tock-mirror/GenerateC.hs
Adam Sampson c8d5a4ff40 Add licensing information.
The compiler itself is under the GPLv2+; the support code that gets built into
user programs is under the LGPLv2+. This matches the existing practice for the
KRoC project.

(As with Occade, I've used the new GPLv3-style license header in the source
files, though, since that avoids having to update the FSF's postal address.)
2007-08-18 20:42:11 +00:00

1767 lines
68 KiB
Haskell

{-
Tock: a compiler for parallel languages
Copyright (C) 2007 University of Kent
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 2 of the License, or (at your
option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.
-}
-- | Generate C code from the mangled AST.
module GenerateC where
import Data.Char
import Data.List
import Data.Maybe
import Control.Monad.Writer
import Control.Monad.Error
import Control.Monad.State
import Numeric
import Text.Printf
import qualified AST as A
import CompState
import EvalConstants
import EvalLiterals
import Metadata
import Pass
import Errors
import TLP
import Types
import Utils
--{{{ monad definition
type CGen = WriterT [String] PassM
instance Die CGen where
die = throwError
--}}}
--{{{ generator ops
-- | Operations for turning various things into C.
-- These are in a structure so that we can reuse operations in other
-- backends without breaking the mutual recursion.
data GenOps = GenOps {
declareArraySizes :: GenOps -> [A.Dimension] -> A.Name -> CGen (),
declareFree :: GenOps -> Meta -> A.Type -> A.Variable -> Maybe (CGen ()),
declareInit :: GenOps -> Meta -> A.Type -> A.Variable -> Maybe (CGen ()),
declareType :: GenOps -> A.Type -> CGen (),
genActual :: GenOps -> A.Actual -> CGen (),
genActuals :: GenOps -> [A.Actual] -> CGen (),
genAlt :: GenOps -> Bool -> A.Structured -> CGen (),
genArrayAbbrev :: GenOps -> A.Variable -> (CGen (), A.Name -> CGen ()),
genArrayLiteralElems :: GenOps -> [A.ArrayElem] -> CGen (),
genArraySize :: GenOps -> Bool -> CGen () -> A.Name -> CGen (),
genArraySizesLiteral :: GenOps -> [A.Dimension] -> CGen (),
genArraySizesSize :: GenOps -> [A.Dimension] -> CGen (),
genArraySubscript :: GenOps -> Bool -> A.Variable -> [A.Expression] -> CGen (),
genAssert :: GenOps -> Meta -> A.Expression -> CGen (),
genAssign :: GenOps -> Meta -> [A.Variable] -> A.ExpressionList -> CGen (),
genBytesIn :: GenOps -> A.Type -> Maybe A.Variable -> CGen (),
genBytesIn' :: GenOps -> A.Type -> Maybe A.Variable -> CGen (Maybe Int),
genCase :: GenOps -> Meta -> A.Expression -> A.Structured -> CGen (),
genCheckedConversion :: GenOps -> Meta -> A.Type -> A.Type -> CGen () -> CGen (),
genConversion :: GenOps -> Meta -> A.ConversionMode -> A.Type -> A.Expression -> CGen (),
genConversionSymbol :: GenOps -> A.Type -> A.Type -> A.ConversionMode -> CGen (),
genDecl :: GenOps -> A.AbbrevMode -> A.Type -> A.Name -> CGen (),
genDeclType :: GenOps -> A.AbbrevMode -> A.Type -> CGen (),
genDeclaration :: GenOps -> A.Type -> A.Name -> CGen (),
genDyadic :: GenOps -> Meta -> A.DyadicOp -> A.Expression -> A.Expression -> CGen (),
genExpression :: GenOps -> A.Expression -> CGen (),
genFlatArraySize :: GenOps -> [A.Dimension] -> CGen (),
genFormal :: GenOps -> A.Formal -> CGen (),
genFormals :: GenOps -> [A.Formal] -> CGen (),
genFuncDyadic :: GenOps -> Meta -> String -> A.Expression -> A.Expression -> CGen (),
genIf :: GenOps -> Meta -> A.Structured -> CGen (),
genInput :: GenOps -> A.Variable -> A.InputMode -> CGen (),
genInputCase :: GenOps -> Meta -> A.Variable -> A.Structured -> CGen (),
genInputItem :: GenOps -> A.Variable -> A.InputItem -> CGen (),
genIntrinsicFunction :: GenOps -> Meta -> String -> [A.Expression] -> CGen (),
genIntrinsicProc :: GenOps -> Meta -> String -> [A.Actual] -> CGen (),
genLiteral :: GenOps -> A.LiteralRepr -> CGen (),
genLiteralRepr :: GenOps -> A.LiteralRepr -> CGen (),
genMissing :: GenOps -> String -> CGen (),
genMonadic :: GenOps -> Meta -> A.MonadicOp -> A.Expression -> CGen (),
genOutput :: GenOps -> A.Variable -> [A.OutputItem] -> CGen (),
genOutputCase :: GenOps -> A.Variable -> A.Name -> [A.OutputItem] -> CGen (),
genOutputItem :: GenOps -> A.Variable -> A.OutputItem -> CGen (),
genOverArray :: GenOps -> Meta -> A.Variable -> (SubscripterFunction -> Maybe (CGen ())) -> CGen (),
genPar :: GenOps -> A.ParMode -> A.Structured -> CGen (),
genProcCall :: GenOps -> A.Name -> [A.Actual] -> CGen (),
genProcess :: GenOps -> A.Process -> CGen (),
genReplicator :: GenOps -> A.Replicator -> CGen () -> CGen (),
genReplicatorLoop :: GenOps -> A.Replicator -> CGen (),
genReplicatorSize :: GenOps -> A.Replicator -> CGen (),
genRetypeSizes :: GenOps -> Meta -> A.AbbrevMode -> A.Type -> A.Name -> A.Type -> A.Variable -> CGen (),
genSeq :: GenOps -> A.Structured -> CGen (),
genSimpleDyadic :: GenOps -> String -> A.Expression -> A.Expression -> CGen (),
genSimpleMonadic :: GenOps -> String -> A.Expression -> CGen (),
genSizeSuffix :: GenOps -> String -> CGen (),
genSlice :: GenOps -> A.Variable -> A.Variable -> A.Expression -> A.Expression -> [A.Dimension] -> (CGen (), A.Name -> CGen ()),
genSpec :: GenOps -> A.Specification -> CGen () -> CGen (),
genSpecMode :: GenOps -> A.SpecMode -> CGen (),
genStop :: GenOps -> Meta -> String -> CGen (),
genStructured :: GenOps -> A.Structured -> (A.Structured -> CGen ()) -> CGen (),
genTLPChannel :: GenOps -> TLPChannel -> CGen (),
genTimerRead :: GenOps -> A.Variable -> A.Variable -> CGen (),
genTimerWait :: GenOps -> A.Expression -> CGen (),
genTopLevel :: GenOps -> A.Process -> CGen (),
genType :: GenOps -> A.Type -> CGen (),
genTypeSymbol :: GenOps -> String -> A.Type -> CGen (),
genUnfoldedExpression :: GenOps -> A.Expression -> CGen (),
genUnfoldedVariable :: GenOps -> Meta -> A.Variable -> CGen (),
genVariable :: GenOps -> A.Variable -> CGen (),
genVariable' :: GenOps -> Bool -> A.Variable -> CGen (),
genVariableAM :: GenOps -> A.Variable -> A.AbbrevMode -> CGen (),
genVariableUnchecked :: GenOps -> A.Variable -> CGen (),
genWhile :: GenOps -> A.Expression -> A.Process -> CGen (),
getScalarType :: GenOps -> A.Type -> Maybe String,
introduceSpec :: GenOps -> A.Specification -> CGen (),
removeSpec :: GenOps -> A.Specification -> CGen ()
}
-- | Call an operation in GenOps.
call :: (GenOps -> GenOps -> t) -> GenOps -> t
call f ops = f ops ops
-- | Operations for the C backend.
