tock-mirror/fco2/Parse.hs

1784 lines
57 KiB
Haskell

-- | Parse occam code into an AST.
module Parse where
import Control.Monad (liftM, when)
import Control.Monad.Error (runErrorT)
import Control.Monad.State (MonadState, StateT, execStateT, liftIO, modify, get, put)
import Data.List
import Data.Maybe
import qualified IO
import Numeric (readHex)
import Text.ParserCombinators.Parsec
import Text.ParserCombinators.Parsec.Language (emptyDef)
import qualified Text.ParserCombinators.Parsec.Token as P
import Text.Regex
import qualified AST as A
import Errors
import EvalConstants
import Indentation
import Metadata
import ParseState
import Pass
import Types
import Utils
--{{{ setup stuff for Parsec
type OccParser = GenParser Char ParseState
-- | Make MonadState functions work in the parser monad.
-- This came from http://hackage.haskell.org/trac/ghc/ticket/1274 -- which means
-- it'll probably be in a future GHC release anyway.
instance MonadState st (GenParser tok st) where
get = getState
put = setState
instance Die (GenParser tok st) where
die = fail
occamStyle
= emptyDef
{ P.commentLine = "--"
, P.nestedComments = False
, P.identStart = letter
, P.identLetter = alphaNum <|> char '.'
, P.opStart = oneOf "+-*/\\>=<~"
, P.opLetter = oneOf "/\\>=<"
, P.reservedOpNames= [
"+",
"-",
"*",
"/",
"\\",
"/\\",
"\\/",
"><",
"=",
"<>",
"<",
">",
">=",
"<=",
"-",
"~"
]
, P.reservedNames = [
"AFTER",
"ALT",
"AND",
"ANY",
"AT",
"BITAND",
"BITNOT",
"BITOR",
"BOOL",
"BYTE",
"BYTESIN",
"CASE",
"CHAN",
"DATA",
"ELSE",
"FALSE",
"FOR",
"FROM",
"FUNCTION",
"IF",
"INT",
"INT16",
"INT32",
"INT64",
"IS",
"MINUS",
"MOSTNEG",
"MOSTPOS",
"NOT",
"OF",
"OFFSETOF",
"OR",
"PACKED",
"PAR",
"PLACE",
"PLACED",
"PLUS",
"PORT",
"PRI",
"PROC",
"PROCESSOR",
"PROTOCOL",
"REAL32",
"REAL64",
"RECORD",
"REM",
"RESHAPES",
"RESULT",
"RETYPES",
"ROUND",
"SEQ",
"SIZE",
"SKIP",
"STOP",
"TIMER",
"TIMES",
"TRUE",
"TRUNC",
"TYPE",
"VAL",
"VALOF",
"WHILE",
"#INCLUDE",
"#USE",
indentMarker,
outdentMarker,
eolMarker,
mainMarker
]
, P.caseSensitive = True
}
lexer :: P.TokenParser ParseState
lexer = P.makeTokenParser occamStyle
-- XXX replace whitespace with something that doesn't eat \ns
whiteSpace = P.whiteSpace lexer
lexeme = P.lexeme lexer
symbol = P.symbol lexer
natural = P.natural lexer
parens = P.parens lexer
semi = P.semi lexer
identifier = P.identifier lexer
reserved = P.reserved lexer
reservedOp = P.reservedOp lexer
--}}}
--{{{ symbols
sLeft = try $ symbol "["
sRight = try $ symbol "]"
sLeftR = try $ symbol "("
sRightR = try $ symbol ")"
sAssign = try $ symbol ":="
sColon = try $ symbol ":"
sColons = try $ symbol "::"
sComma = try $ symbol ","
sSemi = try $ symbol ";"
sAmp = try $ symbol "&"
sQuest = try $ symbol "?"
sBang = try $ symbol "!"
sEq = try $ symbol "="
sApos = try $ symbol "'"
sQuote = try $ symbol "\""
sHash = try $ symbol "#"
--}}}
--{{{ keywords
sAFTER = reserved "AFTER"
sALT = reserved "ALT"
sAND = reserved "AND"
sANY = reserved "ANY"
sAT = reserved "AT"
sBITAND = reserved "BITAND"
sBITNOT = reserved "BITNOT"
sBITOR = reserved "BITOR"
sBOOL = reserved "BOOL"
sBYTE = reserved "BYTE"
sBYTESIN = reserved "BYTESIN"
sCASE = reserved "CASE"
sCHAN = reserved "CHAN"
sDATA = reserved "DATA"
sELSE = reserved "ELSE"
sFALSE = reserved "FALSE"
sFOR = reserved "FOR"
sFROM = reserved "FROM"
sFUNCTION = reserved "FUNCTION"
sIF = reserved "IF"
sINT = reserved "INT"
sINT16 = reserved "INT16"
sINT32 = reserved "INT32"
sINT64 = reserved "INT64"
sIS = reserved "IS"
sMINUS = reserved "MINUS"
sMOSTNEG = reserved "MOSTNEG"
sMOSTPOS = reserved "MOSTPOS"
sNOT = reserved "NOT"
sOF = reserved "OF"
sOFFSETOF = reserved "OFFSETOF"
sOR = reserved "OR"
sPACKED = reserved "PACKED"
sPAR = reserved "PAR"
sPLACE = reserved "PLACE"
sPLACED = reserved "PLACED"
sPLUS = reserved "PLUS"
sPORT = reserved "PORT"
sPRI = reserved "PRI"
sPROC = reserved "PROC"
sPROCESSOR = reserved "PROCESSOR"
sPROTOCOL = reserved "PROTOCOL"
sREAL32 = reserved "REAL32"
sREAL64 = reserved "REAL64"
sRECORD = reserved "RECORD"
sREM = reserved "REM"
sRESHAPES = reserved "RESHAPES"
sRESULT = reserved "RESULT"
sRETYPES = reserved "RETYPES"
sROUND = reserved "ROUND"
sSEQ = reserved "SEQ"
sSIZE = reserved "SIZE"
sSKIP = reserved "SKIP"
sSTOP = reserved "STOP"
sTIMER = reserved "TIMER"
sTIMES = reserved "TIMES"
sTRUE = reserved "TRUE"
sTRUNC = reserved "TRUNC"
sTYPE = reserved "TYPE"
sVAL = reserved "VAL"
sVALOF = reserved "VALOF"
sWHILE = reserved "WHILE"
sppINCLUDE = reserved "#INCLUDE"
sppUSE = reserved "#USE"
--}}}
--{{{ markers inserted by the preprocessor
-- XXX could handle VALOF by translating each step to one { and matching multiple ones?
mainMarker = "__main"
sMainMarker = do { whiteSpace; reserved mainMarker } <?> "end of input (top-level process)"
indent = do { whiteSpace; reserved indentMarker } <?> "indentation increase"
outdent = do { whiteSpace; reserved outdentMarker } <?> "indentation decrease"
eol = do { whiteSpace; reserved eolMarker } <?> "end of line"
--}}}
--{{{ helper functions
md :: OccParser Meta
md
= do pos <- getPosition
return Meta {
metaFile = Just $ sourceName pos,
metaLine = sourceLine pos,
metaColumn = sourceColumn pos
}
--{{{ try*
-- These functions let you try a sequence of productions and only retrieve the
-- results from some of them. In the function name, X represents a value
-- that'll be thrown away, and V one that'll be kept; you get back a tuple of
-- the values you wanted.
