tock-mirror/fco2/GenerateC.hs
2007-04-25 21:24:20 +00:00

1243 lines
42 KiB
Haskell

-- | Generate C code from the mangled AST.
module GenerateC where
import Data.List
import Data.Maybe
import Control.Monad.Writer
import Control.Monad.Error
import Control.Monad.State
import Numeric
import Text.Printf
import qualified AST as A
import Metadata
import ParseState
import Pass
import Errors
import TLP
import Types
--{{{ monad definition
type CGen = WriterT [String] PassM
instance Die CGen where
die = throwError
--}}}
--{{{ top-level
generateC :: A.Process -> PassM String
generateC ast
= do (a, w) <- runWriterT (genTopLevel ast)
return $ concat w
genTLPChannel :: TLPChannel -> CGen ()
genTLPChannel TLPIn = tell ["in"]
genTLPChannel TLPOut = tell ["out"]
genTLPChannel TLPError = tell ["err"]
genTopLevel :: A.Process -> CGen ()
genTopLevel p
= do tell ["#include <fco_support.h>\n"]
genProcess p
(name, chans) <- tlpInterface
tell ["void fco_main (Process *me, Channel *in, Channel *out, Channel *err) {\n"]
genName name
tell [" (me"]
sequence_ [tell [", "] >> genTLPChannel c | c <- chans]
tell [");\n"]
tell ["}\n"]
--}}}
--{{{ utilities
missing :: String -> CGen ()
missing s = tell ["\n#error Unimplemented: ", s, "\n"]
genComma :: CGen ()
genComma = tell [", "]
checkJust :: MonadError String m => Maybe t -> m t
checkJust (Just v) = return v
checkJust Nothing = throwError "checkJust failed"
type SubscripterFunction = A.Variable -> A.Variable
overArray :: A.Variable -> (SubscripterFunction -> Maybe (CGen ())) -> CGen ()
overArray var func
= do A.Array ds _ <- typeOfVariable var
let m = emptyMeta
specs <- sequence [makeNonceVariable "i" m A.Int A.VariableName A.Original | _ <- ds]
let indices = [A.Variable m n | A.Specification _ n _ <- specs]
let arg = (\var -> foldl (\v s -> A.SubscriptedVariable m s v) var [A.Subscript m $ A.ExprVariable m i | i <- indices])
case func arg of
Just p ->
do sequence_ [do tell ["for (int "]
genVariable i
tell [" = 0; "]
genVariable i
tell [" < "]
genVariable var
tell ["_sizes[", show v, "]; "]
genVariable i
tell ["++) {\n"]
| (v, i) <- zip [0..] indices]
p
sequence_ [tell ["}\n"] | _ <- indices]
Nothing -> return ()
-- | Generate code for one of the Structured types.
genStructured :: A.Structured -> (A.Structured -> CGen ()) -> CGen ()
genStructured (A.Rep _ rep s) def = genReplicator rep (genStructured s def)
genStructured (A.Spec _ spec s) def = genSpec spec (genStructured s def)
genStructured (A.Several _ ss) def = sequence_ [genStructured s def | s <- ss]
genStructured s def = def s
data InputType = ITTimerRead | ITTimerAfter | ITOther
inputType :: A.Variable -> A.InputMode -> CGen InputType
inputType c im
= do t <- typeOfVariable c
return $ case t of
A.Timer ->
case im of
A.InputSimple _ _ -> ITTimerRead
A.InputAfter _ _ -> ITTimerAfter
_ -> ITOther
--}}}
--{{{ metadata
genMeta :: Meta -> CGen ()
genMeta m = tell ["\"", show m, "\""]
--}}}
--{{{ names
genName :: A.Name -> CGen ()
genName n = tell [[if c == '.' then '_' else c | c <- A.nameName n]]
--}}}
--{{{ types
scalarType :: A.Type -> Maybe String
scalarType A.Bool = Just "bool"
-- FIXME: This probably isn't right; we might have to explicitly cast string literals...
