer literals are correctly annotated with the smallest type that can hold them.
-- We only test the boundaries between each integer type, but that should suffice.
-- TODO was there a reason I didn't test unsigned numbers?
annotateIntTest :: Test
annotateIntTest = TestList
[
failSigned (-9223372036854775809)
,signed A.Int64 (-9223372036854775808)
,signed A.Int64 (-2147483649)
,signed A.Int32 (-2147483648)
,signed A.Int32 (-32769)
,signed A.Int16 (-32768)
,signed A.Int16 (-129)
,signed A.Int8 (-128)
,signed A.Int8 0
,signed A.Int8 127
,signed A.Int16 128
,signed A.Int16 32767
,signed A.Int32 32768
,signed A.Int32 2147483647
,signed A.Int64 2147483648
,signed A.Int64 9223372036854775807
,failSigned 9223372036854775808
]
where
signed :: A.Type -> Integer -> Test
signed t n = TestCase $ testPass ("annotateIntTest: " ++ show n) (tag3 A.Literal DontCare t $ tag2 A.IntLiteral DontCare (show n))
(annotateIntLiteralTypes $ int64Literal n) (return ())
failSigned :: Integer -> Test
failSigned n = TestCase $ testPassShouldFail ("annotateIntTest: " ++ show n) (annotateIntLiteralTypes $ int64Literal n) (return ())
annotateListLiteralTest :: Test
annotateListLiteralTest = TestList
[
testList 0 A.Int32 [int32Literal 0, int32Literal 1]
,testList 1 A.Any []
,testList 2 A.Int32 [charLiteral 'c', int32Literal 6]
,testList 3 A.Int64 [int32Literal 3, int32Literal 5, int64Literal 2,
int32Literal 2]
-- TODO test with variables (and implicit upcasting)
-- TODO test the type for lists of lists
-- TODO test ranges with variables too
,testRange 1000 A.Int32 (int32Literal 0) (int32Literal 1)
,testRange 1001 A.Int64 (int32Literal 0) (int64Literal 1)
,testRange 1002 A.Int64 (int64Literal 0) (int32Literal 1)
,testRange 1003 A.Int32 (charLiteral 'a') (int32Literal 1)
,testRange 1004 A.Int32 (int32Literal 0) (charLiteral 'b')
,testRange 1005 A.Int64 (charLiteral 'e') (int64Literal 1)
,testRange 1006 A.Int64 (int64Literal 0) (charLiteral 'f')
,testRange 1007 A.Byte (charLiteral 'd') (charLiteral 'f')
]
where
testList :: Int -> A.Type -> [A.Expression] -> Test
testList n t es = TestCase $ testPass ("annotateListLiteralTest: " ++
show n) (mLiteral (A.List t) $ mListLiteral $ map (maybeConvert t) es)
(annotateListLiteralTypes $ A.Literal emptyMeta A.Any $ A.ListLiteral emptyMeta es)
(return ())
maybeConvert :: A.Type -> A.Expression -> A.Expression
maybeConvert t lit@(A.Literal _ lt _)
| t == lt = lit
| otherwise = A.Conversion emptyMeta A.DefaultConversion t lit
testRange :: Int -> A.Type -> A.Expression -> A.Expression -> Test
testRange n t b e = TestCase $ testPass ("annotateListLiteralTest: "
++ show n) (mExprConstr $
mRangeConstr (A.List t) (maybeConvert t b) (maybeConvert t e))
(annotateListLiteralTypes $ A.ExprConstr emptyMeta $
A.RangeConstr emptyMeta A.Any b e)
(return ())
-- | An amazing amount of tests for testing the Rain type-checker for all the different forms of statement,
-- such as assignment, expressions, communications, etc etc.
