tock-mirror/frontends/ParseRainTest.hs
2008-02-05 16:19:16 +00:00

692 lines
32 KiB
Haskell

{-
Tock: a compiler for parallel languages
Copyright (C) 2007 University of Kent
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 2 of the License, or (at your
option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.
-}
-- #ignore-exports
-- | This module contains the tests for the Rain parser. Some of the code
-- being tested may be invalid at later stages, but we are only testing the
-- parser. So in fact, it's quite good to check that some invalid code at least
-- makes it past the parser.
--
-- The testing strategy is to take in some text (Rain code), run the parser on it,
-- and check whether the code returned matches a given AST fragment. The only
-- complication is the Meta tags. The Meta tags will be generated according to the
-- position of each part of the code. We don't want to have to work out what the Meta
-- tag will be (what if you inserted a space into the input; you'd have to change the expected
-- result!), and we don't really care. So we use the pattern stuff from the Pattern, TreeUtil
-- and TestUtil modules to check everything except the meta tags.
--
-- The "pat" function in this module allows us to write normal AST fragments using "m" (an alias for "emptyMeta")
-- and then turn these into Patterns where any Meta tag that is "m" is ignored during the comparison.
module ParseRainTest (tests) where
import Data.Generics
import Prelude hiding (fail)
import Test.HUnit
import Text.ParserCombinators.Parsec (runParser,eof)
import qualified AST as A
import CompState
import qualified LexRain as L
import Metadata (Meta,emptyMeta)
import qualified ParseRain as RP
import Pattern
import TestUtils
import TreeUtils
data ParseTest a = Show a => ExpPass (String, RP.RainParser a , (a -> Assertion)) | ExpFail (String, RP.RainParser a)
-- | Shorthand for ExpPass
pass :: Show a => (String, RP.RainParser a , (a -> Assertion)) -> ParseTest a
pass x = ExpPass x
-- | Shorthand for ExpFail
fail :: Show a => (String, RP.RainParser a) -> ParseTest a
fail x = ExpFail x
-- | Takes the given AST fragment and returns a Pattern that ignores all the Meta tags in it.
pat :: Data a => a -> Pattern
pat = (stopCaringPattern emptyMeta) . mkPattern
-- | Runs a parse test, given a tuple of: (source text, parser function, assertion)
-- There will be success if the parser succeeds, and the output succeeds against the given assertion.
testParsePass :: Show a => (String, RP.RainParser a , (a -> Assertion)) -> Assertion
testParsePass (text,prod,test)
= do lexOut <- (L.runLexer "<unknown-parse-test>" text)
case lexOut of
Left m -> assertFailure $ "Parse error in:\n" ++ text ++ "\n***at: " ++ (show m)
Right toks -> case (runParser parser emptyState "<test>" toks) of
Left error -> assertFailure $ "Parse error in:\n" ++ text ++ "\n***" ++ (show error)
Right result -> ((return result) >>= test)
where parser = do { p <- prod ; eof ; return p}
--Adding the eof parser above ensures that all the input is consumed from a test. Otherwise
--tests such as "seq {}}" would succeed, because the final character simply wouldn't be parsed -
--which would ruin the point of the test
-- | Checks that a given input fails when the given parser is applied to it. The assertion
-- will fail if the parser succeeds.
testParseFail :: Show a => (String, RP.RainParser a) -> Assertion
testParseFail (text,prod)
= do lexOut <- (L.runLexer "<test>" text)
case lexOut of
Left error -> return ()
Right toks -> case (runParser parser emptyState "<test>" toks) of
Left error -> return ()
Right result -> assertFailure ("Test was expected to fail:\n***BEGIN CODE***\n" ++ text ++ "\n*** END CODE ***\n")
where parser = do { p <- prod ; eof ; return p}
emptySeveral :: A.Structured
emptySeveral = A.Several m []
-- | A handy synonym for the empty block
emptyBlock :: A.Process
emptyBlock = A.Seq m emptySeveral
-- | A handy, properly typed, synonym for Nothing to use with Declarations.
noInit :: Maybe A.Expression
noInit = Nothing
--You are allowed to chain arithmetic operators without brackets, but not comparison operators
-- (the meaning of "b == c == d" is obscure enough to be dangerous, even if it passes the type checker)
--All arithmetic operators bind at the same level, which is a closer binding than all comparison operators.