scalarType A.Byte = Just "char"
scalarType A.Int = Just "int"
scalarType A.Int16 = Just "int16_t"
scalarType A.Int32 = Just "int32_t"
scalarType A.Int64 = Just "int64_t"
scalarType A.Real32 = Just "float"
scalarType A.Real64 = Just "double"
scalarType A.Timer = Just "Time"
scalarType _ = Nothing
genType :: A.Type -> CGen ()
genType (A.Array _ t)
= do genType t
tell ["*"]
genType (A.UserDataType n) = genName n
-- UserProtocol -- not used
genType (A.Chan t) = tell ["Channel *"]
-- Counted -- not used
-- Any -- not used
--genType (A.Port t) =
genType t
= case scalarType t of
Just s -> tell [s]
Nothing -> missing $ "genType " ++ show t
genBytesInType :: A.Type -> CGen ()
genBytesInType (A.Array ds t) = genBytesInDims ds >> genBytesInType t
where
genBytesInDims [] = return ()
genBytesInDims ((A.Dimension e):ds)
= genBytesInDims ds >> genExpression e >> tell [" * "]
genBytesInDims _ = missing "genBytesInType with empty dimension"
--bytesInType (A.UserDataType n)
genBytesInType t
= case scalarType t of
Just s -> tell ["sizeof (", s, ")"]
Nothing -> missing $ "genBytesInType " ++ show t
--}}}
--{{{ declarations
genDeclType :: A.AbbrevMode -> A.Type -> CGen ()
genDeclType am t
= do when (am == A.ValAbbrev) $ tell ["const "]
genType t
case t of
A.Array _ _ -> return ()
A.Chan _ -> return ()
A.UserDataType _ -> tell [" *"]
_ -> when (am == A.Abbrev) $ tell [" *"]
genDecl :: A.AbbrevMode -> A.Type -> A.Name -> CGen ()
genDecl am t n
= do genDeclType am t
tell [" "]
genName n
--}}}
--{{{ conversions
genConversion :: Meta -> A.ConversionMode -> A.Type -> A.Expression -> CGen ()
genConversion m A.DefaultConversion t e
= do tell ["(("]
genType t
tell [") "]
origT <- typeOfExpression e
if isSafeConversion origT t
then genExpression e
else do genTypeSymbol "range_check" origT
tell [" ("]
genTypeSymbol "mostneg" t
tell [", "]
genTypeSymbol "mostpos" t
tell [", "]
genExpression e
tell [", "]
genMeta m
tell [")"]
tell [")"]
genConversion m cm t e = missing $ "genConversion " ++ show cm
--}}}
--{{{ literals
genLiteral :: A.Literal -> CGen ()
genLiteral (A.Literal m t lr) = genLiteralRepr lr
genLiteral l = missing $ "genLiteral " ++ show l
genLiteralRepr :: A.LiteralRepr -> CGen ()
genLiteralRepr (A.RealLiteral m s) = tell [s]
genLiteralRepr (A.IntLiteral m s) = tell [s]
genLiteralRepr (A.HexLiteral m s) = tell ["0x", s]
genLiteralRepr (A.ByteLiteral m s) = tell ["'", convStringLiteral s, "'"]
genLiteralRepr (A.StringLiteral m s) = tell ["\"", convStringLiteral s, "\""]
genLiteralRepr (A.ArrayLiteral m es)
= do tell ["{"]
sequence_ $ intersperse genComma (map genExpression es)
tell ["}"]
hexToOct :: String -> String
hexToOct h = printf "%03o" ((fst $ head $ readHex h) :: Int)
convStringLiteral :: String -> String
convStringLiteral [] = []
convStringLiteral ('\\':s) = "\\\\" ++ convStringLiteral s
convStringLiteral ('*':'#':'0':'0':s) = "\\0" ++ convStringLiteral s
convStringLiteral ('*':'#':a:b:s) = "\\" ++ hexToOct [a, b] ++ convStringLiteral s
convStringLiteral ('*':c:s) = convStringStar c ++ convStringLiteral s
convStringLiteral (c:s) = c : convStringLiteral s
convStringStar :: Char -> String
convStringStar 'c' = "\\r"
convStringStar 'n' = "\\n"
convStringStar 't' = "\\t"
convStringStar 's' = " "
convStringStar c = [c]
--}}}
--{{{ variables
{-
The various types are generated like this:
================= Use =================
Original ValAbbrev Abbrev
--------------------------------------
INT x: int x; int x; int *x;
x x x *x
[10]INT xs: int xs[10]; int *xs; int *xs;
xs xs xs xs
xs[i] xs[i] xs[i] xs[i]
[20][10]INT xss: int xss[20*10]; int *xss; int *xss;
xss xss xss xss
xss[i] &xss[i*10] &xss[i*10] &xss[i*10] (where 10 = xss_sizes[1])
xss[i][j] xss[i*10+j] xss[i*10+j] xss[i*10+j]
[6][4][2]INT xsss: int xsss[6*4*2]; int *xsss;
xsss xsss (as left)
xsss[i] &xsss[i*4*2]
xsss[i][j] &xsss[i*4*2+j*2]
xsss[i][j][k] xsss[i*4*2+j*2+k]
MYREC r: MYREC r; MYREC *r; MYREC *r;
r &r r r
r[F] (&r)->F (r)->F (r)->F
[10]MYREC rs: MYREC rs[10]; MYREC *rs; MYREC *rs;
rs rs rs rs
rs[i] &rs[i] &rs[i] &rs[i]
rs[i][F] (&rs[i])->F (&rs[i])->F (&rs[i])->F
-- depending on what F is -- if it's another record...