cgenOps :: GenOps
cgenOps = GenOps {
declareArraySizes = cdeclareArraySizes,
declareFree = cdeclareFree,
declareInit = cdeclareInit,
declareType = cdeclareType,
genActual = cgenActual,
genActuals = cgenActuals,
genAlt = cgenAlt,
genArrayAbbrev = cgenArrayAbbrev,
genArrayLiteralElems = cgenArrayLiteralElems,
genArraySize = cgenArraySize,
genArraySizesLiteral = cgenArraySizesLiteral,
genArraySizesSize = cgenArraySizesSize,
genArraySubscript = cgenArraySubscript,
genAssert = cgenAssert,
genAssign = cgenAssign,
genBytesIn = cgenBytesIn,
genBytesIn' = cgenBytesIn',
genCase = cgenCase,
genCheckedConversion = cgenCheckedConversion,
genConversion = cgenConversion,
genConversionSymbol = cgenConversionSymbol,
genDecl = cgenDecl,
genDeclType = cgenDeclType,
genDeclaration = cgenDeclaration,
genDyadic = cgenDyadic,
genExpression = cgenExpression,
genFlatArraySize = cgenFlatArraySize,
genFormal = cgenFormal,
genFormals = cgenFormals,
genFuncDyadic = cgenFuncDyadic,
genIf = cgenIf,
genInput = cgenInput,
genInputCase = cgenInputCase,
genInputItem = cgenInputItem,
genIntrinsicFunction = cgenIntrinsicFunction,
genIntrinsicProc = cgenIntrinsicProc,
genLiteral = cgenLiteral,
genLiteralRepr = cgenLiteralRepr,
genMissing = cgenMissing,
genMonadic = cgenMonadic,
genOutput = cgenOutput,
genOutputCase = cgenOutputCase,
genOutputItem = cgenOutputItem,
genOverArray = cgenOverArray,
genPar = cgenPar,
genProcCall = cgenProcCall,
genProcess = cgenProcess,
genReplicator = cgenReplicator,
genReplicatorLoop = cgenReplicatorLoop,
genReplicatorSize = cgenReplicatorSize,
genRetypeSizes = cgenRetypeSizes,
genSeq = cgenSeq,
genSimpleDyadic = cgenSimpleDyadic,
genSimpleMonadic = cgenSimpleMonadic,
genSizeSuffix = cgenSizeSuffix,
genSlice = cgenSlice,
genSpec = cgenSpec,
genSpecMode = cgenSpecMode,
genStop = cgenStop,
genStructured = cgenStructured,
genTLPChannel = cgenTLPChannel,
genTimerRead = cgenTimerRead,
genTimerWait = cgenTimerWait,
genTopLevel = cgenTopLevel,
genType = cgenType,
genTypeSymbol = cgenTypeSymbol,
genUnfoldedExpression = cgenUnfoldedExpression,
genUnfoldedVariable = cgenUnfoldedVariable,
genVariable = cgenVariable,
genVariable' = cgenVariable',
genVariableAM = cgenVariableAM,
genVariableUnchecked = cgenVariableUnchecked,
genWhile = cgenWhile,
getScalarType = cgetScalarType,
introduceSpec = cintroduceSpec,
removeSpec = cremoveSpec
}
--}}}
--{{{ top-level
generate :: GenOps -> A.Process -> PassM String
generate ops ast
= do (a, w) <- runWriterT (call genTopLevel ops ast)
gds <- getGeneratedDefs
let out = ["#include <tock_support.h>\n"] ++ gds ++ w
return $ concat out
generateC :: A.Process -> PassM String
generateC = generate cgenOps
cgenTLPChannel :: GenOps -> TLPChannel -> CGen ()
cgenTLPChannel _ TLPIn = tell ["in"]
cgenTLPChannel _ TLPOut = tell ["out"]
cgenTLPChannel _ TLPError = tell ["err"]
cgenTopLevel :: GenOps -> A.Process -> CGen ()
cgenTopLevel ops p
= do call genProcess ops p
(name, chans) <- tlpInterface
tell ["void tock_main (Process *me, Channel *in, Channel *out, Channel *err) {\n"]
genName name
tell [" (me"]
sequence_ [tell [", "] >> call genTLPChannel ops c | c <- chans]
tell [");\n"]
tell ["}\n"]
--}}}
--{{{ utilities
cgenMissing :: GenOps -> String -> CGen ()
cgenMissing _ s = tell ["\n#error Unimplemented: ", s, "\n"]
--{{{ simple punctuation
genComma :: CGen ()
genComma = tell [", "]
seqComma :: [CGen ()] -> CGen ()
seqComma ps = sequence_ $ intersperse genComma ps
genLeftB :: CGen ()
genLeftB = tell ["{ "]
genRightB :: CGen ()
genRightB = tell [" }"]
--}}}
-- | A function that applies a subscript to a variable.
type SubscripterFunction = A.Variable -> A.Variable
-- | Map an operation over every item of an occam array.
cgenOverArray :: GenOps -> Meta -> A.Variable -> (SubscripterFunction -> Maybe (CGen ())) -> CGen ()
cgenOverArray ops m var func
= do A.Array ds _ <- typeOfVariable var
specs <- sequence [makeNonceVariable "i" m A.Int A.VariableName A.Original | _ <- ds]
let indices = [A.Variable m n | A.Specification _ n _ <- specs]
let arg = (\var -> foldl (\v s -> A.SubscriptedVariable m s v) var [A.Subscript m $ A.ExprVariable m i | i <- indices])
case func arg of
Just p ->
do sequence_ [do tell ["for (int "]
call genVariable ops i
tell [" = 0; "]
call genVariable ops i
tell [" < "]
call genVariable ops var
tell ["_sizes[", show v, "]; "]
call genVariable ops i
tell ["++) {\n"]
| (v, i) <- zip [0..] indices]
p
sequence_ [tell ["}\n"] | _ <- indices]
Nothing -> return ()
-- | Generate code for one of the Structured types.
cgenStructured :: GenOps -> A.Structured -> (A.Structured -> CGen ()) -> CGen ()
cgenStructured ops (A.Rep _ rep s) def = call genReplicator ops rep (call genStructured ops s def)
cgenStructured ops (A.Spec _ spec s) def = call genSpec ops spec (call genStructured ops s def)
cgenStructured ops (A.ProcThen _ p s) def = call genProcess ops p >> call genStructured ops s def
cgenStructured ops (A.Several _ ss) def = sequence_ [call genStructured ops s def | s <- ss]
cgenStructured _ s def = def s
--}}}
--{{{ metadata
-- | Turn a Meta into a string literal that can be passed to a function
-- expecting a const char * argument.
genMeta :: Meta -> CGen ()
genMeta m = tell ["\"", show m, "\""]
--}}}
--{{{ names
nameString :: A.Name -> String
nameString n = [if c == '.' then '_' else c | c <- A.nameName n]
genName :: A.Name -> CGen ()
genName n = tell [nameString n]
--}}}
--{{{ types
-- | If a type maps to a simple C type, return Just that; else return Nothing.
cgetScalarType :: GenOps -> A.Type -> Maybe String
cgetScalarType _ A.Bool = Just "bool"
cgetScalarType _ A.Byte = Just "uint8_t"
cgetScalarType _ A.Int = Just "int"
cgetScalarType _ A.Int16 = Just "int16_t"
cgetScalarType _ A.Int32 = Just "int32_t"
cgetScalarType _ A.Int64 = Just "int64_t"
cgetScalarType _ A.Real32 = Just "float"
cgetScalarType _ A.Real64 = Just "double"
cgetScalarType _ A.Timer = Just "Time"
cgetScalarType _ _ = Nothing
cgenType :: GenOps -> A.Type -> CGen ()
cgenType ops (A.Array _ t)
= do call genType ops t
tell ["*"]
cgenType _ (A.Record n) = genName n
-- UserProtocol -- not used
cgenType _ (A.Chan t) = tell ["Channel *"]
-- Counted -- not used
-- Any -- not used
--cgenType ops (A.Port t) =
cgenType ops t
= case call getScalarType ops t of
Just s -> tell [s]
Nothing -> call genMissing ops $ "genType " ++ show t
-- | Generate the number of bytes in a type that must have a fixed size.
cgenBytesIn :: GenOps -> A.Type -> Maybe A.Variable -> CGen ()
cgenBytesIn ops t v
= do free <- call genBytesIn' ops t v
case free of
Nothing -> return ()
Just _ -> die "genBytesIn type with unknown dimension"
-- | Generate the number of bytes in a type that may have one free dimension.
cgenBytesIn' :: GenOps -> A.Type -> Maybe A.Variable -> CGen (Maybe Int)
cgenBytesIn' ops (A.Array ds t) v
= do free <- genBytesInArray ds 0
call genBytesIn' ops t v
return free
where
genBytesInArray [] _ = return Nothing
genBytesInArray ((A.Dimension n):ds) i
= do free <- genBytesInArray ds (i + 1)
tell [show n, " * "]
return free
genBytesInArray (A.UnknownDimension:ds) i
= case v of
Just rv ->
do free <- genBytesInArray ds (i + 1)
call genVariable ops rv
tell ["_sizes[", show i, "] * "]
return free
Nothing ->
do free <- genBytesInArray ds (i + 1)
case free of
Nothing -> return $ Just i
Just _ -> die "genBytesIn' type with more than one free dimension"
cgenBytesIn' _ (A.Record n) _
= do tell ["sizeof ("]
genName n
tell [")"]
return Nothing
-- This is so that we can do RETYPES checks on channels; we don't actually
-- allow retyping between channels and other things.