--
-- There isn't anything particularly unusual going on here; it's just a more
-- succinct way of writing a try (do { ... }) expression.
tryXX :: OccParser a -> OccParser b -> OccParser ()
tryXX a b = try (do { a; b; return () })
tryXV :: OccParser a -> OccParser b -> OccParser b
tryXV a b = try (do { a; b })
tryVX :: OccParser a -> OccParser b -> OccParser a
tryVX a b = try (do { av <- a; b; return av })
tryVV :: OccParser a -> OccParser b -> OccParser (a, b)
tryVV a b = try (do { av <- a; bv <- b; return (av, bv) })
tryXXV :: OccParser a -> OccParser b -> OccParser c -> OccParser c
tryXXV a b c = try (do { a; b; cv <- c; return cv })
tryXVX :: OccParser a -> OccParser b -> OccParser c -> OccParser b
tryXVX a b c = try (do { a; bv <- b; c; return bv })
tryXVV :: OccParser a -> OccParser b -> OccParser c -> OccParser (b, c)
tryXVV a b c = try (do { a; bv <- b; cv <- c; return (bv, cv) })
tryVXX :: OccParser a -> OccParser b -> OccParser c -> OccParser a
tryVXX a b c = try (do { av <- a; b; c; return av })
tryVXV :: OccParser a -> OccParser b -> OccParser c -> OccParser (a, c)
tryVXV a b c = try (do { av <- a; b; cv <- c; return (av, cv) })
tryVVX :: OccParser a -> OccParser b -> OccParser c -> OccParser (a, b)
tryVVX a b c = try (do { av <- a; bv <- b; c; return (av, bv) })
tryXVXV :: OccParser a -> OccParser b -> OccParser c -> OccParser d -> OccParser (b, d)
tryXVXV a b c d = try (do { a; bv <- b; c; dv <- d; return (bv, dv) })
tryXVVX :: OccParser a -> OccParser b -> OccParser c -> OccParser d -> OccParser (b, c)
tryXVVX a b c d = try (do { a; bv <- b; cv <- c; d; return (bv, cv) })
tryVXVX :: OccParser a -> OccParser b -> OccParser c -> OccParser d -> OccParser (a, c)
tryVXVX a b c d = try (do { av <- a; b; cv <- c; d; return (av, cv) })
tryVVXX :: OccParser a -> OccParser b -> OccParser c -> OccParser d -> OccParser (a, b)
tryVVXX a b c d = try (do { av <- a; bv <- b; c; d; return (av, bv) })
tryVVXV :: OccParser a -> OccParser b -> OccParser c -> OccParser d -> OccParser (a, b, d)
tryVVXV a b c d = try (do { av <- a; bv <- b; c; dv <- d; return (av, bv, dv) })
tryVXVXX :: OccParser a -> OccParser b -> OccParser c -> OccParser d -> OccParser e -> OccParser (a, c)
tryVXVXX a b c d e = try (do { av <- a; b; cv <- c; d; e; return (av, cv) })
--}}}
--{{{ subscripts
maybeSubscripted :: String -> OccParser a -> (Meta -> A.Subscript -> a -> a) -> (a -> OccParser A.Type) -> OccParser a
maybeSubscripted prodName inner subscripter typer
= do m <- md
v <- inner
t <- typer v
subs <- postSubscripts t
return $ foldl (\var sub -> subscripter m sub var) v subs
<?> prodName
postSubscripts :: A.Type -> OccParser [A.Subscript]
postSubscripts t
= (do sub <- postSubscript t
t' <- subscriptType sub t
rest <- postSubscripts t'
return $ sub : rest)
<|> return []
postSubscript :: A.Type -> OccParser A.Subscript
postSubscript t
= do m <- md
case t of
A.UserDataType _ ->
do f <- tryXV sLeft fieldName
sRight
return $ A.SubscriptField m f
A.Array _ _ ->
do e <- tryXV sLeft intExpr
sRight
return $ A.Subscript m e
_ -> pzero
maybeSliced :: OccParser a -> (Meta -> A.Subscript -> a -> a) -> (a -> OccParser A.Type) -> OccParser a
maybeSliced inner subscripter typer
= do m <- md
(v, ff1) <- tryXVV sLeft inner fromOrFor
t <- typer v
case t of
(A.Array _ _) -> return ()
_ -> fail $ "slice of non-array type " ++ show t
e <- intExpr
sub <- case ff1 of
"FROM" ->
(do f <- tryXV sFOR intExpr
sRight
return $ A.SubscriptFromFor m e f)
<|>
(do sRight
return $ A.SubscriptFrom m e)
"FOR" ->
do sRight
return $ A.SubscriptFor m e
return $ subscripter m sub v
where
fromOrFor :: OccParser String
fromOrFor = (sFROM >> return "FROM") <|> (sFOR >> return "FOR")
--}}}
handleSpecs :: OccParser [A.Specification] -> OccParser a -> (Meta -> A.Specification -> a -> a) -> OccParser a
handleSpecs specs inner specMarker
= do m <- md
ss <- specs
ss' <- mapM scopeInSpec ss
v <- inner
mapM scopeOutSpec ss'
return $ foldl (\e s -> specMarker m s e) v ss'
-- | Like sepBy1, but not eager: it won't consume the separator unless it finds
-- another item after it.
sepBy1NE :: OccParser a -> OccParser b -> OccParser [a]
sepBy1NE item sep
= do i <- item
rest <- option [] $ try (do sep
sepBy1NE item sep)
return $ i : rest
-- | Run several different parsers with a separator between them.
-- If you give it [a, b, c] and s, it'll parse [a, s, b, s, c] then
-- give you back the results from [a, b, c].
intersperseP :: [OccParser a] -> OccParser b -> OccParser [a]
intersperseP [] _ = return []
intersperseP [f] _
= do a <- f
return [a]
intersperseP (f:fs) sep
= do a <- f
sep
as <- intersperseP fs sep
return $ a : as
-- | Check that all items in a list have the same type.
listType :: Meta -> [A.Type] -> OccParser A.Type
listType m l = listType' m (length l) l
where
listType' m len [] = fail "expected non-empty list"
listType' m len [t] = return $ makeArrayType (A.Dimension $ makeConstant m len) t
listType' m len (t1 : rest@(t2 : _))
= if t1 == t2 then listType' m len rest
else fail "multiple types in list"
-- | Check that a type we've inferred matches the type we expected.
matchType :: A.Type -> A.Type -> OccParser ()
matchType et rt
= case (et, rt) of
((A.Array ds t), (A.Array ds' t')) ->
if length ds == length ds' then return () else bad
_ -> if rt == et then return () else bad
where
bad = fail $ "type mismatch (got " ++ show rt ++ "; expected " ++ show et ++ ")"
-- | Check that two lists of types match (for example, for parallel assignment).
matchTypes :: [A.Type] -> [A.Type] -> OccParser ()
matchTypes ets rts
= sequence_ [matchType et rt | (et, rt) <- zip ets rts]
-- | Parse a production inside a particular type context.
inTypeContext :: Maybe A.Type -> OccParser a -> OccParser a
inTypeContext ctx body
= do pushTypeContext ctx
v <- body
popTypeContext
return v
-- | Parse a production with no particular type context (i.e. where we're
-- inside some bit of an expression that means we can't tell what the type is).