CHAN OF INT c: Channel c; Channel *c;
c &c c
[10]CHAN OF INT cs: Channel **cs; Channel **cs;
cs cs cs
cs[i] cs[i] cs[i]
I suspect there's probably a nicer way of doing this, but as a translation of
the above table this isn't too horrible...
-}
genVariable :: A.Variable -> CGen ()
genVariable v
= do am <- abbrevModeOfVariable v
t <- typeOfVariable v
let isSub = case v of
A.Variable _ _ -> False
A.SubscriptedVariable _ _ _ -> True
let prefix = case (am, t) of
(_, A.Array _ _) -> ""
(A.Original, A.Chan _) -> if isSub then "" else "&"
(A.Abbrev, A.Chan _) -> ""
(A.Original, A.UserDataType _) -> "&"
(A.Abbrev, A.UserDataType _) -> ""
(A.Abbrev, _) -> "*"
_ -> ""
when (prefix /= "") $ tell ["(", prefix]
inner v
when (prefix /= "") $ tell [")"]
where
inner :: A.Variable -> CGen ()
inner (A.Variable _ n) = genName n
inner sv@(A.SubscriptedVariable _ (A.Subscript _ _) _)
= do let (es, v) = collectSubs sv
genVariable v
genArraySubscript v es
inner (A.SubscriptedVariable _ (A.SubscriptField m n) v)
= do genVariable v
tell ["->"]
genName n
inner (A.SubscriptedVariable m (A.SubscriptFromFor m' start _) v)
= inner (A.SubscriptedVariable m (A.Subscript m' start) v)
inner (A.SubscriptedVariable m (A.SubscriptFrom m' start) v)
= inner (A.SubscriptedVariable m (A.Subscript m' start) v)
inner (A.SubscriptedVariable m (A.SubscriptFor m' _) v)
= inner (A.SubscriptedVariable m (A.Subscript m' (makeConstant m' 0)) v)
-- | Collect all the plain subscripts on a variable, so we can combine them.
collectSubs :: A.Variable -> ([A.Expression], A.Variable)
collectSubs (A.SubscriptedVariable _ (A.Subscript _ e) v)
= (es' ++ [e], v')
where
(es', v') = collectSubs v
collectSubs v = ([], v)
genArraySubscript :: A.Variable -> [A.Expression] -> CGen ()
genArraySubscript v es
= do t <- typeOfVariable v
let numDims = case t of A.Array ds _ -> length ds
tell ["["]
sequence_ $ intersperse (tell [" + "]) $ genPlainSub v es [0..(numDims - 1)]
tell ["]"]
where
-- | Generate the individual offsets that need adding together to find the
-- right place in the array.