--To clear that up, here's some BNF:
-- expression ::= comparisonExpression | subExpr | dataType ":" expression | "?" expression | "!" expression
-- comparsionExpression ::= subExpr comparisonOp subExpr
-- subExpr ::= exprItem | monadicArithOp subExpr | subExpr dyadicArithOp subExpr | "(" expression ")"
-- exprItem ::= identifier | literal
-- Partially left-factor subExpr:
--subExpr ::= subExpr' | subExpr' dyadicArithOp subExpr
--subExpr' ::= exprItem | monadicArithOp subExpr' | "(" expression ")"
testExprs :: [ParseTest A.Expression]
testExprs =
[
--Just a variable:
passE ("b", -1, Var "b" )
--Dyadic operators:
,passE ("b + c", 0 ,Dy (Var "b") A.Plus (Var "c") )
,passE ("b % c", 0 ,Dy (Var "b") A.Rem (Var "c") )
,passE ("b == c", 1 ,Dy (Var "b") A.Eq (Var "c") )
,passE ("(b + c)", 2 ,Dy (Var "b") A.Plus (Var "c") )
,passE ("(b == c)", 3 ,Dy (Var "b") A.Eq (Var "c") )
,passE ("((b + c))", 4 ,Dy (Var "b") A.Plus (Var "c") )
,passE ("((b == c))", 5 ,Dy (Var "b") A.Eq (Var "c") )
,passE ("b - c", 6 ,Dy (Var "b") A.Minus (Var "c" ))
,passE ("b + c + d", 7, Dy (Dy (Var "b") A.Plus (Var "c")) A.Plus (Var "d") )
,passE ("(b + c) + d", 8, Dy (Dy (Var "b") A.Plus (Var "c")) A.Plus (Var "d") )
,passE ("b + (c + d)", 9, Dy (Var "b") A.Plus (Dy (Var "c") A.Plus (Var "d")) )
,passE ("b - c * d / e", 10, Dy (Dy (Dy (Var "b") A.Minus (Var "c")) A.Times (Var "d")) A.Div (Var "e") )
,passE ("b + c == d * e", 11, Dy (Dy (Var "b") A.Plus (Var "c")) A.Eq (Dy (Var "d") A.Times (Var "e")) )
,passE ("(b + c) == d * e", 12, Dy (Dy (Var "b") A.Plus (Var "c")) A.Eq (Dy (Var "d") A.Times (Var "e")) )
,passE ("b + c == (d * e)", 13, Dy (Dy (Var "b") A.Plus (Var "c")) A.Eq (Dy (Var "d") A.Times (Var "e")) )
,passE ("(b + c) == (d * e)", 14, Dy (Dy (Var "b") A.Plus (Var "c")) A.Eq (Dy (Var "d") A.Times (Var "e")) )
,passE ("(b == c) + (d == e)", 15, Dy (Dy (Var "b") A.Eq (Var "c")) A.Plus (Dy (Var "d") A.Eq (Var "e")) )
,passE ("(b == c) + d == e", 16, Dy (Dy (Dy (Var "b") A.Eq (Var "c")) A.Plus (Var "d")) A.Eq (Var "e") )
,passE ("(b == c) == (d == e)", 17, Dy (Dy (Var "b") A.Eq (Var "c")) A.Eq (Dy (Var "d") A.Eq (Var "e")) )
,passE ("(b == c) == d", 18, Dy (Dy (Var "b") A.Eq (Var "c")) A.Eq (Var "d") )
,failE ("b == c + d == e")
,failE ("b == c == d")
,failE ("b < c < d")
,failE ("b + c == d + e <= f")
--Monadic operators:
,passE ("-b", 101, Mon A.MonadicMinus (Var "b") )
,failE ("+b")
,passE ("a - - b", 102, Dy (Var "a") A.Minus (Mon A.MonadicMinus $ Var "b") )
,passE ("a--b", 103, Dy (Var "a") A.Minus (Mon A.MonadicMinus $ Var "b") )
,passE ("a---b", 104, Dy (Var "a") A.Minus (Mon A.MonadicMinus $ Mon A.MonadicMinus $ Var "b") )
,passE ("-b+c", 105, Dy (Mon A.MonadicMinus $ Var "b") A.Plus (Var "c") )
,passE ("c+-b", 106, Dy (Var "c") A.Plus (Mon A.MonadicMinus $ Var "b") )
,passE ("-(b+c)", 107, Mon A.MonadicMinus $ Dy (Var "b") A.Plus (Var "c") )
--Casting:
,passE ("bool: b", 201, Cast A.Bool (Var "b"))
,passE ("mytype: b", 202, Cast (A.UserDataType $ typeName "mytype") (Var "b"))
--Should at least parse:
,passE ("uint8 : true", 203, Cast A.Byte $ Lit (A.True m) )
,passE ("uint8 : b == c", 204, Cast A.Byte $ Dy (Var "b") A.Eq (Var "c") )
,passE ("uint8 : b + c", 205, Cast A.Byte $ Dy (Var "b") A.Plus (Var "c") )
,passE ("uint8 : b + c == d * e", 206, Cast A.Byte $ Dy (Dy (Var "b") A.Plus (Var "c")) A.Eq (Dy (Var "d") A.Times (Var "e")) )
,passE ("uint8 : b + (uint8 : c)", 207, Cast A.Byte $ Dy (Var "b") A.Plus (Cast A.Byte $ Var "c") )
,passE ("(uint8 : b) + (uint8 : c)", 208, Dy (Cast A.Byte $ Var "b") A.Plus (Cast A.Byte $ Var "c") )
,passE ("uint8 : b == (uint8 : c)", 209, Cast A.Byte $ Dy (Var "b") A.Eq (Cast A.Byte $ Var "c") )
,passE ("(uint8 : b) == (uint8 : c)", 210, Dy (Cast A.Byte $ Var "b") A.Eq (Cast A.Byte $ Var "c") )
,failE ("uint8 : b + uint8 : c")
,failE ("uint8 : b == uint8 : c")