--TODO add typechecks for expressions involving channels
checkExpressionTest :: Test
checkExpressionTest = TestList
[
--Already same types:
passSame 0 A.Int64 $ Dy (Var "x") A.Plus (Var "x")
,passSame 1 A.Byte $ Dy (Var "xu8") A.Plus (Var "xu8")
--Upcasting:
,pass 100 A.Int64 (Dy (Var "x") A.Plus (Cast A.Int64 $ Var "xu8")) (Dy (Var "x") A.Plus (Var "xu8"))
,pass 101 A.Int32 (Dy (Cast A.Int32 $ Var "x16") A.Plus (Cast A.Int32 $ Var "xu16")) (Dy (Var "x16") A.Plus (Var "xu16"))
--Upcasting a cast:
,pass 200 A.Int64 (Dy (Var "x") A.Plus (Cast A.Int64 $ Cast A.Int32 $ Var "xu8")) (Dy (Var "x") A.Plus (Cast A.Int32 $ Var "xu8"))
--Impossible conversions:
,fail 300 $ Dy (Var "x") A.Plus (Var "xu64")
--Integer literals:
,pass 400 A.Int16 (Dy (Var "x16") A.Plus (Cast A.Int16 $ int A.Int8 100)) (Dy (Var "x16") A.Plus (int A.Int8 100))
,pass 401 A.Int16 (Dy (Cast A.Int16 $ Var "x8") A.Plus (int A.Int16 200)) (Dy (Var "x8") A.Plus (int A.Int16 200))
--This fails because you are trying to add a signed constant to an unsigned integer that cannot be expanded:
,fail 402 $ Dy (Var "xu64") A.Plus (int A.Int64 0)
--Monadic integer operations:
,passSame 500 A.Int32 (Mon A.MonadicMinus (Var "x32"))
,pass 501 A.Int32 (Mon A.MonadicMinus (Cast A.Int32 $ Var "xu16")) (Mon A.MonadicMinus (Var "xu16"))
,fail 502 $ Mon A.MonadicMinus (Var "xu64")
,pass 503 A.Int64 (Dy (Var "x") A.Plus (Cast A.Int64 $ Mon A.MonadicMinus (Var "x32"))) (Dy (Var "x") A.Plus (Mon A.MonadicMinus (Var "x32")))
--Mis-matched types (integer/boolean):
,fail 600 $ Dy (Var "b") A.Plus (Var "x")
,fail 601 $ Mon A.MonadicMinus (Var "b")
,fail 602 $ Dy (Var "x") A.Or (Var "x")
,fail 603 $ Dy (Var "x") A.Eq (Var "b")
,fail 604 $ Dy (Var "b") A.Plus (Var "b")
,fail 605 $ Dy (Var "b") A.Less (Var "b")
--Comparisons between different integer types:
,pass 700 A.Bool (Dy (Var "x") A.Eq (Cast A.Int64 $ Var "xu8")) (Dy (Var "x") A.Eq (Var "xu8"))
,pass 701 A.Bool (Dy (Cast A.Int32 $ Var "x16") A.Less (Cast A.Int32 $ Var "xu16")) (Dy (Var "x16") A.Less (Var "xu16"))
,pass 702 A.Bool (Dy (Var "x") A.More (Cast A.Int64 $ Cast A.Int32 $ Var "xu8")) (Dy (Var "x") A.More (Cast A.Int32 $ Var "xu8"))
,fail 703 $ Dy (Var "x") A.Less (Var "xu64")
,pass 704 A.Bool (Dy (Var "x16") A.NotEq (Cast A.Int16 $ int A.Int8 100)) (Dy (Var "x16") A.NotEq (int A.Int8 100))
,pass 705 A.Bool (Dy (Cast A.Int16 $ Var "x8") A.MoreEq (int A.Int16 200)) (Dy (Var "x8") A.MoreEq (int A.Int16 200))
--Booleans (easy!)