noTypeContext :: OccParser a -> OccParser a
noTypeContext = inTypeContext Nothing
-- | Push a type context that's a simple subscript of the existing one.
pushSubscriptTypeContext :: (PSM m, Die m) => m ()
pushSubscriptTypeContext
= do ps <- get
case psTypeContext ps of
(Just t):_ ->
do subT <- subscriptType (A.Subscript emptyMeta $ makeConstant emptyMeta 0) t
pushTypeContext $ Just subT
_ -> pushTypeContext Nothing
--}}}
--{{{ name scoping
findName :: A.Name -> OccParser A.Name
findName thisN
= do st <- getState
origN <- case lookup (A.nameName thisN) (psLocalNames st) of
Nothing -> fail $ "name " ++ A.nameName thisN ++ " not defined"
Just n -> return n
if A.nameType thisN /= A.nameType origN
then fail $ "expected " ++ show (A.nameType thisN) ++ " (" ++ A.nameName origN ++ " is " ++ show (A.nameType origN) ++ ")"
else return $ thisN { A.nameName = A.nameName origN }
scopeIn :: A.Name -> A.SpecType -> A.AbbrevMode -> OccParser A.Name
scopeIn n@(A.Name m nt s) t am
= do st <- getState
let s' = s ++ "_u" ++ (show $ psNameCounter st)
let n' = n { A.nameName = s' }
let nd = A.NameDef {
A.ndMeta = m,
A.ndName = s',
A.ndOrigName = s,
A.ndNameType = A.nameType n',
A.ndType = t,
A.ndAbbrevMode = am
}
defineName n' nd
modify $ (\st -> st {
psNameCounter = (psNameCounter st) + 1,
psLocalNames = (s, n') : (psLocalNames st)
})
return n'
scopeOut :: A.Name -> OccParser ()
scopeOut n@(A.Name m nt s)
= do st <- getState
let lns' = case psLocalNames st of
(s, _):ns -> ns
otherwise -> dieInternal "scopeOut trying to scope out the wrong name"
setState $ st { psLocalNames = lns' }
-- FIXME: Do these with generics? (going carefully to avoid nested code blocks)
scopeInRep :: A.Replicator -> OccParser A.Replicator
scopeInRep (A.For m n b c)
= do n' <- scopeIn n (A.Declaration m A.Int) A.ValAbbrev
return $ A.For m n' b c
scopeOutRep :: A.Replicator -> OccParser ()
scopeOutRep (A.For m n b c) = scopeOut n
-- This one's more complicated because we need to check if we're introducing a constant.
scopeInSpec :: A.Specification -> OccParser A.Specification
scopeInSpec (A.Specification m n st)
= do ps <- getState
let (st', isConst) = case st of
(A.IsExpr m A.ValAbbrev t e) ->
case simplifyExpression ps e of
Left _ -> (st, False)
Right e' -> (A.IsExpr m A.ValAbbrev t e', True)
_ -> (st, False)
n' <- scopeIn n st' (abbrevModeOfSpec st')
if isConst
then updateState (\ps -> ps { psConstants = (A.nameName n', case st' of A.IsExpr _ _ _ e' -> e') : psConstants ps })
else return ()
return $ A.Specification m n' st'
scopeOutSpec :: A.Specification -> OccParser ()
scopeOutSpec (A.Specification _ n _) = scopeOut n
scopeInFormal :: A.Formal -> OccParser A.Formal
scopeInFormal (A.Formal am t n)
= do n' <- scopeIn n (A.Declaration (A.nameMeta n) t) am
return (A.Formal am t n')
scopeInFormals :: [A.Formal] -> OccParser [A.Formal]
scopeInFormals fs = mapM scopeInFormal fs
scopeOutFormals :: [A.Formal] -> OccParser ()
scopeOutFormals fs = sequence_ [scopeOut n | (A.Formal am t n) <- fs]
--}}}
--{{{ grammar productions
-- These productions are (now rather loosely) based on the ordered syntax in
-- the occam2.1 manual.
--
-- Each production is allowed to consume the thing it's trying to match.
--{{{ names
anyName :: A.NameType -> OccParser A.Name
anyName nt
= do m <- md
s <- identifier
return $ A.Name m nt s
<?> show nt
name :: A.NameType -> OccParser A.Name
name nt
= do n <- anyName nt
findName n
newName :: A.NameType -> OccParser A.Name
newName nt = anyName nt
channelName = name A.ChannelName
dataTypeName = name A.DataTypeName
functionName = name A.FunctionName
portName = name A.PortName
procName = name A.ProcName
protocolName = name A.ProtocolName
timerName = name A.TimerName
variableName = name A.VariableName
newChannelName = newName A.ChannelName
newDataTypeName = newName A.DataTypeName
newFunctionName = newName A.FunctionName
newPortName = newName A.PortName
newProcName = newName A.ProcName
newProtocolName = newName A.ProtocolName
newTimerName = newName A.TimerName
newVariableName = newName A.VariableName
-- These are special because their scope is only valid within the particular
-- record or protocol they're used in.
fieldName = anyName A.FieldName
tagName = anyName A.TagName
newFieldName = anyName A.FieldName
newTagName = anyName A.TagName
--}}}
--{{{ types
arrayType :: OccParser A.Type -> OccParser A.Type
arrayType element
= do (s, t) <- tryXVXV sLeft constIntExpr sRight element
return $ makeArrayType (A.Dimension s) t
dataType :: OccParser A.Type
dataType
= do { sBOOL; return A.Bool }
<|> do { sBYTE; return A.Byte }
<|> do { sINT; return A.Int }
<|> do { sINT16; return A.Int16 }
<|> do { sINT32; return A.Int32 }
<|> do { sINT64; return A.Int64 }
<|> do { sREAL32; return A.Real32 }
<|> do { sREAL64; return A.Real64 }
<|> arrayType dataType
<|> do { n <- try dataTypeName; return $ A.UserDataType n }
<?> "data type"
-- FIXME should probably make CHAN INT work, since that'd be trivial...
channelType :: OccParser A.Type
channelType
= do { sCHAN; sOF; p <- protocol; return $ A.Chan p }
<|> arrayType channelType
<?> "channel type"
timerType :: OccParser A.Type
timerType
= do { sTIMER; return $ A.Timer }
<|> arrayType timerType
<?> "timer type"
portType :: OccParser A.Type
portType
= do { sPORT; sOF; p <- dataType; return $ A.Port p }
<|> arrayType portType
<?> "port type"
--}}}
--{{{ literals
isValidLiteralType :: A.Type -> A.Type -> Bool
isValidLiteralType defT t
= case defT of
A.Real32 -> isRealType t
A.Int -> isIntegerType t
A.Byte -> isIntegerType t
literal :: OccParser A.Literal
literal
= do m <- md
(defT, lr) <- untypedLiteral
t <- do { try sLeftR; t <- dataType; sRightR; return t }
<|> (getTypeContext defT)
when (not $ isValidLiteralType defT t) $
fail $ "type given/inferred for literal (" ++ show t ++ ") is not valid for this sort of literal (" ++ show defT ++ ")"
return $ A.Literal m t lr
<?> "literal"
untypedLiteral :: OccParser (A.Type, A.LiteralRepr)
untypedLiteral
= do { r <- real; return (A.Real32, r) }
<|> do { r <- integer; return (A.Int, r) }
<|> do { r <- byte; return (A.Byte, r) }
real :: OccParser A.LiteralRepr
real
= do m <- md
(l, r) <- tryVXVX digits (char '.') digits (char 'E')
e <- lexeme occamExponent
return $ A.RealLiteral m (l ++ "." ++ r ++ "E" ++ e)
<|> do m <- md
l <- tryVX digits (char '.')