cgenBytesIn' _ (A.Chan _) _
= do tell ["sizeof (Channel *)"]
return Nothing
cgenBytesIn' ops t _
= case call getScalarType ops t of
Just s -> tell ["sizeof (", s, ")"] >> return Nothing
Nothing -> die $ "genBytesIn' " ++ show t
--}}}
--{{{ declarations
cgenDeclType :: GenOps -> A.AbbrevMode -> A.Type -> CGen ()
cgenDeclType ops am t
= do when (am == A.ValAbbrev) $ tell ["const "]
call genType ops t
case t of
A.Array _ _ -> return ()
A.Chan _ -> return ()
A.Record _ -> tell [" *"]
_ -> when (am == A.Abbrev) $ tell [" *"]
cgenDecl :: GenOps -> A.AbbrevMode -> A.Type -> A.Name -> CGen ()
cgenDecl ops am t n
= do call genDeclType ops am t
tell [" "]
genName n
--}}}
--{{{ conversions
cgenCheckedConversion :: GenOps -> Meta -> A.Type -> A.Type -> CGen () -> CGen ()
cgenCheckedConversion ops m fromT toT exp
= do tell ["(("]
call genType ops toT
tell [") "]
if isSafeConversion fromT toT
then exp
else do call genTypeSymbol ops "range_check" fromT
tell [" ("]
call genTypeSymbol ops "mostneg" toT
tell [", "]
call genTypeSymbol ops "mostpos" toT
tell [", "]
exp
tell [", "]
genMeta m
tell [")"]
tell [")"]
cgenConversion :: GenOps -> Meta -> A.ConversionMode -> A.Type -> A.Expression -> CGen ()
cgenConversion ops m A.DefaultConversion toT e
= do fromT <- typeOfExpression e
call genCheckedConversion ops m fromT toT (call genExpression ops e)
cgenConversion ops m cm toT e
= do fromT <- typeOfExpression e
case (isSafeConversion fromT toT, isRealType fromT, isRealType toT) of
(True, _, _) ->
-- A safe conversion -- no need for a check.
call genCheckedConversion ops m fromT toT (call genExpression ops e)
(_, True, True) ->
-- Real to real.
do call genConversionSymbol ops fromT toT cm
tell [" ("]
call genExpression ops e
tell [", "]
genMeta m
tell [")"]
(_, True, False) ->
-- Real to integer -- do real -> int64_t -> int.
do let exp = do call genConversionSymbol ops fromT A.Int64 cm
tell [" ("]
call genExpression ops e
tell [", "]
genMeta m
tell [")"]
call genCheckedConversion ops m A.Int64 toT exp
(_, False, True) ->
-- Integer to real -- do int -> int64_t -> real.
do call genConversionSymbol ops A.Int64 toT cm
tell [" ("]
call genCheckedConversion ops m fromT A.Int64 (call genExpression ops e)
tell [", "]
genMeta m
tell [")"]
_ -> call genMissing ops $ "genConversion " ++ show cm
cgenConversionSymbol :: GenOps -> A.Type -> A.Type -> A.ConversionMode -> CGen ()
cgenConversionSymbol ops fromT toT cm
= do tell ["occam_convert_"]
call genType ops fromT
tell ["_"]
call genType ops toT
tell ["_"]
case cm of
A.Round -> tell ["round"]
A.Trunc -> tell ["trunc"]
--}}}
--{{{ literals
cgenLiteral :: GenOps -> A.LiteralRepr -> CGen ()
cgenLiteral ops lr
= if isStringLiteral lr
then do tell ["\""]
let A.ArrayLiteral _ aes = lr
sequence_ [genByteLiteral s
| A.ArrayElemExpr (A.Literal _ _ (A.ByteLiteral _ s)) <- aes]
tell ["\""]
else call genLiteralRepr ops lr
-- | Does a LiteralRepr represent something that can be a plain string literal?
isStringLiteral :: A.LiteralRepr -> Bool
isStringLiteral (A.ArrayLiteral _ aes)
= and [case ae of
A.ArrayElemExpr (A.Literal _ _ (A.ByteLiteral _ _)) -> True
_ -> False
| ae <- aes]
isStringLiteral _ = False
cgenLiteralRepr :: GenOps -> A.LiteralRepr -> CGen ()
cgenLiteralRepr _ (A.RealLiteral m s) = tell [s]
cgenLiteralRepr _ (A.IntLiteral m s) = genDecimal s
cgenLiteralRepr _ (A.HexLiteral m s) = tell ["0x", s]
cgenLiteralRepr ops (A.ByteLiteral m s) = tell ["'"] >> genByteLiteral s >> tell ["'"]
cgenLiteralRepr ops (A.ArrayLiteral m aes)
= do genLeftB
call genArrayLiteralElems ops aes
genRightB
cgenLiteralRepr ops (A.RecordLiteral _ es)
= do genLeftB
seqComma $ map (call genUnfoldedExpression ops) es
genRightB
-- | Generate an expression inside a record literal.
--
-- This is awkward: the sort of literal that this produces when there's a
-- variable in here cannot always be compiled at the top level of a C99 program
-- -- because in C99, an array subscript is not a constant, even if it's a
-- constant subscript of a constant array. So we need to be sure that when we
-- use this at the top level, the thing we're unfolding only contains literals.
-- Yuck!
cgenUnfoldedExpression :: GenOps -> A.Expression -> CGen ()
cgenUnfoldedExpression ops (A.Literal _ t lr)
= do call genLiteralRepr ops lr
case t of
A.Array ds _ ->
do genComma
genLeftB
call genArraySizesLiteral ops ds
genRightB
_ -> return ()
cgenUnfoldedExpression ops (A.ExprVariable m var) = call genUnfoldedVariable ops m var
cgenUnfoldedExpression ops e = call genExpression ops e
-- | Generate a variable inside a record literal.
cgenUnfoldedVariable :: GenOps -> Meta -> A.Variable -> CGen ()
cgenUnfoldedVariable ops m var
= do t <- typeOfVariable var
case t of
A.Array ds _ ->
do genLeftB
unfoldArray ds var
genRightB
genComma
genLeftB
call genArraySizesLiteral ops ds
genRightB
A.Record _ ->
do genLeftB
fs <- recordFields m t
seqComma [call genUnfoldedVariable ops m (A.SubscriptedVariable m (A.SubscriptField m n) var)
| (n, t) <- fs]
genRightB
-- We can defeat the usage check here because we know it's safe; *we're*
-- generating the subscripts.
-- FIXME Is that actually true for something like [a[x]]?
_ -> call genVariable' ops False var
where
unfoldArray :: [A.Dimension] -> A.Variable -> CGen ()
unfoldArray [] v = call genUnfoldedVariable ops m v
unfoldArray (A.Dimension n:ds) v
= seqComma $ [unfoldArray ds (A.SubscriptedVariable m (A.Subscript m $ makeConstant m i) v)
| i <- [0..(n - 1)]]
unfoldArray _ _ = dieP m "trying to unfold array with unknown dimension"
-- | Generate a decimal literal -- removing leading zeroes to avoid producing
-- an octal literal!
genDecimal :: String -> CGen ()
genDecimal "0" = tell ["0"]
genDecimal ('0':s) = genDecimal s
genDecimal ('-':s) = tell ["-"] >> genDecimal s
genDecimal s = tell [s]
cgenArrayLiteralElems :: GenOps -> [A.ArrayElem] -> CGen ()
cgenArrayLiteralElems ops aes
= seqComma $ map genElem aes
where
genElem :: A.ArrayElem -> CGen ()
genElem (A.ArrayElemArray aes) = call genArrayLiteralElems ops aes
genElem (A.ArrayElemExpr e) = call genUnfoldedExpression ops e
genByteLiteral :: String -> CGen ()
genByteLiteral s
= do c <- evalByte s
tell [convByte c]
convByte :: Char -> String
convByte '\'' = "\\'"
convByte '"' = "\\\""
convByte '\\' = "\\\\"
convByte '\r' = "\\r"
convByte '\n' = "\\n"
convByte '\t' = "\\t"
convByte c
| o == 0 = "\\0"
| (o < 32 || o > 127) = printf "\\%03o" o
| otherwise = [c]
where o = ord c
--}}}
--{{{ variables
{-
The various types are generated like this:
================= Use =================
Original ValAbbrev Abbrev
--------------------------------------
INT x: int x; int x; int *x;
x x x *x
[10]INT xs: int xs[10]; int *xs; int *xs;
xs xs xs xs
xs[i] xs[i] xs[i] xs[i]
[20][10]INT xss: int xss[20*10]; int *xss; int *xss;
xss xss xss xss
xss[i] &xss[i*10] &xss[i*10] &xss[i*10] (where 10 = xss_sizes[1])
xss[i][j] xss[i*10+j] xss[i*10+j] xss[i*10+j]
[6][4][2]INT xsss: int xsss[6*4*2]; int *xsss;
xsss xsss (as left)
xsss[i] &xsss[i*4*2]
xsss[i][j] &xsss[i*4*2+j*2]
xsss[i][j][k] xsss[i*4*2+j*2+k]
MYREC r: MYREC r; MYREC *r; MYREC *r;
r &r r r
r[F] (&r)->F (r)->F (r)->F
[10]MYREC rs: MYREC rs[10]; MYREC *rs; MYREC *rs;
rs rs rs rs
rs[i] &rs[i] &rs[i] &rs[i]
rs[i][F] (&rs[i])->F (&rs[i])->F (&rs[i])->F
-- depending on what F is -- if it's another record...
