tock-mirror/transformations/SimplifyExprs.hs
Neil Brown 7722e95dfd Added support for recursive functions (not procs, yet)
At the moment, the information is only needed in the parser, which must define recursive names before parsing the body of the function.  But in future, we should keep the information when the function becomes a proc, and then the C/C++ backends may need to use it (for example, when calculating stack space usage)
2009-01-29 00:27:11 +00:00

441 lines
19 KiB
Haskell

{-
Tock: a compiler for parallel languages
Copyright (C) 2007, 2008 University of Kent
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 2 of the License, or (at your
option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.
-}
-- | Simplify expressions in the AST.
module SimplifyExprs where
import Control.Monad.State
import Data.Generics
import qualified Data.Map as Map
import qualified AST as A
import CompState
import Errors
import EvalConstants
import Metadata
import Pass
import qualified Properties as Prop
import ShowCode
import Traversal
import Types
simplifyExprs :: [Pass]
simplifyExprs =
[ functionsToProcs
, removeAfter
, expandArrayLiterals
, pullRepCounts
, pullUp False
, transformConstr
]
-- | Convert FUNCTION declarations to PROCs.
functionsToProcs :: Pass
functionsToProcs = pass "Convert FUNCTIONs to PROCs"
(Prop.agg_namesDone ++ [Prop.expressionTypesChecked, Prop.parUsageChecked,
Prop.functionTypesChecked])
[Prop.functionsRemoved]
(applyDepthM doSpecification)
where
doSpecification :: A.Specification -> PassM A.Specification
doSpecification (A.Specification m n (A.Function mf (sm, _) rts fs evp))
= do -- Create new names for the return values.
specs <- sequence [makeNonceVariable "return_formal" mf t A.Abbrev | t <- rts]
let names = [n | A.Specification mf n _ <- specs]
-- Note the return types so we can fix calls later.
modify $ (\ps -> ps { csFunctionReturns = Map.insert (A.nameName n) rts (csFunctionReturns ps) })
-- Turn the value process into an assignment process.
let p = vpToSeq m n evp [A.Variable mf n | n <- names]
let st = A.Proc mf sm (fs ++ [A.Formal A.Abbrev t n | (t, n) <- zip rts names]) p
-- Build a new specification and redefine the function.
let spec = A.Specification m n st
let nd = A.NameDef {
A.ndMeta = mf,
A.ndName = A.nameName n,
A.ndOrigName = A.nameName n,
A.ndSpecType = st,
A.ndAbbrevMode = A.Original,
A.ndNameSource = A.NameUser,
A.ndPlacement = A.Unplaced
}
defineName n nd
return spec
doSpecification s = return s
vpToSeq :: Meta -> A.Name -> Either (A.Structured A.ExpressionList) A.Process -> [A.Variable] -> A.Process
vpToSeq m n (Left el) vs = A.Seq m $ vpToSeq' el vs
vpToSeq _ n (Right p) vs = subst p
where
subst :: Data t => t -> t
subst = doGenericSubst `extT` doAssignSubst
doGenericSubst :: Data t => t -> t
doGenericSubst = gmapT subst `extT` (id :: String -> String) `extT` (id :: Meta -> Meta)
doAssignSubst :: A.Process -> A.Process
doAssignSubst ass@(A.Assign m [A.Variable _ dest] el) = if (A.nameName dest == A.nameName n) then (A.Assign m vs el) else ass
doAssignSubst p = doGenericSubst p
vpToSeq' :: A.Structured A.ExpressionList -> [A.Variable] -> A.Structured A.Process
vpToSeq' (A.Spec m spec s) vs = A.Spec m spec (vpToSeq' s vs)
vpToSeq' (A.ProcThen m p s) vs = A.ProcThen m p (vpToSeq' s vs)
vpToSeq' (A.Only m el) vs = A.Only m $ A.Assign m vs el
-- | Convert AFTER expressions to the equivalent using MINUS (which is how the
-- occam 3 manual defines AFTER).
removeAfter :: Pass
removeAfter = pass "Convert AFTER to MINUS"
[Prop.expressionTypesChecked]
[Prop.afterRemoved]
(applyDepthM doExpression)
where
doExpression :: A.Expression -> PassM A.Expression
doExpression (A.Dyadic m A.After a b)
= do t <- astTypeOf a
case t of
A.Byte -> do let one = A.Literal m t $ A.IntLiteral m "1"
oneTwoSeven = A.Literal m t $ A.IntLiteral m "127"
return $ A.Dyadic m A.Less (A.Dyadic m A.Minus (A.Dyadic m A.Minus a b) one) oneTwoSeven
_ -> do let zero = A.Literal m t $ A.IntLiteral m "0"
return $ A.Dyadic m A.More (A.Dyadic m A.Minus a b) zero
doExpression e = return e
-- | For array literals that include other arrays, burst them into their
-- elements.