r <- lexeme digits
return $ A.RealLiteral m (l ++ "." ++ r)
<?> "real literal"
occamExponent :: OccParser String
occamExponent
= do c <- oneOf "+-"
d <- digits
return $ c : d
<?> "exponent"
integer :: OccParser A.LiteralRepr
integer
= do m <- md
do { d <- lexeme digits; return $ A.IntLiteral m d }
<|> do { sHash; d <- many1 hexDigit; return $ A.HexLiteral m d }
<?> "integer literal"
digits :: OccParser String
digits
= many1 digit
<?> "decimal digits"
byte :: OccParser A.LiteralRepr
byte
= do m <- md
char '\''
s <- character
sApos
return $ A.ByteLiteral m s
<?> "byte literal"
-- i.e. array literal
table :: OccParser A.Literal
table
= maybeSubscripted "table" table' A.SubscriptedLiteral typeOfLiteral
table' :: OccParser A.Literal
table'
= do m <- md
(s, dim) <- stringLiteral
let defT = A.Array [dim] A.Byte
do { sLeftR; t <- dataType; sRightR; matchType defT t; return $ A.Literal m t s }
<|> (return $ A.Literal m defT s)
<|> do m <- md
pushSubscriptTypeContext
es <- tryXVX sLeft (sepBy1 expression sComma) sRight
popTypeContext
ets <- mapM typeOfExpression es
t <- listType m ets
return $ A.Literal m t (A.ArrayLiteral m es)
<|> maybeSliced table A.SubscriptedLiteral typeOfLiteral
<?> "table'"
stringLiteral :: OccParser (A.LiteralRepr, A.Dimension)
stringLiteral
= do m <- md
char '"'
cs <- manyTill character sQuote
return (A.StringLiteral m $ concat cs, A.Dimension $ makeConstant m $ length cs)
<?> "string literal"
character :: OccParser String
character
= do char '*'
(do char '#'
a <- hexDigit
b <- hexDigit
return $ ['*', '#', a, b])
-- FIXME: Handle *\n, which is just a line continuation?
<|> do { c <- anyChar; return ['*', c] }
<|> do c <- anyChar
return [c]
<?> "character"
--}}}
--{{{ expressions
functionNameSingle :: OccParser A.Name
= do n <- functionName
rts <- returnTypesOfFunction n
case rts of
[_] -> return n
_ -> pzero
<?> "function with single return value"
functionNameMulti :: OccParser A.Name
= do n <- functionName
rts <- returnTypesOfFunction n
case rts of
[_] -> pzero
_ -> return n
<?> "function with multiple return values"
functionActuals :: A.Name -> OccParser [A.Expression]
functionActuals func
= do A.Function _ _ fs _ <- specTypeOfName func
let ats = [t | A.Formal _ t _ <- fs]
sLeftR
es <- intersperseP (map expressionOfType ats) sComma
sRightR
return es
expressionList :: [A.Type] -> OccParser A.ExpressionList
expressionList types
= do m <- md
n <- try functionNameMulti
as <- functionActuals n
rts <- returnTypesOfFunction n
matchTypes types rts
return $ A.FunctionCallList m n as
<|> do m <- md
es <- intersperseP (map expressionOfType types) sComma
return $ A.ExpressionList m es
-- XXX: Value processes are not supported (because nobody uses them and they're hard to parse)
<?> "expression list"
expression :: OccParser A.Expression
expression
= do m <- md
o <- monadicOperator
v <- operand
return $ A.Monadic m o v
<|> do { m <- md; sMOSTPOS; t <- dataType; return $ A.MostPos m t }
<|> do { m <- md; sMOSTNEG; t <- dataType; return $ A.MostNeg m t }
<|> sizeExpr
<|> do { m <- md; sTRUE; return $ A.True m }
<|> do { m <- md; sFALSE; return $ A.False m }
<|> do m <- md
(l, o) <- tryVV operand dyadicOperator
t <- typeOfExpression l
r <- operandOfType t
return $ A.Dyadic m o l r
<|> do m <- md
(l, o) <- tryVV (noTypeContext operand) comparisonOperator
t <- typeOfExpression l
r <- operandOfType t
return $ A.Dyadic m o l r
<|> conversion
<|> operand
<?> "expression"
sizeExpr :: OccParser A.Expression
sizeExpr
= do m <- md
sSIZE
do { t <- dataType; return $ A.SizeType m t }
<|> do v <- noTypeContext operand
return $ A.SizeExpr m v
<|> do v <- noTypeContext (channel <|> timer <|> port)
return $ A.SizeVariable m v
<?> "SIZE expression"
--{{{ type-constrained expressions
expressionOfType :: A.Type -> OccParser A.Expression
expressionOfType wantT
= do e <- inTypeContext (Just wantT) expression
t <- typeOfExpression e
matchType wantT t
return e
intExpr = expressionOfType A.Int <?> "integer expression"
booleanExpr = expressionOfType A.Bool <?> "boolean expression"
constExprOfType :: A.Type -> OccParser A.Expression
constExprOfType wantT
= do e <- expressionOfType wantT
ps <- getState
case simplifyExpression ps e of
Left err -> fail $ "expected constant expression (" ++ err ++ ")"
Right e' -> return e'
constIntExpr = constExprOfType A.Int <?> "constant integer expression"
operandOfType :: A.Type -> OccParser A.Expression
operandOfType wantT
= do o <- inTypeContext (Just wantT) operand
t <- typeOfExpression o
matchType wantT t
return o
--}}}
monadicOperator :: OccParser A.MonadicOp
monadicOperator
= do { reservedOp "-" <|> sMINUS; return A.MonadicSubtr }
<|> do { reservedOp "~" <|> sBITNOT; return A.MonadicBitNot }
<|> do { sNOT; return A.MonadicNot }
<?> "monadic operator"
dyadicOperator :: OccParser A.DyadicOp
dyadicOperator
= do { reservedOp "+"; return A.Add }
<|> do { reservedOp "-"; return A.Subtr }
<|> do { reservedOp "*"; return A.Mul }
<|> do { reservedOp "/"; return A.Div }
<|> do { reservedOp "\\"; return A.Rem }
<|> do { sREM; return A.Rem }
<|> do { sPLUS; return A.Plus }
<|> do { sMINUS; return A.Minus }
<|> do { sTIMES; return A.Times }
<|> do { reservedOp "/\\" <|> sBITAND; return A.BitAnd }
<|> do { reservedOp "\\/" <|> sBITOR; return A.BitOr }
<|> do { reservedOp "><"; return A.BitXor }
<|> do { sAND; return A.And }
<|> do { sOR; return A.Or }
<?> "dyadic operator"
-- These always return a BOOL, so we have to deal with them specially for type
-- context.
comparisonOperator :: OccParser A.DyadicOp
comparisonOperator
= do { reservedOp "="; return A.Eq }
<|> do { reservedOp "<>"; return A.NotEq }
<|> do { reservedOp "<"; return A.Less }
<|> do { reservedOp ">"; return A.More }
<|> do { reservedOp "<="; return A.LessEq }
<|> do { reservedOp ">="; return A.MoreEq }
<|> do { sAFTER; return A.After }
<?> "comparison operator"
conversion :: OccParser A.Expression
conversion
= do m <- md
t <- dataType
(c, o) <- conversionMode
ot <- typeOfExpression o
let isImprecise = isRealType t || isRealType ot
when (isImprecise && c == A.DefaultConversion) $
fail "imprecise conversion must specify ROUND or TRUNC"
when (not isImprecise && c /= A.DefaultConversion) $
fail "precise conversion cannot specify ROUND or TRUNC"
return $ A.Conversion m c t o
<?> "conversion"
conversionMode :: OccParser (A.ConversionMode, A.Expression)
conversionMode
= do { sROUND; o <- noTypeContext operand; return (A.Round, o) }
<|> do { sTRUNC; o <- noTypeContext operand; return (A.Trunc, o) }
-- This uses operandNotTable to resolve the "x[y]" ambiguity.