,failE ("(uint8 : b) + uint8 : c")
,failE ("(uint8 : b) == uint8 : c")
,passE ("?uint8: ?c", 240, Cast (A.Chan A.DirInput nonShared A.Byte) $ DirVar A.DirInput "c")
--Should parse:
,passE ("?c: ?c", 241, Cast (A.Chan A.DirInput nonShared $ A.UserDataType $ typeName "c") $ DirVar A.DirInput "c")
,passE ("?c: ?c : b", 242, Cast (A.Chan A.DirInput nonShared $ A.UserDataType $ typeName "c") $
Cast (A.Chan A.DirInput nonShared $ A.UserDataType $ typeName "c") $ Var "b")
,failE ("?c:")
,failE (":?c")
,passE ("(48 + (uint8: src % 10)) + r",300,Dy (Dy (Lit $ intLiteral 48) A.Plus (Cast A.Byte $ Dy (Var "src") A.Rem (Lit $ intLiteral 10))) A.Plus (Var "r"))
]
where
passE :: (String,Int,ExprHelper) -> ParseTest A.Expression
passE (code,index,expr) = pass(code,RP.expression,assertPatternMatch ("testExprs " ++ show index) (buildExprPattern expr))
failE x = fail (x,RP.expression)
testLiteral :: [ParseTest A.Expression]
testLiteral =
[
--Int literals:
pass ("0", RP.literal, assertPatternMatch "testLiteral 0" (intLiteralPattern 0))
--2^32:
,pass ("4294967296", RP.literal, assertPatternMatch "testLiteral 1" (intLiteralPattern 4294967296))
--2^64:
,pass ("18446744073709551616", RP.literal, assertPatternMatch "testLiteral 2" (intLiteralPattern 18446744073709551616))
--2^100: We should be able to parse this, but it will be rejected at a later stage:
,pass ("1267650600228229401496703205376", RP.literal, assertPatternMatch "testLiteral 3" (intLiteralPattern 1267650600228229401496703205376))
--Test that both literal and expression parse -3 the same way:
,pass ("-3", RP.literal, assertPatternMatch "testLiteral 4" (intLiteralPattern (-3)))
,pass ("-3", RP.expression, assertPatternMatch "testLiteral 5" (intLiteralPattern (-3)))
--Non-integers currently unsupported:
,fail ("0.",RP.literal)
,fail ("0.0",RP.literal)
,fail (".0",RP.literal)
,fail ("0x0",RP.literal)
,fail ("0a0",RP.literal)
,fail ("0a",RP.literal)
--Identifiers are not literals (except true and false):
,pass ("true", RP.literal, assertPatternMatch "testLiteral 100" (pat $ A.True m))
,pass ("false", RP.literal, assertPatternMatch "testLiteral 101" (pat $ A.False m))
,fail ("x",RP.literal)
,fail ("x0",RP.literal)
,fail ("TRUE",RP.literal)
,fail ("FALSE",RP.literal)
--Strings:
,pass ("\"\"", RP.literal, assertPatternMatch "testLiteral 201" $ makeLiteralStringRainPattern "")
,pass ("\"abc\"", RP.literal, assertPatternMatch "testLiteral 202" $ makeLiteralStringRainPattern "abc")
,pass ("\"abc\\n\"", RP.literal, assertPatternMatch "testLiteral 203" $ makeLiteralStringRainPattern "abc\n")
,pass ("\"a\\\"bc\"", RP.literal, assertPatternMatch "testLiteral 204" $ makeLiteralStringRainPattern "a\"bc")
,fail ("\"",RP.literal)
,fail ("\"\"\"",RP.literal)
,fail ("a\"\"",RP.literal)
,fail ("\"\"a",RP.literal)
,fail ("\"\\\"",RP.literal)
--Characters:
,pass ("'0'", RP.literal, assertPatternMatch "testLiteral 300" $ makeLiteralCharPattern '0')
,pass ("'\\''", RP.literal, assertPatternMatch "testLiteral 300" $ makeLiteralCharPattern '\'')
,pass ("'\\n'", RP.literal, assertPatternMatch "testLiteral 300" $ makeLiteralCharPattern '\n')
,pass ("'\\\\'", RP.literal, assertPatternMatch "testLiteral 300" $ makeLiteralCharPattern '\\')
,fail ("''",RP.literal)
,fail ("'",RP.literal)
,fail ("'\\",RP.literal)
,fail ("'ab'",RP.literal)
,fail ("'\\n\\n'",RP.literal)
]
testRange :: [ParseTest A.Expression]
testRange =
[
pass("[0..1]", RP.expression, assertPatternMatch "testRange 0" $ pat $
A.ExprConstr m $ A.RangeConstr m (intLiteral 0) (intLiteral 1))
,pass("[0..10000]", RP.expression, assertPatternMatch "testRange 1" $ pat $
A.ExprConstr m $ A.RangeConstr m (intLiteral 0) (intLiteral 10000))
,pass("[-3..-1]", RP.expression, assertPatternMatch "testRange 2" $ pat $
A.ExprConstr m $ A.RangeConstr m (intLiteral $ -3) (intLiteral $ -1))
--For now, at least, this should fail:
,fail("[0..x]", RP.expression)
]
--Helper function for ifs:
makeIf :: [(A.Expression,A.Process)] -> A.Process
makeIf list = A.If m $ A.Several m (map makeChoice list)
where
makeChoice :: (A.Expression,A.Process) -> A.Structured
makeChoice (exp,proc) = A.OnlyC m $ A.Choice m exp proc
dyExp :: A.DyadicOp -> A.Variable -> A.Variable -> A.Expression
dyExp op v0 v1 = A.Dyadic m op (A.ExprVariable m v0) (A.ExprVariable m v1)
testIf :: [ParseTest A.Process]
testIf =
[
passIf ("if (a) {}", 0, [(exprVariable "a",emptyBlock),(A.True m,A.Skip m)])
,passIf ("if (a) {} else {}", 1, [(exprVariable "a",emptyBlock),(A.True m,emptyBlock)])
,passIf ("if (a) {} else {a = b;}", 2, [(exprVariable "a",emptyBlock),(A.True m,makeSeq [makeSimpleAssign "a" "b"])])
,passIf ("if (a) {} else {if (b) {} }", 3,
[(exprVariable "a",emptyBlock),(A.True m,makeSeq [makeIf [(exprVariable "b",emptyBlock),(A.True m,A.Skip m)]])])
,passIf ("if (a) {} else {if (b) {} else {} }", 4,
[(exprVariable "a",emptyBlock),(A.True m,makeSeq [makeIf [(exprVariable "b",emptyBlock),(A.True m,emptyBlock)]])])
,passIf ("if (a) {c = d;} else {if (b) {e = f;} else par {g = h;}}", 5,
[(exprVariable "a",makeSeq [makeSimpleAssign "c" "d"]),(A.True m,makeSeq [makeIf [(exprVariable "b",makeSeq [makeSimpleAssign "e" "f"]),(A.True m,makePar [makeSimpleAssign "g" "h"])]])])
,fail ("if (a) c = d;",RP.statement)
,fail ("if (a) {c = d;} else e = f;",RP.statement)
,fail ("if (a) {c = d;} else if (b) {e = f;}",RP.statement)
,fail ("if (a) {} else { if (b) {} } else {} ",RP.statement)
]
where
passIf :: (String, Int, [(A.Expression,A.Process)]) -> ParseTest A.Process
passIf (input,ind,exp) = pass (input, RP.statement, assertPatternMatch ("testIf " ++ show ind) (pat $ makeIf exp))
testAssign :: [ParseTest A.Process]
testAssign =
[
pass ("a = b;",RP.statement,
assertPatternMatch "Assign Test 0" $ makeSimpleAssignPattern "a" "b")
,fail ("a != b;",RP.statement)
,pass ("a += b;",RP.statement,
assertPatternMatch "Assign Test 1" $ pat $ makeAssign (variable "a") (dyExp A.Plus (variable ("a")) (variable ("b")) ) )
,fail ("a + = b;",RP.statement)
]
testWhile :: [ParseTest A.Process]
testWhile =
[
pass ("while (a) {}",RP.statement,
assertPatternMatch "While Test" $ pat $ A.While emptyMeta (exprVariable "a") (emptyBlock) )
,fail ("while (a)",RP.statement)
,fail ("while () ;",RP.statement)
,fail ("while () {}",RP.statement)
,fail ("while ;",RP.statement)
,fail ("while {}",RP.statement)
,fail ("while ",RP.statement)
]
testSeq :: [ParseTest A.Process]
testSeq =
[
passSeq (0, "seq { }", emptyBlock )
,fail ("seq { ; ; }",RP.statement)
,passSeq (1, "{ }", emptyBlock )
,fail ("{ ; ; }",RP.statement)
,passSeq (2, "{ { } }", makeSeq [emptyBlock] )
,passSeq (3, "seq { { } }", makeSeq [emptyBlock] )
,passSeq (4, "{ seq { } }", makeSeq [emptyBlock] )
,fail ("seq",RP.statement)
,fail ("seq ;",RP.statement)
,fail ("seq {",RP.statement)
,fail ("seq }",RP.statement)
,fail ("{",RP.statement)
,fail ("}",RP.statement)
,fail ("seq seq {}",RP.statement)
,fail ("seq seq",RP.statement)
,fail ("seq {}}",RP.statement)
,fail ("seq {{}",RP.statement)
--should fail, because it is two statements, not one:
,fail ("seq {};",RP.statement)
,fail ("{};",RP.statement)
]
where
passSeq :: (Int, String, A.Process) -> ParseTest A.Process
passSeq (ind, input, exp) = pass (input,RP.statement, assertPatternMatch ("testSeq " ++ show ind) (pat exp))
testPar :: [ParseTest A.Process]
testPar =
[
passPar (0, "par { }", A.Par m A.PlainPar $ A.Several m [] )
,passPar (1, "par { {} {} }", A.Par m A.PlainPar $ A.Several m [A.OnlyP m emptyBlock, A.OnlyP m emptyBlock] )
--Rain only allows declarations at the beginning of a par block:
,passPar (2, "par {int:x; {} }", A.Par m A.PlainPar $
A.Spec m (A.Specification m (simpleName "x") $ A.Declaration m A.Int Nothing) $
A.Several m [A.OnlyP m $ A.Seq m $ A.Several m []] )