expandArrayLiterals :: Pass
expandArrayLiterals = pass "Expand array literals"
[Prop.expressionTypesChecked, Prop.processTypesChecked]
[Prop.arrayLiteralsExpanded]
(applyDepthM doArrayElem)
where
doArrayElem :: A.ArrayElem -> PassM A.ArrayElem
doArrayElem ae@(A.ArrayElemExpr e)
= do t <- astTypeOf e
case t of
A.Array ds _ -> expand ds e
_ -> return ae
doArrayElem ae = return ae
expand :: [A.Dimension] -> A.Expression -> PassM A.ArrayElem
expand [] e = return $ A.ArrayElemExpr e
expand (A.UnknownDimension:_) e
= dieP (findMeta e) "array literal containing non-literal array of unknown size"
expand (A.Dimension n:ds) e
= do -- Because it's an array literal, we must know the size.
size <- evalIntExpression n
elems <- sequence [expand ds (A.SubscriptedExpr m
(A.Subscript m A.NoCheck $
makeConstant m i) e)
| i <- [0 .. size - 1]]
return $ A.ArrayElemArray elems
where m = findMeta e
-- | We pull up the loop (Rep) counts into a temporary expression, whenever the loop
-- count could be modified within the loop. Here are all things that can be replicated:
-- SEQ -- can be altered during the loop, must pull up
-- PAR -- count cannot be modified by code inside the loop (it is used before any PAR branches are run)
-- BUT since we implement replicated pars using a loop that forks off those
-- processes, it seems safest to pull up
-- IF -- cannot be altered during loop; once body executes, loop is effectively broken
-- ALT -- same as IF
-- BUT the programmer could offer to read into the replication count, which
-- could cause all sorts of horrendous problems, so pull up
-- Therefore, we only need to pull up the counts for SEQ, PAR and ALT
--
-- TODO for simplification, we could avoid pulling up replication counts that are known to be constants
--
-- TODO we should also pull up the step counts
pullRepCounts :: Pass
pullRepCounts = pass "Pull up replicator counts for SEQs, PARs and ALTs"
(Prop.agg_namesDone ++ Prop.agg_typesDone)
[]
(applyDepthM2
(pullRepCount :: A.Structured A.Process -> PassM (A.Structured A.Process))
(pullRepCount :: A.Structured A.Alternative -> PassM (A.Structured A.Alternative))
)
where
pullRepCount :: Data a => A.Structured a -> PassM (A.Structured a)
pullRepCount (A.Spec m (A.Specification mspec n (A.Rep mrep (A.For mfor
from for step))) scope)
= do t <- astTypeOf for
spec@(A.Specification _ nonceName _) <- makeNonceIsExpr "rep_for" mspec t for
let newSpec = (A.Rep mrep (A.For mfor from (A.ExprVariable mspec $ A.Variable mspec nonceName) step))
modifyName n $ \nd -> nd { A.ndSpecType = newSpec }
return $ A.Spec mspec spec $
A.Spec m (A.Specification mspec n newSpec) scope
pullRepCount s = return s
transformConstr :: Pass
transformConstr = pass "Transform array constructors into initialisation code"
(Prop.agg_namesDone ++ Prop.agg_typesDone ++ [Prop.subscriptsPulledUp])
[Prop.arrayConstructorsRemoved]
(applyDepthSM doStructured)
where
-- For arrays, this takes a constructor expression:
-- VAL type name IS [i = rep | expr]:
-- ...
-- and produces this:
-- type name:
-- PROCTHEN
-- INT indexvar:
-- SEQ
-- indexvar := 0
-- SEQ i = rep
-- SEQ
-- name[indexvar] := expr
-- indexvar := indexvar + 1
-- ...