<|> do { o <- noTypeContext operandNotTable; return (A.DefaultConversion, o) }
<?> "conversion mode and operand"
--}}}
--{{{ operands
operand :: OccParser A.Expression
operand
= maybeSubscripted "operand" operand' A.SubscriptedExpr typeOfExpression
operand' :: OccParser A.Expression
operand'
= do { m <- md; l <- table; return $ A.ExprLiteral m l }
<|> operandNotTable'
<?> "operand'"
operandNotTable :: OccParser A.Expression
operandNotTable
= maybeSubscripted "operand other than table" operandNotTable' A.SubscriptedExpr typeOfExpression
operandNotTable' :: OccParser A.Expression
operandNotTable'
= do { m <- md; v <- variable; return $ A.ExprVariable m v }
<|> do { m <- md; l <- literal; return $ A.ExprLiteral m l }
<|> do { sLeftR; e <- expression; sRightR; return e }
-- XXX value process
<|> do { m <- md; n <- try functionNameSingle; as <- functionActuals n; return $ A.FunctionCall m n as }
<|> do m <- md
sBYTESIN
sLeftR
do { o <- noTypeContext operand; sRightR; return $ A.BytesInExpr m o }
<|> do { t <- dataType; sRightR; return $ A.BytesInType m t }
<|> do { m <- md; sOFFSETOF; sLeftR; t <- dataType; sComma; f <- fieldName; sRightR; return $ A.OffsetOf m t f }
<?> "operand other than table'"
--}}}
--{{{ variables, channels, timers, ports
variable :: OccParser A.Variable
variable
= maybeSubscripted "variable" variable' A.SubscriptedVariable typeOfVariable
variable' :: OccParser A.Variable
variable'
= do { m <- md; n <- try variableName; return $ A.Variable m n }
<|> maybeSliced variable A.SubscriptedVariable typeOfVariable
<?> "variable'"
variableOfType :: A.Type -> OccParser A.Variable
variableOfType wantT
= do v <- variable
t <- typeOfVariable v
matchType wantT t
return v
channel :: OccParser A.Variable
channel
= maybeSubscripted "channel" channel' A.SubscriptedVariable typeOfVariable
<?> "channel"
channel' :: OccParser A.Variable
channel'
= do { m <- md; n <- try channelName; return $ A.Variable m n }
<|> maybeSliced channel A.SubscriptedVariable typeOfVariable
<?> "channel'"
channelOfType :: A.Type -> OccParser A.Variable
channelOfType wantT
= do c <- channel
t <- typeOfVariable c
matchType wantT t
return c
timer :: OccParser A.Variable
timer
= maybeSubscripted "timer" timer' A.SubscriptedVariable typeOfVariable
<?> "timer"
timer' :: OccParser A.Variable
timer'
= do { m <- md; n <- try timerName; return $ A.Variable m n }
<|> maybeSliced timer A.SubscriptedVariable typeOfVariable
<?> "timer'"
port :: OccParser A.Variable
port
= maybeSubscripted "port" port' A.SubscriptedVariable typeOfVariable
<?> "port"
port' :: OccParser A.Variable
port'
= do { m <- md; n <- try portName; return $ A.Variable m n }
<|> maybeSliced port A.SubscriptedVariable typeOfVariable
<?> "port'"
--}}}
--{{{ protocols
protocol :: OccParser A.Type
protocol
= do { n <- try protocolName ; return $ A.UserProtocol n }
<|> simpleProtocol
<?> "protocol"
simpleProtocol :: OccParser A.Type
simpleProtocol
= do { l <- tryVX dataType sColons; sLeft; sRight; r <- dataType; return $ A.Counted l r }
<|> dataType
<|> do { sANY; return $ A.Any }
<?> "simple protocol"
sequentialProtocol :: OccParser [A.Type]
sequentialProtocol
= do { l <- try $ sepBy1 simpleProtocol sSemi; return l }
<?> "sequential protocol"
taggedProtocol :: OccParser (A.Name, [A.Type])
taggedProtocol
= do { t <- tryVX newTagName eol; return (t, []) }
<|> do { t <- newTagName; sSemi; sp <- sequentialProtocol; eol; return (t, sp) }
<?> "tagged protocol"
--}}}
--{{{ replicators
replicator :: OccParser A.Replicator
replicator
= do m <- md
n <- tryVX newVariableName sEq
b <- intExpr
sFOR
c <- intExpr
return $ A.For m n b c
<?> "replicator"
--}}}
--{{{ specifications, declarations, allocations
allocation :: OccParser [A.Specification]
allocation
= do { m <- md; sPLACE; n <- variableName; sAT; e <- intExpr; sColon; eol; return [A.Specification m n (A.Place m e)] }
<?> "allocation"
specification :: OccParser [A.Specification]
specification
= do { m <- md; (ns, d) <- declaration; return [A.Specification m n d | n <- ns] }
<|> do { a <- abbreviation; return [a] }
<|> do { d <- definition; return [d] }
<?> "specification"
declaration :: OccParser ([A.Name], A.SpecType)
declaration
= declOf dataType newVariableName
<|> declOf channelType newChannelName
<|> declOf timerType newTimerName
<|> declOf portType newPortName
<?> "declaration"
declOf :: OccParser A.Type -> OccParser A.Name -> OccParser ([A.Name], A.SpecType)
declOf spec newName
= do m <- md
(d, ns) <- tryVVX spec (sepBy1 newName sComma) sColon
eol
return (ns, A.Declaration m d)
abbreviation :: OccParser A.Specification
abbreviation
= valIsAbbrev
<|> chanArrayAbbrev
<|> isAbbrev newVariableName variable
<|> isAbbrev newChannelName channel
<|> isAbbrev newTimerName timer
<|> isAbbrev newPortName port
<?> "abbreviation"
valIsAbbrev :: OccParser A.Specification
valIsAbbrev
= do m <- md
sVAL
(n, t, e) <- do { (n, e) <- tryVXV newVariableName sIS expression; sColon; eol; t <- typeOfExpression e; return (n, t, e) }
<|> do { s <- specifier; n <- newVariableName; sIS; e <- expressionOfType s; sColon; eol; return (n, s, e) }
return $ A.Specification m n $ A.IsExpr m A.ValAbbrev t e