CHAN OF INT c: Channel c; Channel *c;
c &c c
[10]CHAN OF INT cs: Channel **cs; Channel **cs;
cs cs cs
cs[i] cs[i] cs[i]
I suspect there's probably a nicer way of doing this, but as a translation of
the above table this isn't too horrible...
-}
-- | Generate C code for a variable.
cgenVariable :: GenOps -> A.Variable -> CGen ()
cgenVariable ops = call genVariable' ops True
-- | Generate C code for a variable without doing any range checks.
cgenVariableUnchecked :: GenOps -> A.Variable -> CGen ()
cgenVariableUnchecked ops = call genVariable' ops False
-- FIXME This needs to detect when we've "gone through" a record and revert to
-- the Original prefixing behaviour. (Can do the same for arrays?)
-- Best way to do this is probably to make inner return a reference and a prefix,
-- so that we can pass prefixes upwards...
cgenVariable' :: GenOps -> Bool -> A.Variable -> CGen ()
cgenVariable' ops checkValid v
= do am <- accessAbbrevMode v
t <- typeOfVariable v
let isSub = case v of
A.Variable _ _ -> False
A.SubscriptedVariable _ _ _ -> True
let prefix = case (am, t) of
(_, A.Array _ _) -> ""
(A.Original, A.Chan _) -> if isSub then "" else "&"
(A.Abbrev, A.Chan _) -> ""
(A.Original, A.Record _) -> "&"
(A.Abbrev, A.Record _) -> ""
(A.Abbrev, _) -> "*"
_ -> ""
when (prefix /= "") $ tell ["(", prefix]
inner v
when (prefix /= "") $ tell [")"]
where
-- | Find the effective abbreviation mode for the variable we're looking at.
-- This differs from abbrevModeOfVariable in that it will return Original
-- for array and record elements (because when we're generating C, we can
-- treat c->x as if it's just x).
accessAbbrevMode :: A.Variable -> CGen A.AbbrevMode
accessAbbrevMode (A.Variable _ n) = abbrevModeOfName n
accessAbbrevMode (A.SubscriptedVariable _ sub v)
= do am <- accessAbbrevMode v
return $ case (am, sub) of
(_, A.Subscript _ _) -> A.Original
(_, A.SubscriptField _ _) -> A.Original
_ -> am
inner :: A.Variable -> CGen ()
inner (A.Variable _ n) = genName n
inner sv@(A.SubscriptedVariable _ (A.Subscript _ _) _)
= do let (es, v) = collectSubs sv
call genVariable ops v
call genArraySubscript ops checkValid v es
inner (A.SubscriptedVariable _ (A.SubscriptField m n) v)
= do call genVariable ops v
tell ["->"]
genName n
inner (A.SubscriptedVariable m (A.SubscriptFromFor m' start _) v)
= inner (A.SubscriptedVariable m (A.Subscript m' start) v)
inner (A.SubscriptedVariable m (A.SubscriptFrom m' start) v)
= inner (A.SubscriptedVariable m (A.Subscript m' start) v)
inner (A.SubscriptedVariable m (A.SubscriptFor m' _) v)
= inner (A.SubscriptedVariable m (A.Subscript m' (makeConstant m' 0)) v)
-- | Collect all the plain subscripts on a variable, so we can combine them.
collectSubs :: A.Variable -> ([A.Expression], A.Variable)
collectSubs (A.SubscriptedVariable _ (A.Subscript _ e) v)
= (es' ++ [e], v')
where
(es', v') = collectSubs v
collectSubs v = ([], v)
cgenArraySubscript :: GenOps -> Bool -> A.Variable -> [A.Expression] -> CGen ()
cgenArraySubscript ops checkValid v es
= do t <- typeOfVariable v
let numDims = case t of A.Array ds _ -> length ds
tell ["["]
sequence_ $ intersperse (tell [" + "]) $ genPlainSub v es [0..(numDims - 1)]
tell ["]"]
where
-- | Generate the individual offsets that need adding together to find the
-- right place in the array.
-- FIXME This is obviously not the best way to factor this, but I figure a
-- smart C compiler should be able to work it out...
genPlainSub :: A.Variable -> [A.Expression] -> [Int] -> [CGen ()]
genPlainSub _ [] _ = []
genPlainSub v (e:es) (sub:subs)
= gen : genPlainSub v es subs
where
gen = sequence_ $ intersperse (tell [" * "]) $ genSub : genChunks
genSub
= if checkValid
then do tell ["occam_check_index ("]
call genExpression ops e
tell [", "]
call genVariable ops v
tell ["_sizes[", show sub, "], "]
genMeta (findMeta e)
tell [")"]
else call genExpression ops e
genChunks = [call genVariable ops v >> tell ["_sizes[", show i, "]"] | i <- subs]
--}}}
--{{{ expressions
cgenExpression :: GenOps -> A.Expression -> CGen ()
cgenExpression ops (A.Monadic m op e) = call genMonadic ops m op e
cgenExpression ops (A.Dyadic m op e f) = call genDyadic ops m op e f
cgenExpression ops (A.MostPos m t) = call genTypeSymbol ops "mostpos" t
cgenExpression ops (A.MostNeg m t) = call genTypeSymbol ops "mostneg" t
--cgenExpression ops (A.SizeType m t)
cgenExpression ops (A.SizeExpr m e)
= do call genExpression ops e
call genSizeSuffix ops "0"
cgenExpression ops (A.SizeVariable m v)
= do call genVariable ops v
call genSizeSuffix ops "0"
cgenExpression ops (A.Conversion m cm t e) = call genConversion ops m cm t e
cgenExpression ops (A.ExprVariable m v) = call genVariable ops v
cgenExpression ops (A.Literal _ _ lr) = call genLiteral ops lr
cgenExpression _ (A.True m) = tell ["true"]
cgenExpression _ (A.False m) = tell ["false"]
--cgenExpression ops (A.FunctionCall m n es)
cgenExpression ops (A.IntrinsicFunctionCall m s es) = call genIntrinsicFunction ops m s es
--cgenExpression ops (A.SubscriptedExpr m s e)
--cgenExpression ops (A.BytesInExpr m e)
cgenExpression ops (A.BytesInType m t) = call genBytesIn ops t Nothing
--cgenExpression ops (A.OffsetOf m t n)
cgenExpression ops t = call genMissing ops $ "genExpression " ++ show t
cgenSizeSuffix :: GenOps -> String -> CGen ()
cgenSizeSuffix _ dim = tell ["_sizes[", dim, "]"]
cgenTypeSymbol :: GenOps -> String -> A.Type -> CGen ()
cgenTypeSymbol ops s t
= case call getScalarType ops t of
Just ct -> tell ["occam_", s, "_", ct]
Nothing -> call genMissing ops $ "genTypeSymbol " ++ show t
cgenIntrinsicFunction :: GenOps -> Meta -> String -> [A.Expression] -> CGen ()
cgenIntrinsicFunction ops m s es
= do tell ["occam_", s, " ("]
sequence [call genExpression ops e >> genComma | e <- es]
genMeta m
tell [")"]
--}}}
--{{{ operators
cgenSimpleMonadic :: GenOps -> String -> A.Expression -> CGen ()
cgenSimpleMonadic ops s e
= do tell ["(", s]
call genExpression ops e
tell [")"]
cgenMonadic :: GenOps -> Meta -> A.MonadicOp -> A.Expression -> CGen ()
cgenMonadic ops _ A.MonadicSubtr e = call genSimpleMonadic ops "-" e
cgenMonadic ops _ A.MonadicBitNot e = call genSimpleMonadic ops "~" e
cgenMonadic ops _ A.MonadicNot e = call genSimpleMonadic ops "!" e
cgenSimpleDyadic :: GenOps -> String -> A.Expression -> A.Expression -> CGen ()
cgenSimpleDyadic ops s e f
= do tell ["("]
call genExpression ops e
tell [" ", s, " "]
call genExpression ops f
tell [")"]
cgenFuncDyadic :: GenOps -> Meta -> String -> A.Expression -> A.Expression -> CGen ()
cgenFuncDyadic ops m s e f
= do t <- typeOfExpression e
call genTypeSymbol ops s t
tell [" ("]
call genExpression ops e
tell [", "]
call genExpression ops f
tell [", "]
genMeta m
tell [")"]
cgenDyadic :: GenOps -> Meta -> A.DyadicOp -> A.Expression -> A.Expression -> CGen ()
cgenDyadic ops m A.Add e f = call genFuncDyadic ops m "add" e f
cgenDyadic ops m A.Subtr e f = call genFuncDyadic ops m "subtr" e f
cgenDyadic ops m A.Mul e f = call genFuncDyadic ops m "mul" e f
cgenDyadic ops m A.Div e f = call genFuncDyadic ops m "div" e f
cgenDyadic ops m A.Rem e f = call genFuncDyadic ops m "rem" e f