,passPar (3, "par {uint16:x; uint32:y; {} }", A.Par m A.PlainPar $
A.Spec m (A.Specification m (simpleName "x") $ A.Declaration m A.UInt16 Nothing) $
A.Spec m (A.Specification m (simpleName "y") $ A.Declaration m A.UInt32 Nothing) $
A.Several m [A.OnlyP m $ A.Seq m $ A.Several m []] )
,fail ("par { {} int: x; }",RP.statement)
]
where
passPar :: (Int, String, A.Process) -> ParseTest A.Process
passPar (ind, input, exp) = pass (input,RP.statement, assertPatternMatch ("testPar " ++ show ind) (pat exp))
-- | Test innerBlock, particularly with declarations mixed with statements:
testBlock :: [ParseTest A.Structured]
testBlock =
[
passBlock (0, "{ a = b; }", False, A.Several m [A.OnlyP m $ makeSimpleAssign "a" "b"])
,passBlock (1, "{ a = b; b = c; }", False,
A.Several m [A.OnlyP m $ makeSimpleAssign "a" "b",A.OnlyP m $ makeSimpleAssign "b" "c"])
,passBlock (2, "{ uint8: x; a = b; }", False,
A.Spec m (A.Specification m (simpleName "x") $ A.Declaration m A.Byte noInit) $
A.Several m [A.OnlyP m $ makeSimpleAssign "a" "b"])
,passBlock (3, "{ uint8: x; a = b; b = c; }", False,
A.Spec m (A.Specification m (simpleName "x") $ A.Declaration m A.Byte noInit) $
A.Several m [A.OnlyP m $ makeSimpleAssign "a" "b",A.OnlyP m $ makeSimpleAssign "b" "c"])
,passBlock (4, "{ b = c; uint8: x; a = b; }", False,
A.Several m [A.OnlyP m $ makeSimpleAssign "b" "c",
A.Spec m (A.Specification m (simpleName "x") $ A.Declaration m A.Byte noInit) $
A.Several m [A.OnlyP m $ makeSimpleAssign "a" "b"]
])
,passBlock (5, "{ uint8: x; }", False,
A.Spec m (A.Specification m (simpleName "x") $ A.Declaration m A.Byte noInit) emptySeveral)
,fail("{b}",RP.innerBlock False)
]
where
passBlock :: (Int, String, Bool, A.Structured) -> ParseTest A.Structured
passBlock (ind, input, b, exp) = pass (input, RP.innerBlock b, assertPatternMatch ("testBlock " ++ show ind) (pat exp))
testEach :: [ParseTest A.Process]
testEach =
[
pass ("seqeach (c : \"1\") par {c = 7;}", RP.statement,
assertPatternMatch "Each Test 0" (pat $ A.Seq m $ A.Rep m (A.ForEach m (simpleName "c") (makeLiteralStringRain "1")) $
A.OnlyP m $ makePar [(makeAssign (variable "c") (A.Literal m A.Int (A.IntLiteral m "7")))] ))
,pass ("pareach (c : \"345\") {c = 1; c = 2;}", RP.statement,
assertPatternMatch "Each Test 1" $ pat $ A.Par m A.PlainPar $ A.Rep m (A.ForEach m (simpleName "c") (makeLiteralStringRain "345")) $
A.OnlyP m $ makeSeq[(makeAssign (variable "c") (A.Literal m A.Int (A.IntLiteral m "1"))),(makeAssign (variable "c") (A.Literal m A.Int (A.IntLiteral m "2")))] )
]
testTopLevelDecl :: [ParseTest A.Structured]
testTopLevelDecl =
[
passTop (0, "process noargs() {}",
[A.Spec m (A.Specification m (simpleName "noargs") $ A.Proc m A.PlainSpec [] emptyBlock) emptySeveral])
,passTop (1, "process onearg(int: x) {x = 0;}",
[A.Spec m (A.Specification m (simpleName "onearg") $ A.Proc m A.PlainSpec
[A.Formal A.ValAbbrev A.Int (simpleName "x")] $
makeSeq [makeAssign (variable "x") (intLiteral 0)])
emptySeveral
])
,passTop (2, "process noargs0() {} process noargs1 () {}",
[A.Spec m (A.Specification m (simpleName "noargs0") $ A.Proc m A.PlainSpec [] emptyBlock) emptySeveral
,A.Spec m (A.Specification m (simpleName "noargs1") $ A.Proc m A.PlainSpec [] emptyBlock) emptySeveral])
,passTop (4, "process noargs() par {}",
[A.Spec m (A.Specification m (simpleName "noargs") $ A.Proc m A.PlainSpec [] $ A.Par m A.PlainPar emptySeveral) emptySeveral])
, fail ("process", RP.topLevelDecl)
, fail ("process () {}", RP.topLevelDecl)
, fail ("process foo", RP.topLevelDecl)
, fail ("process foo ()", RP.topLevelDecl)
, fail ("process foo () {", RP.topLevelDecl)
, fail ("process foo ( {} )", RP.topLevelDecl)
, fail ("process foo (int: x)", RP.topLevelDecl)
, fail ("process foo (int x) {}", RP.topLevelDecl)
,passTop (100, "function uint8: cons() {}",