--
-- For lists, it takes the similar expression and produces:
-- type name:
-- PROCTHEN
-- SEQ i = rep
-- name += [expr]
doStructured :: Data a => A.Structured a -> PassM (A.Structured a)
doStructured (A.Spec m (A.Specification m' n (A.IsExpr _ _ _
expr@(A.ExprConstr m'' (A.RepConstr _ t repn rep exp)))) scope)
= do case t of
A.Array {} ->
do indexVarSpec@(A.Specification _ indexName _) <- makeNonceVariable "array_constr_index" m'' A.Int A.Original
let indexVar = A.Variable m'' indexName
return $ declDest $ A.ProcThen m''
(A.Seq m'' $ A.Spec m'' indexVarSpec $
A.Several m'' [assignIndex0 indexVar,
replicateCode $ A.Only m'' $ A.Seq m'' $
A.Several m''
[ assignItem indexVar
, incrementIndex indexVar ]
])
scope
A.List {} ->
return $ declDest $ A.ProcThen m''
(A.Seq m'' $ replicateCode $ appendItem)
scope
_ -> diePC m $ formatCode "Unsupported type for array constructor: %" t
where
declDest :: Data a => A.Structured a -> A.Structured a
declDest = A.Spec m (A.Specification m' n (A.Declaration m' t))
assignIndex0 :: A.Variable -> A.Structured A.Process
assignIndex0 indexVar = A.Only m'' $ A.Assign m'' [indexVar] $
A.ExpressionList m'' [A.Literal m'' A.Int $ A.IntLiteral m'' "0"]
incrementIndex :: A.Variable -> A.Structured A.Process
incrementIndex indexVar = A.Only m'' $ A.Assign m'' [indexVar] $
A.ExpressionList m'' [addOne $ A.ExprVariable m'' indexVar]
assignItem :: A.Variable -> A.Structured A.Process
assignItem indexVar = A.Only m'' $ A.Assign m'' [A.SubscriptedVariable m''
(A.Subscript m'' A.NoCheck $ A.ExprVariable m'' indexVar) $
A.Variable m'' n] $ A.ExpressionList m'' [exp]
appendItem :: A.Structured A.Process
appendItem = A.Only m'' $ A.Assign m'' [A.Variable m'' n] $
A.ExpressionList m'' [A.Dyadic m'' A.Concat
(A.ExprVariable m'' $ A.Variable m'' n)
(A.Literal m'' t $ A.ListLiteral m'' [exp])]
replicateCode :: Data a => A.Structured a -> A.Structured a
replicateCode = A.Spec m'' (A.Specification m'' repn (A.Rep m'' rep))
doStructured s = return s
-- | Find things that need to be moved up to their enclosing Structured, and do
-- so.
pullUp :: Bool -> Pass
pullUp pullUpArraysInsideRecords = pass "Pull up definitions"
(Prop.agg_namesDone ++ Prop.agg_typesDone ++ [Prop.functionsRemoved, Prop.seqInputsFlattened])
[Prop.functionCallsRemoved, Prop.subscriptsPulledUp]
recurse
where
ops :: Ops
ops = baseOp
`extOpS` doStructured
`extOp` doProcess
`extOp` doSpecification
`extOp` doLiteralRepr
`extOp` doExpression
`extOp` doVariable
`extOp` doExpressionList
recurse :: Recurse
recurse = makeRecurse ops
descend :: Descend
descend = makeDescend ops
-- | When we encounter a Structured, create a new pulled items state,
-- recurse over it, then apply whatever pulled items we found to it.
doStructured :: Data a => A.Structured a -> PassM (A.Structured a)
doStructured s
= do pushPullContext
-- Recurse over the body, then apply the pulled items to it
s' <- descend s >>= applyPulled
-- ... and restore the original pulled items
popPullContext
return s'
-- | As with doStructured: when we find a process, create a new pulled items
-- context, and if we find any items apply them to it.
doProcess :: A.Process -> PassM A.Process
doProcess p
= do pushPullContext
p' <- descend p
pulled <- havePulled
p'' <- if pulled
then liftM (A.Seq emptyMeta) $ applyPulled (A.Only emptyMeta p')
else return p'
popPullContext
return p''
-- | Filter what can be pulled in Specifications.
doSpecification :: A.Specification -> PassM A.Specification
-- Iss might be SubscriptedVars -- which is fine; the backend can deal with that.
doSpecification (A.Specification m n (A.Is m' am t v))
= do v' <- descend v -- note descend rather than pullUp
return $ A.Specification m n (A.Is m' am t v')
-- IsExprs might be SubscriptedExprs, and if so we have to convert them.
doSpecification (A.Specification m n (A.IsExpr m' am t e))
= do e' <- doExpression' e -- note doExpression' rather than recurse
return $ A.Specification m n (A.IsExpr m' am t e')
-- Convert RetypesExpr into Retypes of a variable.
doSpecification (A.Specification m n (A.RetypesExpr m' am toT e))
= do e' <- doExpression e
fromT <- astTypeOf e'
spec@(A.Specification _ n' _) <- makeNonceIsExpr "retypes_expr" m' fromT e'
addPulled $ (m', Left spec)
return $ A.Specification m n (A.Retypes m' am toT (A.Variable m' n'))
doSpecification s = descend s
-- | Filter what can be pulled in LiteralReprs.
doLiteralRepr :: A.LiteralRepr -> PassM A.LiteralRepr
-- FIXME: We could do away with ArrayElem and have a rule like the below
-- for nested array literals.