cgenDyadic ops _ A.Plus e f = call genSimpleDyadic ops "+" e f
cgenDyadic ops _ A.Minus e f = call genSimpleDyadic ops "-" e f
cgenDyadic ops _ A.Times e f = call genSimpleDyadic ops "*" e f
cgenDyadic ops _ A.LeftShift e f = call genSimpleDyadic ops "<<" e f
cgenDyadic ops _ A.RightShift e f = call genSimpleDyadic ops ">>" e f
cgenDyadic ops _ A.BitAnd e f = call genSimpleDyadic ops "&" e f
cgenDyadic ops _ A.BitOr e f = call genSimpleDyadic ops "|" e f
cgenDyadic ops _ A.BitXor e f = call genSimpleDyadic ops "^" e f
cgenDyadic ops _ A.And e f = call genSimpleDyadic ops "&&" e f
cgenDyadic ops _ A.Or e f = call genSimpleDyadic ops "||" e f
cgenDyadic ops _ A.Eq e f = call genSimpleDyadic ops "==" e f
cgenDyadic ops _ A.NotEq e f = call genSimpleDyadic ops "!=" e f
cgenDyadic ops _ A.Less e f = call genSimpleDyadic ops "<" e f
cgenDyadic ops _ A.More e f = call genSimpleDyadic ops ">" e f
cgenDyadic ops _ A.LessEq e f = call genSimpleDyadic ops "<=" e f
cgenDyadic ops _ A.MoreEq e f = call genSimpleDyadic ops ">=" e f
--}}}
--{{{ input/output items
cgenInputItem :: GenOps -> A.Variable -> A.InputItem -> CGen ()
cgenInputItem ops c (A.InCounted m cv av)
= do call genInputItem ops c (A.InVariable m cv)
t <- typeOfVariable av
tell ["ChanIn ("]
call genVariable ops c
tell [", "]
fst $ abbrevVariable ops A.Abbrev t av
tell [", "]
subT <- trivialSubscriptType t
call genVariable ops cv
tell [" * "]
call genBytesIn ops subT (Just av)
tell [");\n"]
cgenInputItem ops c (A.InVariable m v)
= do t <- typeOfVariable v
let rhs = fst $ abbrevVariable ops A.Abbrev t v
case t of
A.Int ->
do tell ["ChanInInt ("]
call genVariable ops c
tell [", "]
rhs
tell [");\n"]
_ ->
do tell ["ChanIn ("]
call genVariable ops c
tell [", "]
rhs
tell [", "]
call genBytesIn ops t (Just v)
tell [");\n"]
cgenOutputItem :: GenOps -> A.Variable -> A.OutputItem -> CGen ()
cgenOutputItem ops c (A.OutCounted m ce ae)
= do call genOutputItem ops c (A.OutExpression m ce)
t <- typeOfExpression ae
case ae of
A.ExprVariable m v ->
do tell ["ChanOut ("]
call genVariable ops c
tell [", "]
fst $ abbrevVariable ops A.Abbrev t v
tell [", "]
subT <- trivialSubscriptType t
call genExpression ops ce
tell [" * "]
call genBytesIn ops subT (Just v)
tell [");\n"]
cgenOutputItem ops c (A.OutExpression m e)
= do t <- typeOfExpression e
case (t, e) of
(A.Int, _) ->
do tell ["ChanOutInt ("]
call genVariable ops c
tell [", "]
call genExpression ops e
tell [");\n"]
(_, A.ExprVariable _ v) ->
do tell ["ChanOut ("]
call genVariable ops c
tell [", "]
fst $ abbrevVariable ops A.Abbrev t v
tell [", "]
call genBytesIn ops t (Just v)
tell [");\n"]
_ ->
do n <- makeNonce "output_item"
tell ["const "]
call genType ops t
tell [" ", n, " = "]
call genExpression ops e
tell [";\n"]
tell ["ChanOut ("]
call genVariable ops c
tell [", &", n, ", "]
call genBytesIn ops t Nothing
tell [");\n"]
--}}}
--{{{ replicators
cgenReplicator :: GenOps -> A.Replicator -> CGen () -> CGen ()
cgenReplicator ops rep body
= do tell ["for ("]
call genReplicatorLoop ops rep
tell [") {\n"]
body
tell ["}\n"]
isZero :: A.Expression -> Bool
isZero (A.Literal _ A.Int (A.IntLiteral _ "0")) = True
isZero _ = False
cgenReplicatorLoop :: GenOps -> A.Replicator -> CGen ()
cgenReplicatorLoop ops (A.For m index base count)
= if isZero base
then simple
else general
where
simple :: CGen ()
simple
= do tell ["int "]
genName index
tell [" = 0; "]
genName index
tell [" < "]
call genExpression ops count
tell ["; "]
genName index
tell ["++"]
general :: CGen ()
general
= do counter <- makeNonce "replicator_count"
tell ["int ", counter, " = "]
call genExpression ops count
tell [", "]
genName index
tell [" = "]
call genExpression ops base
tell ["; ", counter, " > 0; ", counter, "--, "]
genName index
tell ["++"]
cgenReplicatorSize :: GenOps -> A.Replicator -> CGen ()
cgenReplicatorSize ops rep = call genExpression ops (sizeOfReplicator rep)
--}}}
--{{{ abbreviations
-- FIXME: This code is horrible, and I can't easily convince myself that it's correct.
cgenSlice :: GenOps -> A.Variable -> A.Variable -> A.Expression -> A.Expression -> [A.Dimension] -> (CGen (), A.Name -> CGen ())
cgenSlice ops v (A.Variable _ on) start count ds
-- We need to disable the index check here because we might be taking
-- element 0 of a 0-length array -- which is valid.
= (tell ["&"] >> call genVariableUnchecked ops v,
call genArraySize ops False
(do tell ["occam_check_slice ("]
call genExpression ops start
tell [", "]
call genExpression ops count
tell [", "]
genName on
tell ["_sizes[0], "]
genMeta (findMeta count)
tell [")"]
sequence_ [do tell [", "]
genName on
tell ["_sizes[", show i, "]"]
| i <- [1..(length ds - 1)]]))
cgenArrayAbbrev :: GenOps -> A.Variable -> (CGen (), A.Name -> CGen ())
cgenArrayAbbrev ops v
= (tell ["&"] >> call genVariable ops v, genAASize v 0)
where
genAASize (A.SubscriptedVariable _ (A.Subscript _ _) v) arg
= genAASize v (arg + 1)
genAASize (A.Variable _ on) arg
= call genArraySize ops True
(tell ["&"] >> genName on >> tell ["_sizes[", show arg, "]"])
cgenArraySize :: GenOps -> Bool -> CGen () -> A.Name -> CGen ()
cgenArraySize ops isPtr size n
= if isPtr
then do tell ["const int *"]
genName n
tell ["_sizes = "]
size
tell [";\n"]
else do tell ["const int "]
genName n
tell ["_sizes[] = { "]
size
tell [" };\n"]
noSize :: A.Name -> CGen ()
noSize n = return ()
cgenVariableAM :: GenOps -> A.Variable -> A.AbbrevMode -> CGen ()
cgenVariableAM ops v am
= do when (am == A.Abbrev) $ tell ["&"]
call genVariable ops v
-- | Generate the right-hand side of an abbreviation of a variable.
abbrevVariable :: GenOps -> A.AbbrevMode -> A.Type -> A.Variable -> (CGen (), A.Name -> CGen ())
abbrevVariable ops am (A.Array _ _) v@(A.SubscriptedVariable _ (A.Subscript _ _) _)
= call genArrayAbbrev ops v
abbrevVariable ops am (A.Array ds _) v@(A.SubscriptedVariable _ (A.SubscriptFromFor _ start count) v')
= call genSlice ops v v' start count ds
abbrevVariable ops am (A.Array ds _) v@(A.SubscriptedVariable m (A.SubscriptFrom _ start) v')
= call genSlice ops v v' start (A.Dyadic m A.Minus (A.SizeExpr m (A.ExprVariable m v')) start) ds
abbrevVariable ops am (A.Array ds _) v@(A.SubscriptedVariable m (A.SubscriptFor _ count) v')
= call genSlice ops v v' (makeConstant m 0) count ds
abbrevVariable ops am (A.Array _ _) v
= (call genVariable ops v, call genArraySize ops True (call genVariable ops v >> tell ["_sizes"]))
abbrevVariable ops am (A.Chan _) v
= (call genVariable ops v, noSize)
abbrevVariable ops am (A.Record _) v
= (call genVariable ops v, noSize)
abbrevVariable ops am t v
= (call genVariableAM ops v am, noSize)
-- | Generate the size part of a RETYPES\/RESHAPES abbrevation of a variable.
cgenRetypeSizes :: GenOps -> Meta -> A.AbbrevMode -> A.Type -> A.Name -> A.Type -> A.Variable -> CGen ()
cgenRetypeSizes ops m am destT destN srcT srcV
= do size <- makeNonce "retype_size"
tell ["int ", size, " = occam_check_retype ("]
call genBytesIn ops srcT (Just srcV)
tell [", "]
free <- call genBytesIn' ops destT Nothing
tell [", "]
genMeta m
tell [");\n"]
case destT of
-- An array -- figure out the genMissing dimension, if there is one.