[A.Spec m (A.Specification m (simpleName "cons") $ A.Function m A.PlainSpec [A.Byte] [] $ A.OnlyP m emptyBlock) emptySeveral])
,passTop (101, "function uint8: f(uint8: x) {}",
[A.Spec m (A.Specification m (simpleName "f") $
A.Function m A.PlainSpec [A.Byte] [A.Formal A.ValAbbrev A.Byte (simpleName "x")] $ A.OnlyP m emptyBlock)
emptySeveral])
,passTop (102, "function uint8: id(uint8: x) {return x;}",
[A.Spec m (A.Specification m (simpleName "id") $
A.Function m A.PlainSpec [A.Byte] [A.Formal A.ValAbbrev A.Byte (simpleName "x")] $
A.OnlyP m $ A.Seq m $ A.Several m [A.OnlyEL m $ A.ExpressionList m [exprVariable "x"]])
emptySeveral])
]
where
passTop :: (Int, String, [A.Structured]) -> ParseTest A.Structured
passTop (ind, input, exp) = pass (input, RP.topLevelDecl, assertPatternMatch ("testTopLevelDecl " ++ show ind) $ pat $ A.Several m exp)
nonShared :: A.ChanAttributes
nonShared = A.ChanAttributes { A.caWritingShared = False, A.caReadingShared = False}
testDataType :: [ParseTest A.Type]
testDataType =
[
pass ("bool",RP.dataType,assertEqual "testDataType 0" A.Bool)
,pass ("int",RP.dataType,assertEqual "testDataType 1" A.Int)
,pass ("uint8",RP.dataType,assertEqual "testDataType 2" A.Byte)
,pass ("uint16",RP.dataType,assertEqual "testDataType 3" A.UInt16)
,pass ("uint32",RP.dataType,assertEqual "testDataType 4" A.UInt32)
,pass ("uint64",RP.dataType,assertEqual "testDataType 5" A.UInt64)
,pass ("sint8",RP.dataType,assertEqual "testDataType 6" A.Int8)
,pass ("sint16",RP.dataType,assertEqual "testDataType 7" A.Int16)
,pass ("sint32",RP.dataType,assertEqual "testDataType 8" A.Int32)
,pass ("sint64",RP.dataType,assertEqual "testDataType 9" A.Int64)
,pass ("boolean",RP.dataType,assertEqual "testDataType 10" $ A.UserDataType $ typeName "boolean")
,pass ("uint24",RP.dataType,assertEqual "testDataType 11" $ A.UserDataType $ typeName "uint24")
,pass ("int0",RP.dataType,assertEqual "testDataType 12" $ A.UserDataType $ typeName "int0")
,fail ("bool bool",RP.dataType)
,pass ("?int",RP.dataType,assertEqual "testDataType 102" $ A.Chan A.DirInput nonShared A.Int)
,pass ("! bool",RP.dataType,assertEqual "testDataType 103" $ A.Chan A.DirOutput nonShared A.Bool)
--These types should succeed in the *parser* -- they would be thrown out further down the line:
,pass ("??int",RP.dataType,assertEqual "testDataType 104" $ A.Chan A.DirInput nonShared $ A.Chan A.DirInput nonShared A.Int)
,pass ("? ? int",RP.dataType,assertEqual "testDataType 105" $ A.Chan A.DirInput nonShared $ A.Chan A.DirInput nonShared A.Int)
,pass ("!!bool",RP.dataType,assertEqual "testDataType 106" $ A.Chan A.DirOutput nonShared $ A.Chan A.DirOutput nonShared A.Bool)
,pass ("?!bool",RP.dataType,assertEqual "testDataType 107" $ A.Chan A.DirInput nonShared $ A.Chan A.DirOutput nonShared A.Bool)
,fail ("?",RP.dataType)
,fail ("!",RP.dataType)
,fail ("??",RP.dataType)
,fail ("int?",RP.dataType)
,fail ("bool!",RP.dataType)
,fail ("int?int",RP.dataType)
,pass ("channel bool",RP.dataType,assertEqual "testDataType 200" $ A.Chan A.DirUnknown nonShared A.Bool)
,pass ("time",RP.dataType,assertEqual "testDataType 300" A.Time)
,pass ("timer",RP.dataType,assertEqual "testDataType 301" $ A.UserDataType $ typeName "timer")
]
testDecl :: [ParseTest (Meta, A.Structured -> A.Structured)]
testDecl =
[
passd ("bool: b;",0,pat $ A.Specification m (simpleName "b") $ A.Declaration m A.Bool noInit)
,passd ("uint8: x;",1,pat $ A.Specification m (simpleName "x") $ A.Declaration m A.Byte noInit)
,passd ("?bool: bc;",2,pat $ A.Specification m (simpleName "bc") $ A.Declaration m (A.Chan A.DirInput nonShared A.Bool) noInit)
,passd ("a: b;",3,pat $ A.Specification m (simpleName "b") $ A.Declaration m (A.UserDataType $ A.Name m A.DataTypeName "a") noInit)
,passd2 ("bool: b0,b1;",100,pat $ A.Specification m (simpleName "b0") $ A.Declaration m A.Bool noInit,
pat $ A.Specification m (simpleName "b1") $ A.Declaration m A.Bool noInit)