,passSame 1000 A.Bool $ Mon A.MonadicNot (Var "b")
,passSame 1001 A.Bool $ Dy (Var "b") A.Or (Var "b")
,passSame 1002 A.Bool $ Dy (Var "b") A.And (Mon A.MonadicNot $ Var "b")
--Comparison (same types):
,passSame 1100 A.Bool $ Dy (Var "b") A.Eq (Var "b")
,passSame 1101 A.Bool $ Dy (Var "x") A.Eq (Var "x")
,passSame 1102 A.Bool $ Dy (Var "xu8") A.NotEq (Var "xu8")
,passSame 1103 A.Bool $ Dy (Var "x") A.Less (Var "x")
,passSame 1104 A.Bool $ Dy (Dy (Var "x") A.Eq (Var "x")) A.And (Dy (Var "xu8") A.NotEq (Var "xu8"))
--Invalid casts:
,fail 2000 $ Cast A.Bool (Var "x")
,fail 2001 $ Cast A.Bool (int A.Int8 0)
,fail 2002 $ Cast A.Int8 (Var "b")
,fail 2003 $ Cast A.Int8 (Var "x")
,fail 2004 $ Cast A.Int8 (Var "xu8")
,fail 2005 $ Cast A.Byte (Var "x8")
,fail 2006 $ Cast A.UInt64 (Var "x8")
--Valid casts:
,passSame 2100 A.Bool $ Cast A.Bool (Var "b")
,passSame 2101 A.Int64 $ Cast A.Int64 (Var "x")
,passSame 2102 A.Int64 $ Cast A.Int64 (Var "x8")
,passSame 2103 A.Int64 $ Cast A.Int64 (Var "xu8")
,passSame 2104 A.Int64 $ Cast A.Int64 $ Cast A.Int32 $ Cast A.UInt16 $ Var "xu8"
,passSame 2105 A.UInt64 $ Cast A.UInt64 (Var "xu8")
--Assignments:
,passAssignSame 3000 "x" (Var "x")
,passAssignSame 3001 "xu8" (Var "xu8")
,passAssignSame 3002 "b" (Var "b")
,passAssignSame 3003 "x" $ Dy (Var "x") A.Plus (Var "x")
,passAssignSame 3004 "b" $ Dy (Var "x8") A.Eq (Var "x8")
,passAssignSame 3005 "x" $ Mon A.MonadicMinus (Var "x")
,passAssignSame 3006 "x8" $ int A.Int8 0
,passAssignSame 3007 "b" EHTrue
,passAssign 3100 "x" (Cast A.Int64 $ Var "xu8") (Var "xu8")
,failAssign 3101 "xu8" (Var "x")
,failAssign 3102 "x" (Var "b")
,failAssign 3103 "b" (Var "x")
,failAssign 3104 "x8" (Var "xu8")
,failAssign 3105 "xu8" (Var "x8")
,passAssign 3106 "x" (Cast A.Int64 $ int A.Int8 0) (int A.Int8 0)
-- Assignment with constants:
,failAssign 3200 "X" (Var "x")
,failAssign 3201 "X" (Var "X")
,failAssign 3202 "X" (Var "xu8")
--Conditionals:
,passWhileIfSame 4000 $ Var "b"
,passWhileIfSame 4001 $ Mon A.MonadicNot $ Var "b"
,passWhileIfSame 4002 $ Dy (Var "x") A.Eq (Var "x")
,passWhileIfSame 4003 $ EHTrue
,failWhileIf 4100 $ Var "x"
,failWhileIf 4101 $ Dy (Var "x") A.Plus (Var "x")
--Communication:
,testAllCheckCommTypes 5000
-- TODO check not being able to read into a constant variable
--Time types:
,fail 6000 $ Dy (Var "t") A.Plus (Var "x")
,fail 6001 $ Dy (Var "x") A.Minus (Var "t")
,passSame 6002 A.Time $ Dy (Var "t") A.Plus (Var "t")
,passSame 6003 A.Time $ Dy (Var "t") A.Minus (Var "t")
,fail 6100 $ Dy (Var "t") A.Times (Var "t")
,passSame 6101 A.Time $ Dy (Var "t") A.Times (Var "x")
,passSame 6102 A.Time $ Dy (Var "x") A.Times (Var "t")
,pass 6103 A.Time (Dy (Var "t") A.Times (Cast A.Int64 $ Var "xu32")) (Dy (Var "t") A.Times (Var "xu32"))
,pass 6104 A.Time (Dy (Cast A.Int64 $ Var "xu32") A.Times (Var "t")) (Dy (Var "xu32") A.Times (Var "t"))
,fail 6105 $ Dy (Var "t") A.Times (Var "xu64")
,fail 6106 $ Dy (Var "xu64") A.Times (Var "t")
,passSame 6107 A.Time $ Dy (Dy (Var "x") A.Times (Var "t")) A.Plus (Dy (Var "t") A.Times (Var "x"))
,fail 6108 $ Dy (Dy (Var "x") A.Times (Var "t")) A.Times (Dy (Var "t") A.Times (Var "x"))
,fail 6200 $ Dy (Var "t") A.Div (Var "t")
,fail 6201 $ Dy (Var "x") A.Div (Var "t")
,passSame 6202 A.Time $ Dy (Var "t") A.Div (Var "x")
,pass 6203 A.Time (Dy (Var "t") A.Div (Cast A.Int64 $ Var "xu32")) (Dy (Var "t") A.Div (Var "xu32"))