<?> "VAL IS abbreviation"
isAbbrev :: OccParser A.Name -> OccParser A.Variable -> OccParser A.Specification
isAbbrev newName oldVar
= do m <- md
(n, v) <- tryVXV newName sIS oldVar
sColon
eol
t <- typeOfVariable v
return $ A.Specification m n $ A.Is m A.Abbrev t v
<|> do m <- md
(s, n, v) <- tryVVXV specifier newName sIS oldVar
sColon
eol
t <- typeOfVariable v
matchType s t
return $ A.Specification m n $ A.Is m A.Abbrev s v
<?> "IS abbreviation"
chanArrayAbbrev :: OccParser A.Specification
chanArrayAbbrev
= do m <- md
n <- tryVXX newChannelName sIS sLeft
cs <- sepBy1 channel sComma
sRight
sColon
eol
ts <- mapM typeOfVariable cs
t <- listType m ts
return $ A.Specification m n $ A.IsChannelArray m t cs
<|> do m <- md
(s, n) <- tryVVXX specifier newChannelName sIS sLeft
ct <- subscriptType (A.Subscript m $ makeConstant m 0) s
cs <- sepBy1 (channelOfType ct) sComma
sRight
sColon
eol
return $ A.Specification m n $ A.IsChannelArray m s cs
<?> "channel array abbreviation"
definition :: OccParser A.Specification
definition
= do m <- md
sDATA
sTYPE
n <- newDataTypeName
do { sIS; t <- dataType; sColon; eol; return $ A.Specification m n (A.DataType m t) }
<|> do { eol; indent; rec <- structuredType; outdent; sColon; eol; return $ A.Specification m n rec }
<|> do m <- md
sPROTOCOL
n <- newProtocolName
do { sIS; p <- sequentialProtocol; sColon; eol; return $ A.Specification m n $ A.Protocol m p }
<|> do { eol; indent; sCASE; eol; indent; ps <- many1 taggedProtocol; outdent; outdent; sColon; eol; return $ A.Specification m n $ A.ProtocolCase m ps }
<|> do m <- md
sPROC
n <- newProcName
fs <- formalList
eol
indent
fs' <- scopeInFormals fs
p <- process
scopeOutFormals fs'
outdent
sColon
eol
return $ A.Specification m n $ A.Proc m fs' p
<|> do m <- md
rs <- tryVX (sepBy1 dataType sComma) sFUNCTION
n <- newFunctionName
fs <- formalList
do { sIS; fs' <- scopeInFormals fs; el <- expressionList rs; scopeOutFormals fs'; sColon; eol; return $ A.Specification m n $ A.Function m rs fs' (A.ValOf m (A.Skip m) el) }
<|> do { eol; indent; fs' <- scopeInFormals fs; vp <- valueProcess rs; scopeOutFormals fs'; outdent; sColon; eol; return $ A.Specification m n $ A.Function m rs fs' vp }
<|> retypesAbbrev
<?> "definition"
retypesAbbrev :: OccParser A.Specification
retypesAbbrev
= do m <- md
(s, n) <- tryVVX specifier newVariableName (sRETYPES <|> sRESHAPES)
v <- variable
sColon
eol
return $ A.Specification m n $ A.Retypes m A.Abbrev s v
<|> do m <- md
(s, n) <- tryXVVX sVAL specifier newVariableName (sRETYPES <|> sRESHAPES)
e <- expression
sColon
eol
return $ A.Specification m n $ A.RetypesExpr m A.ValAbbrev s e
<?> "RETYPES/RESHAPES abbreviation"
dataSpecifier :: OccParser A.Type
dataSpecifier
= dataType
<|> do s <- tryXXV sLeft sRight dataSpecifier
return $ makeArrayType A.UnknownDimension s
<?> "data specifier"
specifier :: OccParser A.Type
specifier
= dataType
<|> channelType
<|> timerType
<|> portType
<|> do s <- tryXXV sLeft sRight specifier
return $ makeArrayType A.UnknownDimension s
<?> "specifier"
--{{{ PROCs and FUNCTIONs
formalList :: OccParser [A.Formal]
formalList
= do m <- md
sLeftR
fs <- sepBy formalArgSet sComma
sRightR
return $ concat fs
<?> "formal list"
formalArgSet :: OccParser [A.Formal]
formalArgSet
= do (am, t) <- formalVariableType
ns <- sepBy1NE newVariableName sComma
return [A.Formal am t n | n <- ns]
<|> do t <- specifier
ns <- sepBy1NE newChannelName sComma
return [A.Formal A.Abbrev t n | n <- ns]
formalVariableType :: OccParser (A.AbbrevMode, A.Type)
= do sVAL
s <- dataSpecifier
return (A.ValAbbrev, s)
<|> do s <- dataSpecifier
return (A.Abbrev, s)
<?> "formal variable type"
valueProcess :: [A.Type] -> OccParser A.ValueProcess
valueProcess rs
= do m <- md
sVALOF
eol
indent
p <- process
sRESULT
el <- expressionList rs
eol
outdent
return $ A.ValOf m p el
<|> handleSpecs specification (valueProcess rs) A.ValOfSpec
<?> "value process"
--}}}
--{{{ RECORDs
structuredType :: OccParser A.SpecType
structuredType
= do m <- md
isPacked <- recordKeyword
eol
indent
fs <- many1 structuredTypeField
outdent
return $ A.DataTypeRecord m isPacked (concat fs)
<?> "structured type"
recordKeyword :: OccParser Bool
recordKeyword
= do { sPACKED; sRECORD; return True }
<|> do { sRECORD; return False }
structuredTypeField :: OccParser [(A.Name, A.Type)]
structuredTypeField
= do t <- dataType
fs <- many1 newFieldName
sColon
eol
return [(f, t) | f <- fs]
<?> "structured type field"
--}}}
--}}}
--{{{ processes
process :: OccParser A.Process
process
= assignment
<|> caseInput
<|> inputProcess
<|> output
<|> do { m <- md; sSKIP; eol; return $ A.Skip m }
<|> do { m <- md; sSTOP; eol; return $ A.Stop m }
<|> seqProcess
<|> ifProcess
<|> caseProcess
<|> whileProcess
<|> parallel
<|> altProcess
<|> procInstance
<|> mainProcess
<|> handleSpecs (allocation <|> specification) process A.ProcSpec
<|> preprocessorDirective
<?> "process"
--{{{ assignment (:=)
assignment :: OccParser A.Process
assignment
= do m <- md
vs <- tryVX (sepBy1 variable sComma) sAssign
ts <- mapM typeOfVariable vs
es <- expressionList ts
eol
return $ A.Assign m vs es
<?> "assignment"
--}}}
--{{{ input (?)