A.Array destDS _ ->
do case free of
-- No free dimensions; check the complete array matches in size.
Nothing ->
do tell ["if (", size, " != 1) {\n"]
call genStop ops m "array size mismatch in RETYPES"
tell ["}\n"]
_ -> return ()
let dims = [case d of
A.UnknownDimension ->
-- Unknown dimension -- insert it.
case free of
Just _ -> tell [size]
Nothing ->
die "genRetypeSizes expecting free dimension"
A.Dimension n -> tell [show n]
| d <- destDS]
call genArraySize ops False (seqComma dims) destN
-- Not array; just check the size is 1.
_ ->
do tell ["if (", size, " != 1) {\n"]
call genStop ops m "size mismatch in RETYPES"
tell ["}\n"]
-- | Generate the right-hand side of an abbreviation of an expression.
abbrevExpression :: GenOps -> A.AbbrevMode -> A.Type -> A.Expression -> (CGen (), A.Name -> CGen ())
abbrevExpression ops am t@(A.Array _ _) e
= case e of
A.ExprVariable _ v -> abbrevVariable ops am t v
A.Literal _ (A.Array ds _) r -> (call genExpression ops e, call declareArraySizes ops ds)
_ -> bad
where
bad = (call genMissing ops "array expression abbreviation", noSize)
abbrevExpression ops am _ e
= (call genExpression ops e, noSize)
--}}}
--{{{ specifications
cgenSpec :: GenOps -> A.Specification -> CGen () -> CGen ()
cgenSpec ops spec body
= do call introduceSpec ops spec
body
call removeSpec ops spec
-- | Generate the C type corresponding to a variable being declared.
-- It must be possible to use this in arrays.
cdeclareType :: GenOps -> A.Type -> CGen ()
cdeclareType _ (A.Chan _) = tell ["Channel *"]
cdeclareType ops t = call genType ops t
-- | Generate a declaration of a new variable.
cgenDeclaration :: GenOps -> A.Type -> A.Name -> CGen ()
cgenDeclaration ops (A.Chan _) n
= do tell ["Channel "]
genName n
tell [";\n"]
cgenDeclaration ops (A.Array ds t) n
= do call declareType ops t
tell [" "]
genName n
call genFlatArraySize ops ds
tell [";\n"]
call declareArraySizes ops ds n
cgenDeclaration ops t n
= do call declareType ops t
tell [" "]
genName n
tell [";\n"]
-- | Generate the size of the C array that an occam array of the given
-- dimensions maps to.
cgenFlatArraySize :: GenOps -> [A.Dimension] -> CGen ()
cgenFlatArraySize ops ds
= do tell ["["]
sequence $ intersperse (tell [" * "])
[case d of A.Dimension n -> tell [show n] | d <- ds]
tell ["]"]
-- | Generate the size of the _sizes C array for an occam array.
cgenArraySizesSize :: GenOps -> [A.Dimension] -> CGen ()
cgenArraySizesSize ops ds
= do tell ["["]
tell [show $ length ds]
tell ["]"]
-- | Declare an _sizes array for a variable.
cdeclareArraySizes :: GenOps -> [A.Dimension] -> A.Name -> CGen ()
cdeclareArraySizes ops ds name
= call genArraySize ops False (call genArraySizesLiteral ops ds) name
-- | Generate a C literal to initialise an _sizes array with, where all the
-- dimensions are fixed.
cgenArraySizesLiteral :: GenOps -> [A.Dimension] -> CGen ()
cgenArraySizesLiteral ops ds
= seqComma dims
where
dims :: [CGen ()]
dims = [case d of
A.Dimension n -> tell [show n]
_ -> die "unknown dimension in array type"
| d <- ds]
-- | Initialise an item being declared.
cdeclareInit :: GenOps -> Meta -> A.Type -> A.Variable -> Maybe (CGen ())
cdeclareInit ops _ (A.Chan _) var
= Just $ do tell ["ChanInit ("]
call genVariable ops var
tell [");\n"]
cdeclareInit ops m t@(A.Array ds t') var
= Just $ do init <- case t' of
A.Chan _ ->
do A.Specification _ store _ <- makeNonceVariable "storage" m (A.Array ds A.Int) A.VariableName A.Original
let storeV = A.Variable m store
tell ["Channel "]
genName store
call genFlatArraySize ops ds
tell [";\n"]
call declareArraySizes ops ds store
return (\sub -> Just $ do call genVariable ops (sub var)
tell [" = &"]
call genVariable ops (sub storeV)
tell [";\n"]
doMaybe $ call declareInit ops m t' (sub var))
_ -> return (\sub -> call declareInit ops m t' (sub var))
call genOverArray ops m var init
cdeclareInit ops m rt@(A.Record _) var
= Just $ do fs <- recordFields m rt
sequence_ [initField t (A.SubscriptedVariable m (A.SubscriptField m n) var)
| (n, t) <- fs]
where
initField :: A.Type -> A.Variable -> CGen ()
-- An array as a record field; we must initialise the sizes.
initField t@(A.Array ds _) v
= do sequence_ [do call genVariable ops v
tell ["_sizes[", show i, "] = ", show n, ";\n"]
| (i, A.Dimension n) <- zip [0..(length ds - 1)] ds]
doMaybe $ call declareInit ops m t v
initField t v = doMaybe $ call declareInit ops m t v
cdeclareInit _ _ _ _ = Nothing
-- | Free a declared item that's going out of scope.
cdeclareFree :: GenOps -> Meta -> A.Type -> A.Variable -> Maybe (CGen ())
cdeclareFree _ _ _ _ = Nothing
{-
Original Abbrev
INT x IS y: int *x = &y; int *x = &(*y);
[]INT xs IS ys: int *xs = ys; int *xs = ys;
const int xs_sizes[] = ys_sizes;
CHAN OF INT c IS d: Channel *c = d;
[10]CHAN OF INT cs: Channel tmp[10];
Channel *cs[10];
for (...) { cs[i] = &tmp[i]; ChanInit(cs[i]); }
const int cs_sizes[] = { 10 };
[]CHAN OF INT ds IS cs: Channel **ds = cs;
const int *ds_sizes = cs_sizes;
-}
cintroduceSpec :: GenOps -> A.Specification -> CGen ()
cintroduceSpec ops (A.Specification m n (A.Declaration _ t))
= do call genDeclaration ops t n
case call declareInit ops m t (A.Variable m n) of
Just p -> p
Nothing -> return ()
cintroduceSpec ops (A.Specification _ n (A.Is _ am t v))
= do let (rhs, rhsSizes) = abbrevVariable ops am t v
call genDecl ops am t n
tell [" = "]
rhs
tell [";\n"]
rhsSizes n
cintroduceSpec ops (A.Specification _ n (A.IsExpr _ am t e))
= do let (rhs, rhsSizes) = abbrevExpression ops am t e
case (am, t, e) of
(A.ValAbbrev, A.Array _ ts, A.Literal _ _ _) ->
-- For "VAL []T a IS [vs]:", we have to use [] rather than * in the
-- declaration, since you can't say "int *foo = {vs};" in C.
do tell ["const "]
call genType ops ts
tell [" "]
genName n
tell ["[] = "]
rhs
tell [";\n"]
rhsSizes n
(A.ValAbbrev, A.Record _, A.Literal _ _ _) ->
-- Record literals are even trickier, because there's no way of
-- directly writing a struct literal in C that you can use -> on.
do tmp <- makeNonce "record_literal"
tell ["const "]
call genType ops t
tell [" ", tmp, " = "]
rhs
tell [";\n"]
call genDecl ops am t n
tell [" = &", tmp, ";\n"]
rhsSizes n
_ ->
do call genDecl ops am t n
tell [" = "]
rhs
tell [";\n"]
rhsSizes n
cintroduceSpec ops (A.Specification _ n (A.IsChannelArray _ t cs))
= do tell ["Channel *"]
genName n
tell ["[] = {"]
seqComma (map (call genVariable ops) cs)
tell ["};\n"]
call declareArraySizes ops [A.Dimension $ length cs] n
cintroduceSpec _ (A.Specification _ _ (A.DataType _ _)) = return ()
cintroduceSpec ops (A.Specification _ n (A.RecordType _ b fs))
= do tell ["typedef struct {\n"]
sequence_ [case t of
-- Arrays need the corresponding _sizes array.