,fail 6204 $ Dy (Var "t") A.Div (Var "xu64")
,fail 6300 $ Dy (Var "t") A.Rem (Var "t")
,fail 6301 $ Dy (Var "x") A.Rem (Var "t")
,fail 6302 $ Dy (Var "t") A.Rem (Var "x")
,fail 6400 $ Cast A.Time (Var "x")
,fail 6401 $ Cast A.Int64 (Var "t")
,passSame 6500 A.Bool $ Dy (Var "t") A.Eq (Var "t")
,passSame 6501 A.Bool $ Dy (Var "t") A.NotEq (Var "t")
,passSame 6502 A.Bool $ Dy (Var "t") A.Less (Var "t")
,passSame 6503 A.Bool $ Dy (Var "t") A.More (Var "t")
--Now statements:
,testPassUntouched 7000 checkCommTypes (getTime $ variable "t")
,TestCase $ testPassShouldFail "checkExpressionTest 7001"
(checkCommTypes $ getTime $ variable "x") state
--Wait statements:
,testPassUntouched 7100 checkCommTypes (waitFor $ exprVariable "t")
,TestCase $ testPassShouldFail "checkExpressionTest 7101" (checkCommTypes $ waitFor $ exprVariable "x") state
,testPassUntouched 7102 checkCommTypes (waitFor $ buildExpr $ Dy (Var "t") A.Plus (Var "t"))
,testPassUntouched 7200 checkCommTypes (waitUntil $ exprVariable "t")
,TestCase $ testPassShouldFail "checkExpressionTest 7201" (checkCommTypes $ waitUntil $ exprVariable "x") state
,testPassUntouched 7202 checkCommTypes (waitUntil $ buildExpr $ Dy (Var "t") A.Plus (Var "t"))
,testPassUntouched 7300 checkCommTypes (altWaitFor (exprVariable "t") $ A.Skip m)
,TestCase $ testPassShouldFail "checkExpressionTest 7301" (checkCommTypes $ altWaitFor (exprVariable "x") $ A.Skip m) state
,testPassUntouched 7302 checkCommTypes (altWaitFor (buildExpr $ Dy (Var "t") A.Plus (Var "t")) $ A.Skip m)
,testPassUntouched 7400 checkCommTypes (altWaitUntil (exprVariable "t") $ A.Skip m)
,TestCase $ testPassShouldFail "checkExpressionTest 7401" (checkCommTypes $ altWaitUntil (exprVariable "x") $ A.Skip m) state
,testPassUntouched 7402 checkCommTypes (altWaitUntil (buildExpr $ Dy (Var "t") A.Plus (Var "t")) $ A.Skip m)
]
where
-- The type of a timer should not be checked, because it will only have parsed
-- if it used the special name anyway
tim = variable "tim"
getTime :: A.Variable -> A.Process
getTime = A.Input m tim . A.InputTimerRead m . A.InVariable m
waitFor, waitUntil :: A.Expression -> A.Process
waitFor = A.Input m tim . A.InputTimerFor m
waitUntil = A.Input m tim . A.InputTimerAfter m
altWaitFor, altWaitUntil :: A.Expression -> A.Process -> A.Alternative
altWaitFor e body = A.Alternative m tim (A.InputTimerFor m e) body
altWaitUntil e body = A.Alternative m tim (A.InputTimerAfter m e) body
testPassUntouched :: Data t => Int -> (t -> PassM t) -> t -> Test
testPassUntouched n passFunc src = TestCase $ testPass ("checkExpressionTest " ++ show n) (mkPattern src) (passFunc src) state
passAssign :: Int -> String -> ExprHelper -> ExprHelper -> Test
passAssign n lhs exp src = TestCase $ testPassWithCheck ("checkExpressionTest " ++ show n)
(tag3 A.Assign DontCare [variablePattern lhs] $ tag2 A.ExpressionList DontCare [buildExprPattern exp])
(checkAssignmentTypes $ src')
state refeed
where
src' = A.Assign m [variable lhs] $ A.ExpressionList m [buildExpr src]
refeed :: A.Process -> Assertion
refeed changed = if (src' /= changed) then testPass ("checkExpressionTest refeed " ++ show n) (mkPattern changed) (checkAssignmentTypes changed) state else return ()
passAssignSame :: Int -> String -> ExprHelper -> Test
passAssignSame n s e = passAssign n s e e