,fail ("bool:;",RP.declaration)
,fail ("bool;",RP.declaration)
,fail (":b;",RP.declaration)
,fail ("bool:b",RP.declaration)
,fail ("bool b",RP.declaration)
,fail ("bool b;",RP.declaration)
,fail ("bool:?b;",RP.declaration)
,fail ("bool:b,;",RP.declaration)
,fail ("bool: b0 b1;",RP.declaration)
]
where
passd :: (String,Int,Pattern) -> ParseTest (Meta, A.Structured -> A.Structured)
passd (code,index,exp) = pass(code,RP.declaration,check ("testDecl " ++ (show index)) exp)
check :: String -> Pattern -> (Meta, A.Structured -> A.Structured) -> Assertion
check msg spec (_,act) = assertPatternMatch msg (tag3 A.Spec DontCare spec $ emptySeveral) (act $ emptySeveral)
passd2 :: (String,Int,Pattern,Pattern) -> ParseTest (Meta, A.Structured -> A.Structured)
passd2 (code,index,expOuter,expInner) = pass(code,RP.declaration,check2 ("testDecl " ++ (show index)) expOuter expInner)
check2 :: String -> Pattern -> Pattern -> (Meta, A.Structured -> A.Structured) -> Assertion
check2 msg specOuter specInner (_,act) = assertPatternMatch msg (tag3 A.Spec DontCare specOuter $ tag3 A.Spec DontCare specInner $ A.Several m []) (act $ A.Several m [])
testComm :: [ParseTest A.Process]
testComm =
[
--Output:
pass ("c ! x;",RP.statement,assertPatternMatch "testComm 0" $ pat $ A.Output m (variable "c") [A.OutExpression m (exprVariable "x")])
,pass ("c!x;",RP.statement,assertPatternMatch "testComm 1" $ pat $ A.Output m (variable "c") [A.OutExpression m (exprVariable "x")])
,pass ("c!0+x;",RP.statement,assertPatternMatch "testComm 2" $ pat $ A.Output m (variable "c") [A.OutExpression m $ A.Dyadic m A.Plus (intLiteral 0) (exprVariable "x")])
,pass ("c!!x;",RP.statement,assertPatternMatch "testComm 3" $ pat $ A.Output m (variable "c") [A.OutExpression m $ (exprDirVariable A.DirOutput "x")])
,fail ("c!x",RP.statement)
,fail ("c!x!y;",RP.statement)
,fail ("c!x,y;",RP.statement)
,fail ("c!;",RP.statement)
,fail ("!x;",RP.statement)
--Input:
,pass ("c ? x;",RP.statement, assertPatternMatch "testComm 100" $ pat $ A.Input m (variable "c") $ A.InputSimple m [A.InVariable m (variable "x")])
,pass ("c?x;",RP.statement, assertPatternMatch "testComm 101" $ pat $ A.Input m (variable "c") $ A.InputSimple m [A.InVariable m (variable "x")])
--Later will probably become the extended rendezvous syntax:
,pass ("c??x;",RP.statement, assertPatternMatch "testComm 101" $ pat $ A.Input m (variable "c") $ A.InputSimple m [A.InVariable m (A.DirectedVariable m A.DirInput $ variable "x")])
,fail ("c ? x + 0;",RP.statement)
,fail ("?x;",RP.statement)
,fail ("c ? x",RP.statement)
,fail ("c ? ;",RP.statement)
,fail ("c ? x ? y;",RP.statement)
,fail ("c ? x , y;",RP.statement)
]
testAlt :: [ParseTest A.Process]
testAlt =
[
passAlt (0, "pri alt {}", A.Alt m True $ A.Several m [])
,passAlt (1, "pri alt { c ? x {} }", A.Alt m True $ A.Several m [A.OnlyA m $ A.Alternative m
(variable "c") (A.InputSimple m [A.InVariable m (variable "x")]) emptyBlock])
,passAlt (2, "pri alt { c ? x {} d ? y {} }", A.Alt m True $ A.Several m [
A.OnlyA m $ A.Alternative m (variable "c") (A.InputSimple m [A.InVariable m (variable "x")]) emptyBlock
,A.OnlyA m $ A.Alternative m (variable "d") (A.InputSimple m [A.InVariable m (variable "y")]) emptyBlock])
--Fairly nonsensical, but valid:
,passAlt (3, "pri alt { else {} }", A.Alt m True $ A.Several m [
A.OnlyA m $ A.AlternativeSkip m (A.True m) emptyBlock])
,passAlt (4, "pri alt { c ? x {} else {} }", A.Alt m True $ A.Several m [
A.OnlyA m $ A.Alternative m (variable "c") (A.InputSimple m [A.InVariable m (variable "x")]) emptyBlock
,A.OnlyA m $ A.AlternativeSkip m (A.True m) emptyBlock])
,passAlt (100, "pri alt { wait for t {} }", A.Alt m True $ A.Several m [
A.OnlyA m $ A.AlternativeWait m A.WaitFor (exprVariable "t") emptyBlock])
,passAlt (101, "pri alt { wait for t {} wait until t {} }", A.Alt m True $ A.Several m [