A.Array ds t' ->
do call genType ops t'
tell [" "]
genName n
call genFlatArraySize ops ds
tell [";\n"]
tell ["int "]
genName n
tell ["_sizes"]
call genArraySizesSize ops ds
tell [";\n"]
_ -> call genDeclaration ops t n
| (n, t) <- fs]
tell ["} "]
when b $ tell ["occam_struct_packed "]
genName n
tell [";\n"]
cintroduceSpec _ (A.Specification _ n (A.Protocol _ _)) = return ()
cintroduceSpec ops (A.Specification _ n (A.ProtocolCase _ ts))
= do tell ["typedef enum {\n"]
seqComma [genName tag >> tell ["_"] >> genName n | (tag, _) <- ts]
-- You aren't allowed to have an empty enum.
when (ts == []) $
tell ["empty_protocol_"] >> genName n
tell ["\n"]
tell ["} "]
genName n
tell [";\n"]
cintroduceSpec ops (A.Specification _ n (A.Proc _ sm fs p))
= do call genSpecMode ops sm
tell ["void "]
genName n
tell [" (Process *me"]
call genFormals ops fs
tell [") {\n"]
call genProcess ops p
tell ["}\n"]
cintroduceSpec ops (A.Specification _ n (A.Retypes m am t v))
= do origT <- typeOfVariable v
let (rhs, _) = abbrevVariable ops A.Abbrev origT v
call genDecl ops am t n
tell [" = "]
-- For scalar types that are VAL abbreviations (e.g. VAL INT64),
-- we need to dereference the pointer that abbrevVariable gives us.
let deref = case (am, t) of
(_, A.Array _ _) -> False
(_, A.Chan _) -> False
(A.ValAbbrev, _) -> True
_ -> False
when deref $ tell ["*"]
tell ["("]
call genDeclType ops am t
when deref $ tell [" *"]
tell [") "]
rhs
tell [";\n"]
call genRetypeSizes ops m am t n origT v
--cintroduceSpec ops (A.Specification _ n (A.RetypesExpr _ am t e))
cintroduceSpec ops n = call genMissing ops $ "introduceSpec " ++ show n
cremoveSpec :: GenOps -> A.Specification -> CGen ()
cremoveSpec ops (A.Specification m n (A.Declaration _ t))
= case t of
A.Array _ t' -> call genOverArray ops m var (\sub -> call declareFree ops m t' (sub var))
_ ->
do case call declareFree ops m t var of
Just p -> p
Nothing -> return ()
where
var = A.Variable m n
cremoveSpec _ _ = return ()
cgenSpecMode :: GenOps -> A.SpecMode -> CGen ()
cgenSpecMode _ A.PlainSpec = return ()
cgenSpecMode _ A.InlineSpec = tell ["inline "]
--}}}
--{{{ actuals/formals
prefixComma :: [CGen ()] -> CGen ()
prefixComma cs = sequence_ [genComma >> c | c <- cs]
cgenActuals :: GenOps -> [A.Actual] -> CGen ()
cgenActuals ops as = prefixComma (map (call genActual ops) as)
cgenActual :: GenOps -> A.Actual -> CGen ()
cgenActual ops actual
= case actual of
A.ActualExpression t e ->
case (t, e) of
(A.Array _ _, A.ExprVariable _ v) ->
do call genVariable ops v
tell [", "]
call genVariable ops v
tell ["_sizes"]
_ -> call genExpression ops e
A.ActualVariable am t v ->
case t of
A.Array _ _ ->
do call genVariable ops v
tell [", "]
call genVariable ops v
tell ["_sizes"]
_ -> fst $ abbrevVariable ops am t v
numCArgs :: [A.Actual] -> Int
numCArgs [] = 0
numCArgs (A.ActualVariable _ (A.Array _ _) _:fs) = 2 + numCArgs fs
numCArgs (A.ActualExpression (A.Array _ _) _:fs) = 2 + numCArgs fs
numCArgs (_:fs) = 1 + numCArgs fs
cgenFormals :: GenOps -> [A.Formal] -> CGen ()
cgenFormals ops fs = prefixComma (map (call genFormal ops) fs)
cgenFormal :: GenOps -> A.Formal -> CGen ()
cgenFormal ops (A.Formal am t n)
= case t of
A.Array _ t' ->
do call genDecl ops am t n
tell [", const int *"]
genName n
tell ["_sizes"]
_ -> call genDecl ops am t n
--}}}
--{{{ processes
cgenProcess :: GenOps -> A.Process -> CGen ()
cgenProcess ops p = case p of
A.Assign m vs es -> call genAssign ops m vs es
A.Input m c im -> call genInput ops c im
A.Output m c ois -> call genOutput ops c ois
A.OutputCase m c t ois -> call genOutputCase ops c t ois
A.Skip m -> tell ["/* skip */\n"]
A.Stop m -> call genStop ops m "STOP process"
A.Main m -> tell ["/* main */\n"]
A.Seq _ s -> call genSeq ops s
A.If m s -> call genIf ops m s
A.Case m e s -> call genCase ops m e s
A.While m e p -> call genWhile ops e p
A.Par m pm s -> call genPar ops pm s
-- PROCESSOR does nothing special.
A.Processor m e p -> call genProcess ops p
A.Alt m b s -> call genAlt ops b s
A.ProcCall m n as -> call genProcCall ops n as
A.IntrinsicProcCall m s as -> call genIntrinsicProc ops m s as
--{{{ assignment
cgenAssign :: GenOps -> Meta -> [A.Variable] -> A.ExpressionList -> CGen ()
cgenAssign ops m [v] el
= case el of
A.FunctionCallList _ _ _ -> call genMissing ops "function call"
A.ExpressionList _ [e] ->
do t <- typeOfVariable v
doAssign t v e
where
doAssign :: A.Type -> A.Variable -> A.Expression -> CGen ()
doAssign t@(A.Array _ subT) toV (A.ExprVariable m fromV)
= call genOverArray ops m fromV (\sub -> Just $ doAssign subT (sub toV) (A.ExprVariable m (sub fromV)))
doAssign rt@(A.Record _) toV (A.ExprVariable m fromV)
= do fs <- recordFields m rt
sequence_ [let subV v = A.SubscriptedVariable m (A.SubscriptField m n) v
in doAssign t (subV toV) (A.ExprVariable m $ subV fromV)
| (n, t) <- fs]
doAssign t v e
= case call getScalarType ops t of
Just _ ->
do call genVariable ops v
tell [" = "]
call genExpression ops e
tell [";\n"]
Nothing -> call genMissing ops $ "assignment of type " ++ show t
--}}}
--{{{ input
cgenInput :: GenOps -> A.Variable -> A.InputMode -> CGen ()
cgenInput ops c im
= do case im of
A.InputTimerRead m (A.InVariable m' v) -> call genTimerRead ops c v
A.InputTimerAfter m e -> call genTimerWait ops e
A.InputSimple m is -> sequence_ $ map (call genInputItem ops c) is
A.InputCase m s -> call genInputCase ops m c s
_ -> call genMissing ops $ "genInput " ++ show im
cgenInputCase :: GenOps -> Meta -> A.Variable -> A.Structured -> CGen ()
cgenInputCase ops m c s
= do t <- typeOfVariable c
let proto = case t of A.Chan (A.UserProtocol n) -> n
tag <- makeNonce "case_tag"
genName proto
tell [" ", tag, ";\n"]
tell ["ChanInInt ("]
call genVariable ops c
tell [", &", tag, ");\n"]
tell ["switch (", tag, ") {\n"]
genInputCaseBody proto c (return ()) s
tell ["default:\n"]
call genStop ops m "unhandled variant in CASE input"
tell ["}\n"]
where
-- This handles specs in a slightly odd way, because we can't insert specs into
-- the body of a switch.