failAssign :: Int -> String -> ExprHelper -> Test
failAssign n lhs src = TestCase $ testPassShouldFail ("checkExpressionTest " ++ show n) (checkAssignmentTypes $ A.Assign m [variable lhs] $ A.ExpressionList m [buildExpr src]) state
passWhileIfSame :: Int -> ExprHelper -> Test
passWhileIfSame n e = passWhileIf n e e
passWhileIf :: Int -> ExprHelper -> ExprHelper -> Test
passWhileIf n exp src = TestList
[
TestCase $ testPass ("checkExpressionTest/if " ++ show n)
(mIf $ mOnlyC $ tag3 A.Choice DontCare (buildExprPattern exp) (tag1 A.Skip DontCare))
(checkConditionalTypes $ A.If m $ A.Only m $ A.Choice m (buildExpr src) (A.Skip m))
state
,TestCase $ testPass ("checkExpressionTest/while " ++ show n)
(mWhile (buildExprPattern exp) (tag1 A.Skip DontCare))
(checkConditionalTypes $ A.While m (buildExpr src) (A.Skip m))
state
]
failWhileIf :: Int -> ExprHelper -> Test
failWhileIf n src = TestList
[
TestCase $ testPassShouldFail ("checkExpressionTest/if " ++ show n)
(checkConditionalTypes $ A.If m $ A.Only m $ A.Choice m (buildExpr src) (A.Skip m))
state
,TestCase $ testPassShouldFail ("checkExpressionTest/while " ++ show n)
(checkConditionalTypes $ A.While m (buildExpr src) (A.Skip m))
state
]
--Takes an index, the inner type of the channel and direction with a variable, then the type and variable for the RHS
--Expects a pass only if the inner type of the channel is the same as the type of the variable, and channel direction is unknown or input
testCheckCommTypesIn :: Int -> (A.Direction,A.Type,A.Variable) -> (A.Type,A.Variable) -> Test
testCheckCommTypesIn n (chanDir,chanType,chanVar) (destType,destVar)
= if (chanType == destType && chanDir /= A.DirOutput)
then TestCase $ testPass ("testCheckCommTypesIn " ++ show n) (mkPattern st) (checkCommTypes st) state
else TestCase $ testPassShouldFail ("testCheckCommTypesIn " ++ show n) (checkCommTypes st) state
where
st = A.Input m chanVar $ A.InputSimple m [A.InVariable m destVar]
--Takes an index, the inner type of the channel and direction with a variable, then the type and variable for the RHS
--Expects a pass only if the inner type of the channel is the same as the type of the variable, and channel direction is unknown or input
testCheckCommTypesInAlt :: Int -> (A.Direction,A.Type,A.Variable) -> (A.Type,A.Variable) -> Test
testCheckCommTypesInAlt n (chanDir,chanType,chanVar) (destType,destVar)
= if (chanType == destType && chanDir /= A.DirOutput)
then TestCase $ testPass ("testCheckCommTypesIn " ++ show n) (mkPattern st) (checkCommTypes st) state
else TestCase $ testPassShouldFail ("testCheckCommTypesIn " ++ show n) (checkCommTypes st) state
where
st = A.Alt m True $ A.Only m $ A.Alternative m chanVar (A.InputSimple m [A.InVariable m destVar]) $ A.Skip m
--Automatically tests checking inputs and outputs for various combinations of channel type and direction
testAllCheckCommTypes :: Int -> Test
testAllCheckCommTypes n = TestList $ map (\(n,f) -> f n) $ zip [n..] $
concat [[\ind -> testCheckCommTypesIn ind c d, \ind -> testCheckCommTypesInAlt ind c d, \ind -> testCheckCommTypesOut ind c d] | c <- chans, d <- vars]
where
chans = concatMap allDirs [(A.Int64,variable "c"), (A.Bool,variable "cb"), (A.Byte, variable "cu8")]
vars = [(A.Bool, variable "b"), (A.Int64, variable "x"), (A.Byte, variable "xu8"), (A.Int16, variable "x16")]