A.OnlyA m $ A.AlternativeWait m A.WaitFor (exprVariable "t") emptyBlock
,A.OnlyA m $ A.AlternativeWait m A.WaitUntil (exprVariable "t") emptyBlock])
,passAlt (102, "pri alt { wait until t + t {} else {} }", A.Alt m True $ A.Several m [
A.OnlyA m $ A.AlternativeWait m A.WaitUntil (buildExpr $ Dy (Var "t") A.Plus (Var "t")) emptyBlock
,A.OnlyA m $ A.AlternativeSkip m (A.True m) emptyBlock])
,fail("pri {}",RP.statement)
,fail("alt {}",RP.statement)
,fail("pri alt ;",RP.statement)
,fail("pri alt {",RP.statement)
,fail("pri alt }",RP.statement)
,fail("pri alt { c ? x }",RP.statement)
,fail("pri alt { c ? x ; }",RP.statement)
,fail("pri alt { c ? x {}; }",RP.statement)
,fail("pri alt { c ! x {} }",RP.statement)
,fail("pri alt { {} }",RP.statement)
,fail("pri alt { c = x {} }",RP.statement)
,fail("pri alt { else {} c ? x {} }",RP.statement)
,fail("pri alt { d ? y {} else {} c ? x {} }",RP.statement)
,fail("pri alt { else {} else {} }",RP.statement)
,fail("pri alt { d ? y {} else {} c ? x {} else {} }",RP.statement)
,fail("pri alt { wait for {} }",RP.statement)
,fail("pri alt { wait until t; {} }",RP.statement)
,fail("pri alt { wait t {} }",RP.statement)
,fail("pri alt { for t {} }",RP.statement)
]
where
passAlt :: (Int, String, A.Process) -> ParseTest A.Process
passAlt (ind, input, exp) = pass (input, RP.statement, assertPatternMatch ("testAlt " ++ show ind) (pat exp))
testRun :: [ParseTest A.Process]
testRun =
[
pass ("run foo();",RP.statement,assertPatternMatch "testRun 1" $ tag3 A.ProcCall DontCare (procNamePattern "foo") ([] :: [A.Actual]))
,pass ("run foo(c);",RP.statement,assertPatternMatch "testRun 2" $ tag3 A.ProcCall DontCare (procNamePattern "foo")
[tag3 A.ActualVariable A.Original A.Any (variablePattern "c")])
,pass ("run foo(c,0+x);",RP.statement,assertPatternMatch "testRun 3" $ tag3 A.ProcCall DontCare (procNamePattern "foo")
[tag3 A.ActualVariable A.Original A.Any (variablePattern "c"),tag2 A.ActualExpression A.Any $ tag4 A.Dyadic DontCare A.Plus (intLiteralPattern 0) (exprVariablePattern "x")])
,fail ("run",RP.statement)
,fail ("run;",RP.statement)
,fail ("run ();",RP.statement)
,fail ("run foo()",RP.statement)
,fail ("run foo(,);",RP.statement)
]
testTime :: [ParseTest A.Process]
testTime =
[
pass ("now t;",RP.statement, assertPatternMatch "testTime 0" $ tag2 A.GetTime DontCare (variablePattern "t"))
,fail ("now t",RP.statement)
,fail ("now ;",RP.statement)
,fail ("now t + t;",RP.statement)
,pass ("wait for t;",RP.statement, assertPatternMatch "testTime 1" $ tag3 A.Wait DontCare A.WaitFor (exprVariablePattern "t"))
,pass ("wait until t;",RP.statement, assertPatternMatch "testTime 2" $ tag3 A.Wait DontCare A.WaitUntil (exprVariablePattern "t"))
,pass ("wait until t + t;",RP.statement, assertPatternMatch "testTime 3" $ tag3 A.Wait DontCare A.WaitUntil $ buildExprPattern $ Dy (Var "t") A.Plus (Var "t"))
,fail ("waitfor t;",RP.statement)
,fail ("waituntil t;",RP.statement)
,fail ("wait for t",RP.statement)
,fail ("until t;",RP.statement)
]
--Returns the list of tests:
tests :: Test
tests = TestLabel "ParseRainTest" $ TestList
[
parseTests testExprs,
parseTests testLiteral,
parseTests testRange,
parseTests testWhile,
parseTests testSeq,
parseTests testPar,
parseTests testBlock,
parseTests testEach,
parseTests testIf,
parseTests testAssign,
parseTests testDataType,
parseTests testComm,
parseTests testAlt,
parseTests testTime,
parseTests testRun,
parseTests testDecl,
parseTests testTopLevelDecl
]
--TODO test:
-- input (incl. ext input)
--TODO later on:
-- types (lists, tuples, maps)
-- functions
-- typedefs
where
parseTest :: Show a => ParseTest a -> Test
parseTest (ExpPass test) = TestCase (testParsePass test)
parseTest (ExpFail test) = TestCase (testParseFail test)
parseTests :: Show a => [ParseTest a] -> Test
parseTests tests = TestList (map parseTest tests)