-- FIXME This is obviously not the best way to factor this, but I figure a
-- smart C compiler should be able to work it out...
genPlainSub :: A.Variable -> [A.Expression] -> [Int] -> [CGen ()]
genPlainSub _ [] _ = []
genPlainSub v (e:es) (sub:subs)
= gen : genPlainSub v es subs
where
gen = sequence_ $ intersperse (tell [" * "]) $ genSub : genChunks
genSub
= do tell ["occam_check_index ("]
genExpression e
tell [", "]
genVariable v
tell ["_sizes[", show sub, "], "]
genMeta (metaOfExpression e)
tell [")"]
genChunks = [genVariable v >> tell ["_sizes[", show i, "]"] | i <- subs]
--}}}
--{{{ expressions
genExpression :: A.Expression -> CGen ()
genExpression (A.Monadic m op e) = genMonadic m op e
genExpression (A.Dyadic m op e f) = genDyadic m op e f
genExpression (A.MostPos m t) = genTypeSymbol "mostpos" t
genExpression (A.MostNeg m t) = genTypeSymbol "mostneg" t
--genExpression (A.SizeType m t)
genExpression (A.SizeExpr m e)
= do genExpression e
tell ["_sizes[0]"]
genExpression (A.SizeVariable m v)
= do genVariable v
tell ["_sizes[0]"]
genExpression (A.Conversion m cm t e) = genConversion m cm t e
genExpression (A.ExprVariable m v) = genVariable v
genExpression (A.ExprLiteral m l) = genLiteral l
genExpression (A.True m) = tell ["true"]
genExpression (A.False m) = tell ["false"]
--genExpression (A.FunctionCall m n es)
--genExpression (A.SubscriptedExpr m s e)
--genExpression (A.BytesInExpr m e)
genExpression (A.BytesInType m t) = genBytesInType t
--genExpression (A.OffsetOf m t n)
genExpression t = missing $ "genExpression " ++ show t
genTypeSymbol :: String -> A.Type -> CGen ()
genTypeSymbol s t
= case scalarType t of
Just ct -> tell ["occam_", s, "_", ct]
Nothing -> missing $ "genTypeSymbol " ++ show t
--}}}
--{{{ operators
genSimpleMonadic :: String -> A.Expression -> CGen ()
genSimpleMonadic s e
= do tell ["(", s]
genExpression e
tell [")"]
genMonadic :: Meta -> A.MonadicOp -> A.Expression -> CGen ()
genMonadic _ A.MonadicSubtr e = genSimpleMonadic "-" e
genMonadic _ A.MonadicBitNot e = genSimpleMonadic "~" e
genMonadic _ A.MonadicNot e = genSimpleMonadic "!" e
genSimpleDyadic :: String -> A.Expression -> A.Expression -> CGen ()
genSimpleDyadic s e f
= do tell ["("]
genExpression e
tell [" ", s, " "]
genExpression f
tell [")"]
genFuncDyadic :: Meta -> String -> A.Expression -> A.Expression -> CGen ()
genFuncDyadic m s e f
= do t <- typeOfExpression e
genTypeSymbol s t
tell [" ("]
genExpression e
tell [", "]
genExpression f
tell [", "]
genMeta m
tell [")"]
genDyadic :: Meta -> A.DyadicOp -> A.Expression -> A.Expression -> CGen ()
genDyadic m A.Add e f = genFuncDyadic m "add" e f
genDyadic m A.Subtr e f = genFuncDyadic m "subtr" e f
genDyadic m A.Mul e f = genFuncDyadic m "mul" e f
genDyadic m A.Div e f = genFuncDyadic m "div" e f
genDyadic m A.Rem e f = genFuncDyadic m "rem" e f
genDyadic _ A.Plus e f = genSimpleDyadic "+" e f
genDyadic _ A.Minus e f = genSimpleDyadic "-" e f
genDyadic _ A.Times e f = genSimpleDyadic "*" e f
genDyadic _ A.LeftShift e f = genSimpleDyadic "<<" e f
genDyadic _ A.RightShift e f = genSimpleDyadic ">>" e f
genDyadic _ A.BitAnd e f = genSimpleDyadic "&" e f
genDyadic _ A.BitOr e f = genSimpleDyadic "|" e f
genDyadic _ A.BitXor e f = genSimpleDyadic "^" e f
genDyadic _ A.And e f = genSimpleDyadic "&&" e f
genDyadic _ A.Or e f = genSimpleDyadic "||" e f