-- Don't pull up array expressions that are fields of record literals.
doLiteralRepr (A.RecordLiteral m es)
= do es' <- mapM (if pullUpArraysInsideRecords then doExpression else doExpression') es -- note doExpression' rather than recurse
return $ A.RecordLiteral m es'
doLiteralRepr lr = descend lr
-- | Pull array expressions that aren't already non-subscripted variables.
-- Also pull lists that are literals or constructed
doExpression :: A.Expression -> PassM A.Expression
doExpression e
-- This part handles recursing into the expression first:
= do e' <- doExpression' e
t <- astTypeOf e'
case t of
A.Array _ _ ->
case e' of
A.ExprVariable _ (A.Variable _ _) -> return e'
A.ExprVariable _ (A.DirectedVariable _ _ _) -> return e'
--TODO work out whether to pull up DerefVariable
_ -> pull t e'
A.List _ ->
case e' of
A.ExprConstr {} -> pull t e'
A.Literal {} -> pull t e'
_ -> return e'
_ -> return e'
where
pull :: A.Type -> A.Expression -> PassM A.Expression
pull t e
= do let m = findMeta e
spec@(A.Specification _ n _) <- makeNonceIsExpr "array_expr" m t e
addPulled $ (m, Left spec)
return $ A.ExprVariable m (A.Variable m n)
-- | Pull any variable subscript that results in an array, or contains a slice.
doVariable :: A.Variable -> PassM A.Variable
doVariable v@(A.SubscriptedVariable m sub _)
= do v' <- if isSlice sub then descend v else descendAfterSubscripts v
t <- astTypeOf v'
case t of
A.Array _ _ ->
do origAM <- abbrevModeOfVariable v'
let am = makeAbbrevAM origAM
spec@(A.Specification _ n _) <- makeNonceIs "array_slice" m t am v'
addPulled $ (m, Left spec)
return $ A.Variable m n
_ -> return v'
where
descendAfterSubscripts (A.SubscriptedVariable m sub v) | not (isSlice sub)
= do sub' <- recurse sub
v' <- descendAfterSubscripts v
return $ A.SubscriptedVariable m sub' v'
descendAfterSubscripts v = doVariable v
isSlice (A.SubscriptFromFor {}) = True
isSlice (A.SubscriptFrom {}) = True
isSlice (A.SubscriptFor {}) = True
isSlice _ = False
doVariable v@(A.DirectedVariable m dir innerV)
= do t <- astTypeOf innerV
case t of
A.Array ds (A.Chan attr innerT) ->
do spec@(A.Specification _ n _) <- makeNonceIs "dir_array" m
(A.Array ds $ A.ChanEnd dir attr innerT) A.Abbrev v
addPulled $ (m, Left spec)
return $ A.Variable m n
_ -> descend v
doVariable v = descend v
-- | Convert a FUNCTION call into some variables and a PROC call.
convertFuncCall :: Meta -> A.Name -> [A.Expression] -> PassM [A.Variable]
convertFuncCall m n es
= do es' <- recurse es
ets <- sequence [astTypeOf e | e <- es']
ps <- get
rts <- case Map.lookup (A.nameName n) (csFunctionReturns ps) of
Nothing -> dieP m "Could not find function returns"
Just x -> return x
specs <- sequence [makeNonceVariable "return_actual" m t A.Original | t <- rts]
sequence_ [addPulled $ (m, Left spec) | spec <- specs]
let names = [n | A.Specification _ n _ <- specs]
let vars = [A.Variable m n | n <- names]
let call = A.ProcCall m n (map A.ActualExpression es' ++ map A.ActualVariable vars)
addPulled $ (m, Right call)
return vars
doExpression' :: A.Expression -> PassM A.Expression
-- Convert single-valued function calls.
doExpression' (A.FunctionCall m n es)
= do [v] <- convertFuncCall m n es
return $ A.ExprVariable m v
-- Convert SubscriptedExprs into SubscriptedVariables.
doExpression' (A.SubscriptedExpr m s e)
= do e' <- recurse e
s' <- recurse s
t <- astTypeOf e'
spec@(A.Specification _ n _) <- makeNonceIsExpr "subscripted_expr" m t e'
addPulled $ (m, Left spec)
return $ A.ExprVariable m (A.SubscriptedVariable m s' (A.Variable m n))
doExpression' e = descend e
doExpressionList :: A.ExpressionList -> PassM A.ExpressionList
-- Convert multi-valued function calls.
doExpressionList (A.FunctionCallList m n es)
= do vs <- convertFuncCall m n es
return $ A.ExpressionList m [A.ExprVariable m v | v <- vs]
doExpressionList el = descend el