allDirs :: (A.Type,A.Variable) -> [(A.Direction,A.Type,A.Variable)]
allDirs (t,v) =
[
(A.DirInput,t,A.DirectedVariable m A.DirInput v)
,(A.DirOutput,t,A.DirectedVariable m A.DirOutput v)
,(A.DirUnknown,t,v)
]
--Takes an index, the inner type of the channel and direction with a variable, then the type and variable for the RHS
--Expects a pass only if the expression type can be cast to the inner type of the channel, and channel direction is unknown or output
testCheckCommTypesOut :: Int -> (A.Direction,A.Type,A.Variable) -> (A.Type,A.Variable) -> Test
testCheckCommTypesOut n (chanDir,chanType,chanVar) (srcType,srcVar)
= if (isImplicitConversionRain srcType chanType && chanDir /= A.DirInput)
then (if srcType == chanType
then TestCase $ testPass ("testCheckCommTypesOut " ++ show n) (mkPattern st) (checkCommTypes st) state
else TestCase $ testPass ("testCheckCommTypesOut " ++ show n) stCast (checkCommTypes st) state
)
else TestCase $ testPassShouldFail ("testCheckCommTypesOut " ++ show n) (checkCommTypes st) state
where
st = A.Output m chanVar [A.OutExpression m $ A.ExprVariable m srcVar]
stCast = tag3 A.Output DontCare chanVar [tag2 A.OutExpression DontCare $ tag4 A.Conversion DontCare A.DefaultConversion chanType $
A.ExprVariable m srcVar]
passSame :: Int -> A.Type -> ExprHelper -> Test
passSame n t e = pass n t e e
pass :: Int -> A.Type -> ExprHelper -> ExprHelper -> Test
pass n t exp act = TestCase $ pass' n t (buildExprPattern exp) (buildExpr act)
-- | To easily get more tests, we take the result of every successful pass (which must be fine now), and feed it back through
--the type-checker to check that it is unchanged
pass' :: Int -> A.Type -> Pattern -> A.Expression -> Assertion
pass' n t exp act = testPassWithCheck ("checkExpressionTest " ++ show n) exp (checkExpressionTypes act) state (check t)
where
check :: A.Type -> A.Expression -> Assertion
check t e
= do eot <- errorOrType
case eot of
Left err -> assertFailure ("checkExpressionTest " ++ show n ++ " typeOfExpression failed")
Right t' -> do assertEqual ("checkExpressionTest " ++ show n) t t'
--Now feed it through again, to make sure it isn't changed:
if (e /= act) then pass' (10000 + n) t (mkPattern e) e else return ()
where
errorOrType :: IO (Either ErrorReport A.Type)
errorOrType
= (flip runPassM (typeOfExpression e) (execState state emptyState))
>>* \(x,_,_) -> x
fail :: Int -> ExprHelper -> Test
fail n e = TestCase $ testPassShouldFail ("checkExpressionTest " ++ show n) (checkExpressionTypes $ buildExpr e) state
int :: A.Type -> Integer -> ExprHelper
int t n = Lit $ A.Literal m t $ A.IntLiteral m (show n)
defVar :: String -> A.Type -> State CompState ()
defVar n t = defineName (simpleName n) $ simpleDefDecl n t
state :: State CompState ()
state = do defVar "x" A.Int64
defineConst "X" A.Int64 $ intLiteral 3
defVar "b" A.Bool
defVar "xu8" A.Byte
defVar "xu16" A.UInt16
defVar "xu32" A.UInt32
defVar "xu64" A.UInt64
defVar "x32" A.Int32
defVar "x16" A.Int16
defVar "x8" A.Int8
defVar "c" $ A.Chan A.DirUnknown (A.ChanAttributes False False) A.Int64
defVar "cu8" $ A.Chan A.DirUnknown (A.ChanAttributes False False) A.Byte
defVar "cb" $ A.Chan A.DirUnknown (A.ChanAttributes False False) A.Bool
defVar "t" $ A.Time
markRainTest
tests :: Test
tests = TestLabel "RainTypesTest" $ TestList
[
constantFoldTest
,annotateIntTest
,annotateListLiteralTest
,checkExpressionTest
]