genInputCaseBody :: A.Name -> A.Variable -> CGen () -> A.Structured -> CGen ()
genInputCaseBody proto c coll (A.Spec _ spec s)
= genInputCaseBody proto c (call genSpec ops spec coll) s
genInputCaseBody proto c coll (A.OnlyV _ (A.Variant _ n iis p))
= do tell ["case "]
genName n
tell ["_"]
genName proto
tell [": {\n"]
coll
sequence_ $ map (call genInputItem ops c) iis
call genProcess ops p
tell ["break;\n"]
tell ["}\n"]
genInputCaseBody proto c coll (A.Several _ ss)
= sequence_ $ map (genInputCaseBody proto c coll) ss
cgenTimerRead :: GenOps -> A.Variable -> A.Variable -> CGen ()
cgenTimerRead ops c v
= do tell ["ProcTime (&"]
call genVariable ops c
tell [");\n"]
call genVariable ops v
tell [" = "]
call genVariable ops c
tell [";\n"]
cgenTimerWait :: GenOps -> A.Expression -> CGen ()
cgenTimerWait ops e
= do tell ["ProcTimeAfter ("]
call genExpression ops e
tell [");\n"]
--}}}
--{{{ output
cgenOutput :: GenOps -> A.Variable -> [A.OutputItem] -> CGen ()
cgenOutput ops c ois = sequence_ $ map (call genOutputItem ops c) ois
cgenOutputCase :: GenOps -> A.Variable -> A.Name -> [A.OutputItem] -> CGen ()
cgenOutputCase ops c tag ois
= do t <- typeOfVariable c
let proto = case t of A.Chan (A.UserProtocol n) -> n
tell ["ChanOutInt ("]
call genVariable ops c
tell [", "]
genName tag
tell ["_"]
genName proto
tell [");\n"]
call genOutput ops c ois
--}}}
--{{{ stop
cgenStop :: GenOps -> Meta -> String -> CGen ()
cgenStop ops m s
= do tell ["occam_stop ("]
genMeta m
tell [", \"", s, "\");\n"]
--}}}
--{{{ seq
cgenSeq :: GenOps -> A.Structured -> CGen ()
cgenSeq ops s = call genStructured ops s doP
where
doP (A.OnlyP _ p) = call genProcess ops p
--}}}
--{{{ if
cgenIf :: GenOps -> Meta -> A.Structured -> CGen ()
cgenIf ops m s
= do label <- makeNonce "if_end"
genIfBody label s
call genStop ops m "no choice matched in IF process"
tell [label, ":\n;\n"]
where
genIfBody :: String -> A.Structured -> CGen ()
genIfBody label s = call genStructured ops s doC
where
doC (A.OnlyC m (A.Choice m' e p))
= do tell ["if ("]
call genExpression ops e
tell [") {\n"]
call genProcess ops p
tell ["goto ", label, ";\n"]
tell ["}\n"]
--}}}
--{{{ case
cgenCase :: GenOps -> Meta -> A.Expression -> A.Structured -> CGen ()
cgenCase ops m e s
= do tell ["switch ("]
call genExpression ops e
tell [") {\n"]
seenDefault <- genCaseBody (return ()) s
when (not seenDefault) $
do tell ["default:\n"]
call genStop ops m "no option matched in CASE process"
tell ["}\n"]
where
-- FIXME -- can this be made common with genInputCaseBody above?
genCaseBody :: CGen () -> A.Structured -> CGen Bool
genCaseBody coll (A.Spec _ spec s)
= genCaseBody (call genSpec ops spec coll) s
genCaseBody coll (A.OnlyO _ (A.Option _ es p))
= do sequence_ [tell ["case "] >> call genExpression ops e >> tell [":\n"] | e <- es]
tell ["{\n"]
coll
call genProcess ops p
tell ["break;\n"]
tell ["}\n"]
return False
genCaseBody coll (A.OnlyO _ (A.Else _ p))
= do tell ["default:\n"]
tell ["{\n"]
coll
call genProcess ops p
tell ["}\n"]
return True
genCaseBody coll (A.Several _ ss)
= do seens <- mapM (genCaseBody coll) ss
return $ or seens
--}}}
--{{{ while
cgenWhile :: GenOps -> A.Expression -> A.Process -> CGen ()
cgenWhile ops e p
= do tell ["while ("]
call genExpression ops e
tell [") {\n"]
call genProcess ops p
tell ["}\n"]
--}}}
--{{{ par
cgenPar :: GenOps -> A.ParMode -> A.Structured -> CGen ()
cgenPar ops pm s
= do (size, _, _) <- constantFold $ addOne (sizeOfStructured s)
pids <- makeNonce "pids"
pris <- makeNonce "priorities"
index <- makeNonce "i"
when (pm == A.PriPar) $
do tell ["int ", pris, "["]
call genExpression ops size
tell ["];\n"]
tell ["Process *", pids, "["]
call genExpression ops size
tell ["];\n"]
tell ["int ", index, " = 0;\n"]
call genStructured ops s (createP pids pris index)
tell [pids, "[", index, "] = NULL;\n"]
case pm of
A.PriPar -> tell ["ProcPriParList (", pids, ", ", pris, ");\n"]
_ -> tell ["ProcParList (", pids, ");\n"]
tell [index, " = 0;\n"]
call genStructured ops s (freeP pids index)
where
createP pids pris index (A.OnlyP _ p)
= do when (pm == A.PriPar) $
tell [pris, "[", index, "] = ", index, ";\n"]
tell [pids, "[", index, "++] = "]
genProcAlloc p
tell [";\n"]
freeP pids index (A.OnlyP _ _)
= do tell ["ProcAllocClean (", pids, "[", index, "++]);\n"]
genProcAlloc :: A.Process -> CGen ()
genProcAlloc (A.ProcCall m n as)
= do tell ["ProcAlloc ("]
genName n
let stackSize = nameString n ++ "_stack_size"
addGeneratedDef $ "extern int " ++ stackSize ++ ";\n"
tell [", ", stackSize, ", ", show $ numCArgs as]
call genActuals ops as
tell [")"]
genProcAlloc p = call genMissing ops $ "genProcAlloc " ++ show p
--}}}
--{{{ alt
cgenAlt :: GenOps -> Bool -> A.Structured -> CGen ()
cgenAlt ops isPri s
= do tell ["AltStart ();\n"]
tell ["{\n"]
genAltEnable s
tell ["}\n"]
-- Like occ21, this is always a PRI ALT, so we can use it for both.
tell ["AltWait ();\n"]
id <- makeNonce "alt_id"
tell ["int ", id, " = 0;\n"]
tell ["{\n"]
genAltDisable id s
tell ["}\n"]
fired <- makeNonce "alt_fired"
tell ["int ", fired, " = AltEnd ();\n"]
tell [id, " = 0;\n"]
label <- makeNonce "alt_end"
tell ["{\n"]
genAltProcesses id fired label s
tell ["}\n"]
tell [label, ":\n;\n"]
where
genAltEnable :: A.Structured -> CGen ()
genAltEnable s = call genStructured ops s doA
where
doA (A.OnlyA _ alt)
= case alt of
A.Alternative _ c im _ -> doIn c im
A.AlternativeCond _ e c im _ -> withIf ops e $ doIn c im
A.AlternativeSkip _ e _ -> withIf ops e $ tell ["AltEnableSkip ();\n"]
doIn c im
= do case im of
A.InputTimerRead _ _ -> call genMissing ops "timer read in ALT"
A.InputTimerAfter _ time ->
do tell ["AltEnableTimer ("]
call genExpression ops time
tell [");\n"]
_ ->
do tell ["AltEnableChannel ("]
call genVariable ops c
tell [");\n"]
genAltDisable :: String -> A.Structured -> CGen ()
genAltDisable id s = call genStructured ops s doA
where
doA (A.OnlyA _ alt)
= case alt of
A.Alternative _ c im _ -> doIn c im
A.AlternativeCond _ e c im _ -> withIf ops e $ doIn c im
A.AlternativeSkip _ e _ -> withIf ops e $ tell ["AltDisableSkip (", id, "++);\n"]
doIn c im
= do case im of
A.InputTimerRead _ _ -> call genMissing ops "timer read in ALT"
A.InputTimerAfter _ time ->
do tell ["AltDisableTimer (", id, "++, "]
call genExpression ops time
tell [");\n"]
_ ->
do tell ["AltDisableChannel (", id, "++, "]
call genVariable ops c
tell [");\n"]
genAltProcesses :: String -> String -> String -> A.Structured -> CGen ()
genAltProcesses id fired label s = call genStructured ops s doA
where
doA (A.OnlyA _ alt)
= case alt of
A.Alternative _ c im p -> doIn c im p
A.AlternativeCond _ e c im p -> withIf ops e $ doIn c im p
A.AlternativeSkip _ e p -> withIf ops e $ doCheck (call genProcess ops p)
doIn c im p
= do case im of
A.InputTimerRead _ _ -> call genMissing ops "timer read in ALT"
A.InputTimerAfter _ _ -> doCheck (call genProcess ops p)
_ -> doCheck (call genInput ops c im >> call genProcess ops p)
doCheck body
= do tell ["if (", id, "++ == ", fired, ") {\n"]
body
tell ["goto ", label, ";\n"]
tell ["}\n"]
withIf :: GenOps -> A.Expression -> CGen () -> CGen ()
withIf ops cond body
= do tell ["if ("]
call genExpression ops cond
tell [") {\n"]
body
tell ["}\n"]
--}}}
--{{{ proc call
cgenProcCall :: GenOps -> A.Name -> [A.Actual] -> CGen ()
cgenProcCall ops n as
= do genName n
tell [" (me"]
call genActuals ops as
tell [");\n"]
--}}}
--{{{ intrinsic procs
cgenIntrinsicProc :: GenOps -> Meta -> String -> [A.Actual] -> CGen ()
cgenIntrinsicProc ops m "ASSERT" [A.ActualExpression A.Bool e] = call genAssert ops m e
cgenIntrinsicProc ops _ s _ = call genMissing ops $ "intrinsic PROC " ++ s
cgenAssert :: GenOps -> Meta -> A.Expression -> CGen ()
cgenAssert ops m e
= do tell ["if (!"]
call genExpression ops e
tell [") {\n"]
call genStop ops m "assertion failed"
tell ["}\n"]
--}}}
--}}}