genDyadic _ A.Eq e f = genSimpleDyadic "==" e f
genDyadic _ A.NotEq e f = genSimpleDyadic "!=" e f
genDyadic _ A.Less e f = genSimpleDyadic "<" e f
genDyadic _ A.More e f = genSimpleDyadic ">" e f
genDyadic _ A.LessEq e f = genSimpleDyadic "<=" e f
genDyadic _ A.MoreEq e f = genSimpleDyadic ">=" e f
--}}}
--{{{ input/output items
genInputItem :: A.Variable -> A.InputItem -> CGen ()
genInputItem c (A.InCounted m cv av)
= do genInputItem c (A.InVariable m cv)
t <- typeOfVariable av
tell ["ChanIn ("]
genVariable c
tell [", "]
fst $ abbrevVariable A.Abbrev t av
tell [", "]
subT <- subscriptType (A.Subscript m $ makeConstant m 0) t
genVariable cv
tell [" * "]
genBytesInType subT
tell [");\n"]
genInputItem c (A.InVariable m v)
= do t <- typeOfVariable v
let rhs = fst $ abbrevVariable A.Abbrev t v
case t of
A.Int ->
do tell ["ChanInInt ("]
genVariable c
tell [", "]
rhs
tell [");\n"]
_ ->
do tell ["ChanIn ("]
genVariable c
tell [", "]
rhs
tell [", "]
genBytesInType t
tell [");\n"]
genOutputItem :: A.Variable -> A.OutputItem -> CGen ()
genOutputItem c (A.OutCounted m ce ae)
= do genOutputItem c (A.OutExpression m ce)
t <- typeOfExpression ae
case ae of
A.ExprVariable m v ->
do tell ["ChanOut ("]
genVariable c
tell [", "]
fst $ abbrevVariable A.Abbrev t v
tell [", "]
subT <- subscriptType (A.Subscript m $ makeConstant m 0) t
genExpression ce
tell [" * "]
genBytesInType subT
tell [");\n"]
genOutputItem c (A.OutExpression m e)
= do t <- typeOfExpression e
case (t, e) of
(A.Int, _) ->
do tell ["ChanOutInt ("]
genVariable c
tell [", "]
genExpression e
tell [");\n"]
(_, A.ExprVariable _ v) ->
do tell ["ChanOut ("]
genVariable c
tell [", "]
fst $ abbrevVariable A.Abbrev t v
tell [", "]
genBytesInType t
tell [");\n"]
_ ->
do n <- makeNonce "output_item"
tell ["const "]
genType t
tell [" ", n, " = "]
genExpression e
tell [";\n"]
tell ["ChanOut ("]
genVariable c
tell [", &", n, ", "]
genBytesInType t
tell [");\n"]
--}}}
--{{{ replicators
genReplicator :: A.Replicator -> CGen () -> CGen ()
genReplicator rep body
= do tell ["for ("]
genReplicatorLoop rep
tell [") {\n"]
body
tell ["}\n"]
isZero :: A.Expression -> Bool
isZero (A.ExprLiteral _ (A.Literal _ A.Int (A.IntLiteral _ "0"))) = True
isZero _ = False
genReplicatorLoop :: A.Replicator -> CGen ()
genReplicatorLoop (A.For m index base count)
= if isZero base
then genSimpleReplicatorLoop index count
else genGeneralReplicatorLoop index base count
genSimpleReplicatorLoop :: A.Name -> A.Expression -> CGen ()
genSimpleReplicatorLoop index count
= do tell ["int "]
genName index
tell [" = 0; "]
genName index
tell [" < "]
genExpression count
tell ["; "]
genName index
tell ["++"]
genGeneralReplicatorLoop :: A.Name -> A.Expression -> A.Expression -> CGen ()
genGeneralReplicatorLoop index base count
= do counter <- makeNonce "replicator_count"
tell ["int ", counter, " = "]
genExpression count
tell [", "]
genName index
tell [" = "]
genExpression base
tell ["; ", counter, " > 0; ", counter, "--, "]
genName index
tell ["++"]
genReplicatorSize :: A.Replicator -> CGen ()
genReplicatorSize (A.For m n base count) = genExpression count
--}}}
--{{{ choice/alternatives/options/variants
--}}}
--{{{ structured
--}}}
--{{{ abbreviations
-- FIXME: This code is horrible, and I can't easily convince myself that it's correct.