inputProcess :: OccParser A.Process
inputProcess
= do m <- md
(c, i) <- input
return $ A.Input m c i
<?> "input process"
input :: OccParser (A.Variable, A.InputMode)
input
= channelInput
<|> timerInput
<|> do m <- md
p <- tryVX port sQuest
A.Port t <- typeOfVariable p
v <- variableOfType t
eol
return (p, A.InputSimple m [A.InVariable m v])
<?> "input"
channelInput :: OccParser (A.Variable, A.InputMode)
= do m <- md
c <- tryVX channel sQuest
pis <- protocolItems c
case pis of
Left ts ->
do is <- intersperseP (map inputItem ts) sSemi
eol
return (c, A.InputSimple m is)
Right nts ->
do sCASE
tl <- taggedList nts
eol
return (c, A.InputCase m (A.OnlyV m (tl (A.Skip m))))
<?> "channel input"
timerInput :: OccParser (A.Variable, A.InputMode)
= do m <- md
c <- tryVX timer sQuest
do { v <- variableOfType A.Int; eol; return (c, A.InputSimple m [A.InVariable m v]) }
<|> do { sAFTER; e <- intExpr; eol; return (c, A.InputAfter m e) }
<?> "timer input"
taggedList :: [(A.Name, [A.Type])] -> OccParser (A.Process -> A.Variant)
taggedList nts
= do m <- md
tag <- tagName
ts <- checkJust "unknown tag in protocol" $ lookup tag nts
is <- sequence [sSemi >> inputItem t | t <- ts]
return $ A.Variant m tag is
<?> "tagged list"
inputItem :: A.Type -> OccParser A.InputItem
inputItem t
= case t of
(A.Counted ct it) ->
do m <- md
v <- variableOfType ct
sColons
w <- variableOfType (makeArrayType A.UnknownDimension it)
return $ A.InCounted m v w
_ ->
do m <- md
v <- variableOfType t
return $ A.InVariable m v
<?> "input item"
--}}}
--{{{ variant input (? CASE)
caseInputItems :: A.Variable -> OccParser [(A.Name, [A.Type])]
caseInputItems c
= do pis <- protocolItems c
case pis of
Left _ -> fail "CASE input on channel of non-variant protocol"
Right nts -> return nts
caseInput :: OccParser A.Process
caseInput
= do m <- md
c <- tryVX channel (do {sQuest; sCASE; eol})
nts <- caseInputItems c
indent
vs <- many1 (variant nts)
outdent
return $ A.Input m c (A.InputCase m (A.Several m vs))
<?> "case input"
variant :: [(A.Name, [A.Type])] -> OccParser A.Structured
variant nts
= do m <- md
tl <- taggedList nts
eol
indent
p <- process
outdent
return $ A.OnlyV m (tl p)
<|> handleSpecs specification (variant nts) A.Spec
<?> "variant"
--}}}
--{{{ output (!)
output :: OccParser A.Process
output
= channelOutput
<|> do m <- md
p <- tryVX port sBang
A.Port t <- typeOfVariable p
e <- expressionOfType t
eol
return $ A.Output m p [A.OutExpression m e]
<?> "output"
channelOutput :: OccParser A.Process
channelOutput
= do m <- md
c <- tryVX channel sBang
-- This is an ambiguity in the occam grammar; you can't tell in "a ! b"
-- whether b is a variable or a tag, without knowing the type of a.
pis <- protocolItems c
case pis of
Left ts ->
do os <- intersperseP (map outputItem ts) sSemi
eol
return $ A.Output m c os
Right nts ->
do tag <- tagName
ts <- checkJust "unknown tag in protocol" $ lookup tag nts
os <- sequence [sSemi >> outputItem t | t <- ts]
eol
return $ A.OutputCase m c tag os
<?> "channel output"
outputItem :: A.Type -> OccParser A.OutputItem
outputItem t
= case t of
(A.Counted ct it) ->
do m <- md
a <- expressionOfType ct
sColons
b <- expressionOfType (makeArrayType A.UnknownDimension it)
return $ A.OutCounted m a b
_ ->
do m <- md
e <- expressionOfType t
return $ A.OutExpression m e
<?> "output item"
--}}}
--{{{ SEQ
seqProcess :: OccParser A.Process
seqProcess
= do m <- md
sSEQ
do { eol; indent; ps <- many1 process; outdent; return $ A.Seq m ps }
<|> do { r <- replicator; eol; indent; r' <- scopeInRep r; p <- process; scopeOutRep r'; outdent; return $ A.SeqRep m r' p }
<?> "SEQ process"
--}}}
--{{{ IF
ifProcess :: OccParser A.Process
ifProcess
= do m <- md
c <- conditional
return $ A.If m c
<?> "IF process"
conditional :: OccParser A.Structured
conditional
= do m <- md
sIF
do { eol; indent; cs <- many1 ifChoice; outdent; return $ A.Several m cs }
<|> do { r <- replicator; eol; indent; r' <- scopeInRep r; c <- ifChoice; scopeOutRep r'; outdent; return $ A.Rep m r' c }
<?> "conditional"
ifChoice :: OccParser A.Structured
ifChoice
= guardedChoice
<|> conditional
<|> handleSpecs specification ifChoice A.Spec
<?> "choice"
guardedChoice :: OccParser A.Structured
guardedChoice
= do m <- md
b <- booleanExpr
eol
indent
p <- process
outdent
return $ A.OnlyC m (A.Choice m b p)
<?> "guarded choice"
--}}}
--{{{ CASE
caseProcess :: OccParser A.Process
caseProcess
= do m <- md
sCASE
sel <- expression
t <- typeOfExpression sel
when (not $ isIntegerType t) $ fail "case selector has non-CASEable type"
eol
indent
os <- many1 (caseOption t)
outdent
return $ A.Case m sel (A.Several m os)
<?> "CASE process"
caseOption :: A.Type -> OccParser A.Structured
caseOption t
= do m <- md
ces <- sepBy (expressionOfType t) sComma
eol
indent
p <- process
outdent
return $ A.OnlyO m (A.Option m ces p)
<|> do m <- md
sELSE
eol
indent
p <- process
outdent
return $ A.OnlyO m (A.Else m p)
<|> handleSpecs specification (caseOption t) A.Spec
<?> "option"
--}}}
--{{{ WHILE
whileProcess :: OccParser A.Process
whileProcess
= do m <- md
sWHILE
b <- booleanExpr
eol
indent
p <- process
outdent
return $ A.While m b p
<?> "WHILE process"
--}}}
--{{{ PAR
parallel :: OccParser A.Process
parallel
= do m <- md
isPri <- parKeyword
do { eol; indent; ps <- many1 process; outdent; return $ A.Par m isPri ps }
<|> do { r <- replicator; eol; indent; r' <- scopeInRep r; p <- process; scopeOutRep r'; outdent; return $ A.ParRep m isPri r' p }
<|> placedpar
<?> "PAR process"
parKeyword :: OccParser A.ParMode
parKeyword
= do { sPAR; return A.PlainPar }
<|> do { tryXX sPRI sPAR; return A.PriPar }
-- XXX PROCESSOR as a process isn't really legal, surely?
placedpar :: OccParser A.Process
placedpar
= do m <- md
tryXX sPLACED sPAR
do { eol; indent; ps <- many1 placedpar; outdent; return $ A.Par m A.PlacedPar ps }
<|> do { r <- replicator; eol; indent; r' <- scopeInRep r; p <- placedpar; scopeOutRep r'; outdent; return $ A.ParRep m A.PlacedPar r' p }
<|> do m <- md
sPROCESSOR
e <- intExpr
eol
indent
p <- process
outdent
return $ A.Processor m e p
<?> "PLACED PAR process"
--}}}
--{{{ ALT
altProcess :: OccParser A.Process
altProcess
= do m <- md
(isPri, a) <- alternation
return $ A.Alt m isPri a
<?> "ALT process"
alternation :: OccParser (Bool, A.Structured)
alternation
= do m <- md
isPri <- altKeyword
do { eol; indent; as <- many1 alternative; outdent; return (isPri, A.Several m as) }
<|> do { r <- replicator; eol; indent; r' <- scopeInRep r; a <- alternative; scopeOutRep r'; outdent; return (isPri, A.Rep m r' a) }
<?> "alternation"
altKeyword :: OccParser Bool
altKeyword
= do { sALT; return False }
<|> do { tryXX sPRI sALT; return True }
-- The reason the CASE guards end up here is because they have to be handled
-- specially: you can't tell until parsing the guts of the CASE what the processes
-- are.
alternative :: OccParser A.Structured
alternative
-- FIXME: Check we don't have PRI ALT inside ALT.