genSlice :: A.Variable -> A.Variable -> A.Expression -> A.Expression -> [A.Dimension] -> (CGen (), A.Name -> CGen ())
genSlice v (A.Variable _ on) start count ds
= (tell ["&"] >> genVariable v,
genArraySize False
(do tell ["occam_check_slice ("]
genExpression start
tell [", "]
genExpression count
tell [", "]
genName on
tell ["_sizes[0], "]
genMeta (metaOfExpression count)
tell [")"]
sequence_ [do tell [", "]
genName on
tell ["_sizes[", show i, "]"]
| i <- [1..(length ds - 1)]]))
genArrayAbbrev :: A.Variable -> (CGen (), A.Name -> CGen ())
genArrayAbbrev v
= (tell ["&"] >> genVariable v, genAASize v 0)
where
genAASize (A.SubscriptedVariable _ (A.Subscript _ _) v) arg
= genAASize v (arg + 1)
genAASize (A.Variable _ on) arg
= genArraySize True
(tell ["&"] >> genName on >> tell ["_sizes[", show arg, "]"])
genArraySize :: Bool -> CGen () -> A.Name -> CGen ()
genArraySize isPtr size n
= if isPtr
then do tell ["const int *"]
genName n
tell ["_sizes = "]
size
tell [";\n"]
else do tell ["const int "]
genName n
tell ["_sizes[] = { "]
size
tell [" };\n"]
noSize :: A.Name -> CGen ()
noSize n = return ()
genVariableAM :: A.Variable -> A.AbbrevMode -> CGen ()
genVariableAM v am
= do when (am == A.Abbrev) $ tell ["&"]
genVariable v
-- | Generate the right-hand side of an abbreviation of a variable.
abbrevVariable :: A.AbbrevMode -> A.Type -> A.Variable -> (CGen (), A.Name -> CGen ())
abbrevVariable am (A.Array _ _) v@(A.SubscriptedVariable _ (A.Subscript _ _) _)
= genArrayAbbrev v
abbrevVariable am (A.Array ds _) v@(A.SubscriptedVariable _ (A.SubscriptFromFor _ start count) v')
= genSlice v v' start count ds
abbrevVariable am (A.Array ds _) v@(A.SubscriptedVariable m (A.SubscriptFrom _ start) v')
= genSlice v v' start (A.Dyadic m A.Minus (A.SizeExpr m (A.ExprVariable m v')) start) ds
abbrevVariable am (A.Array ds _) v@(A.SubscriptedVariable m (A.SubscriptFor _ count) v')
= genSlice v v' (makeConstant m 0) count ds
abbrevVariable am (A.Array _ _) v
= (genVariable v, genArraySize True (genVariable v >> tell ["_sizes"]))
abbrevVariable am (A.Chan _) v
= (genVariable v, noSize)
abbrevVariable am (A.UserDataType _) v
= (genVariable v, noSize)
abbrevVariable am t v
= (genVariableAM v am, noSize)
-- | Generate the right-hand side of an abbreviation of an expression.
abbrevExpression :: A.AbbrevMode -> A.Type -> A.Expression -> (CGen (), A.Name -> CGen ())
abbrevExpression am t@(A.Array _ _) e
= case e of
A.ExprVariable _ v -> abbrevVariable am t v
A.ExprLiteral _ l ->
case l of
A.Literal _ litT r -> (genExpression e, genTypeSize litT)
A.SubscriptedLiteral _ _ _ -> bad
_ -> bad
where
bad = (missing "array expression abbreviation", noSize)
genTypeSize :: A.Type -> (A.Name -> CGen ())
genTypeSize (A.Array ds _)
= genArraySize False $ sequence_ $ intersperse genComma [genExpression e | A.Dimension e <- ds]
abbrevExpression am _ e
= (genExpression e, noSize)
--}}}
--{{{ specifications
genSpec :: A.Specification -> CGen () -> CGen ()
genSpec spec body
= do introduceSpec spec
body
removeSpec spec
-- | Generate the C type corresponding to a variable being declared.