= do (isPri, a) <- alternation
return a
-- These are special cases to deal with c ? CASE inside ALTs -- the normal
-- guards are below.
<|> do m <- md
(b, c) <- tryVXVXX booleanExpr sAmp channel sQuest sCASE
nts <- caseInputItems c
eol
indent
vs <- many1 (variant nts)
outdent
return $ A.OnlyA m (A.AlternativeCond m b c (A.InputCase m $ A.Several m vs) (A.Skip m))
<|> do m <- md
c <- tryVXX channel sQuest sCASE
nts <- caseInputItems c
eol
indent
vs <- many1 (variant nts)
outdent
return $ A.OnlyA m (A.Alternative m c (A.InputCase m $ A.Several m vs) (A.Skip m))
<|> guardedAlternative
<|> handleSpecs specification alternative A.Spec
<?> "alternative"
guardedAlternative :: OccParser A.Structured
guardedAlternative
= do m <- md
makeAlt <- guard
indent
p <- process
outdent
return $ A.OnlyA m (makeAlt p)
<?> "guarded alternative"
guard :: OccParser (A.Process -> A.Alternative)
guard
= do m <- md
(c, im) <- input
return $ A.Alternative m c im
<|> do m <- md
b <- tryVX booleanExpr sAmp
do { (c, im) <- input; return $ A.AlternativeCond m b c im }
<|> do { sSKIP; eol; return $ A.AlternativeSkip m b }
<?> "guard"
--}}}
--{{{ PROC calls
procInstance :: OccParser A.Process
procInstance
= do m <- md
n <- tryVX procName sLeftR
st <- specTypeOfName n
let fs = case st of A.Proc _ fs _ -> fs
as <- actuals fs
sRightR
eol
return $ A.ProcCall m n as
<?> "PROC instance"
actuals :: [A.Formal] -> OccParser [A.Actual]
actuals fs = intersperseP (map actual fs) sComma
actual :: A.Formal -> OccParser A.Actual
actual (A.Formal am t n)
= do case am of
A.ValAbbrev -> do { e <- expressionOfType t; return $ A.ActualExpression t e } <?> "actual expression for " ++ an
_ -> if isChannelType t
then do { c <- channelOfType t; return $ A.ActualVariable am t c } <?> "actual channel for " ++ an
else do { v <- variableOfType t; return $ A.ActualVariable am t v } <?> "actual variable for " ++ an
where
an = A.nameName n
--}}}
--{{{ preprocessor directives
preprocessorDirective :: OccParser A.Process
preprocessorDirective
= ppInclude
<|> ppUse
<?> "preprocessor directive"
ppInclude :: OccParser A.Process
ppInclude
= do sppINCLUDE
char '"'
file <- manyTill character sQuote
eol
includeFile $ concat file
ppUse :: OccParser A.Process
ppUse
= do sppUSE
char '"'
mod <- manyTill character sQuote
eol
let file = mangleModName $ concat mod
-- Check whether it's been included already.
ps <- getState
if file `elem` psLoadedFiles ps
then process
else includeFile file
-- | Invoke the parser recursively to handle an included file.
includeFile :: String -> OccParser A.Process
includeFile file
= do ps <- getState
(f, ps') <- parseFile file ps
setState ps' { psLocalNames = psMainLocals ps' }
p <- process
return $ f p
--}}}
--{{{ main process
mainProcess :: OccParser A.Process
mainProcess
= do m <- md
sMainMarker
eol
-- Stash the current locals so that we can either restore them
-- when we get back to the file we included this one from, or
-- pull the TLP name from them at the end.
updateState $ (\ps -> ps { psMainLocals = psLocalNames ps })
return $ A.Main m
--}}}
--}}}
--{{{ top-level forms
-- This is only really true once we've tacked a process onto the bottom; a
-- source file is really a series of specifications, but the later ones need to
-- have the earlier ones in scope, so we can't parse them separately.
sourceFile :: OccParser (A.Process, ParseState)
sourceFile
= do whiteSpace
p <- process
s <- getState
return (p, s)
--}}}
--}}}
--{{{ preprocessor
-- XXX Doesn't handle conditionals.
preprocess :: String -> String
preprocess d = parseIndentation $ lines (d ++ "\n" ++ mainMarker)
readSource :: String -> IO String
readSource file
= do f <- IO.openFile file IO.ReadMode
d <- IO.hGetContents f
return $ preprocess d
-- | Find (via a nasty regex search) all the files that this source file includes.
preFindIncludes :: String -> [String]
preFindIncludes source
= concat [case matchRegex incRE l of
Just [_, fn] -> [fn]
Nothing -> []
| l <- lines source]
where
incRE = mkRegex "^#(INCLUDE|USE) +\"([^\"]*)\""
-- | If a module name doesn't already have a suffix, add one.
mangleModName :: String -> String
mangleModName mod
= if ".occ" `isSuffixOf` mod || ".inc" `isSuffixOf` mod
then mod
else mod ++ ".occ"
-- | Load all the source files necessary for a program.
-- We have to do this now, before entering the parser, because the parser
-- doesn't run in the IO monad. If there were a monad transformer version of
-- Parsec then we could just open files as we need them.
loadSource :: String -> PassM ()
loadSource file = load file file
where
load :: String -> String -> PassM ()
load file realName
= do ps <- get
case lookup file (psSourceFiles ps) of
Just _ -> return ()
Nothing ->
do progress $ "Loading source file " ++ realName
source <- liftIO $ readSource realName
modify $ (\ps -> ps { psSourceFiles = (file, source) : psSourceFiles ps })
let deps = map mangleModName $ preFindIncludes source
sequence_ [load dep (joinPath file dep) | dep <- deps]
--}}}
--{{{ entry points for the parser itself
-- | Test a parser production (for use from ghci while debugging the parser).
testParse :: Show a => OccParser a -> String -> IO ()
testParse prod text
= do let r = runParser prod emptyState "" text
putStrLn $ "Result: " ++ show r
-- | Parse a file, returning a function you can apply to make all its
-- definitions available to a process.
parseFile :: Monad m => String -> ParseState -> m (A.Process -> A.Process, ParseState)
parseFile file ps
= do let source = fromJust $ lookup file (psSourceFiles ps)
let ps' = ps { psLoadedFiles = file : psLoadedFiles ps }
case runParser sourceFile ps' file source of
Left err -> dieIO $ "Parse error: " ++ show err
Right (p, ps'') -> return (replaceMain p, ps'')
where
replaceMain :: A.Process -> A.Process -> A.Process
replaceMain (A.ProcSpec m s p) np = A.ProcSpec m s (replaceMain p np)
replaceMain (A.Main _) np = np
-- | Parse the top level source file in a program.
parseProgram :: String -> PassM A.Process
parseProgram file
= do ps <- get
(f, ps') <- parseFile file ps
put ps'
return (f $ A.Main emptyMeta)
--}}}