-- It must be possible to use this in arrays.
declareType :: A.Type -> CGen ()
declareType (A.Chan _) = tell ["Channel *"]
declareType t = genType t
genDimensions :: [A.Dimension] -> CGen ()
genDimensions ds
= do tell ["["]
sequence $ intersperse (tell [" * "])
[case d of A.Dimension e -> genExpression e | d <- ds]
tell ["]"]
genDeclaration :: A.Type -> A.Name -> CGen ()
genDeclaration (A.Chan _) n
= do tell ["Channel "]
genName n
tell [";\n"]
genDeclaration (A.Array ds t) n
= do declareType t
tell [" "]
genName n
genDimensions ds
tell [";\n"]
genDeclaration t n
= do declareType t
tell [" "]
genName n
tell [";\n"]
declareArraySizes :: [A.Dimension] -> CGen () -> CGen ()
declareArraySizes ds name
= do tell ["const int "]
name
tell ["_sizes[] = { "]
sequence_ $ intersperse genComma [genExpression e | (A.Dimension e) <- ds]
tell [" };\n"]
-- | Initialise an item being declared.
declareInit :: A.Type -> A.Variable -> Maybe (CGen ())
declareInit (A.Chan _) var
= Just $ do tell ["ChanInit ("]
genVariable var
tell [");\n"]
declareInit t@(A.Array ds t') var
= Just $ do init <- case t' of
A.Chan _ ->
do let m = emptyMeta
A.Specification _ store _ <- makeNonceVariable "storage" m (A.Array ds A.Int) A.VariableName A.Original
let storeV = A.Variable m store
tell ["Channel "]
genName store
genDimensions ds
tell [";\n"]
declareArraySizes ds (genName store)
return (\sub -> Just $ do genVariable (sub var)
tell [" = &"]
genVariable (sub storeV)
tell [";\n"]
fromJust $ declareInit t' (sub var))
_ -> return (\sub -> declareInit t' (sub var))
overArray var init
declareInit _ _ = Nothing
-- | Free a declared item that's going out of scope.
declareFree :: A.Type -> A.Variable -> Maybe (CGen ())
declareFree _ _ = Nothing
{-
Original Abbrev
INT x IS y: int *x = &y; int *x = &(*y);
[]INT xs IS ys: int *xs = ys; int *xs = ys;
const int xs_sizes[] = ys_sizes;
CHAN OF INT c IS d: Channel *c = d;
[10]CHAN OF INT cs: Channel tmp[10];
Channel *cs[10];
for (...) { cs[i] = &tmp[i]; ChanInit(cs[i]); }
const int cs_sizes[] = { 10 };
[]CHAN OF INT ds IS cs: Channel **ds = cs;
const int *ds_sizes = cs_sizes;
-}
introduceSpec :: A.Specification -> CGen ()
introduceSpec (A.Specification m n (A.Declaration _ t))
= do genDeclaration t n
case t of
A.Array ds _ -> declareArraySizes ds (genName n)
_ -> return ()
case declareInit t (A.Variable m n) of
Just p -> p
Nothing -> return ()
introduceSpec (A.Specification _ n (A.Is _ am t v))
= do let (rhs, rhsSizes) = abbrevVariable am t v
genDecl am t n
tell [" = "]
rhs
tell [";\n"]
rhsSizes n
introduceSpec (A.Specification _ n (A.IsExpr _ am t e))
= do let (rhs, rhsSizes) = abbrevExpression am t e
case (am, t, e) of
(A.ValAbbrev, A.Array _ ts, A.ExprLiteral _ _) ->
-- For "VAL []T a IS [vs]:", we have to use [] rather than * in the
-- declaration, since you can't say "int *foo = {vs};" in C.
do tell ["const "]
genType ts
tell [" "]
genName n
tell ["[]"]
_ -> genDecl am t n
tell [" = "]
rhs
tell [";\n"]
rhsSizes n
introduceSpec (A.Specification _ n (A.IsChannelArray _ t cs))
= do genDecl A.Abbrev t n
tell [" = {"]
sequence_ $ intersperse genComma (map genVariable cs)
tell ["};\n"]
--introduceSpec (A.Specification m n (A.DataType m t))
introduceSpec (A.Specification _ n (A.DataTypeRecord _ b fs))
= do tell ["typedef struct {\n"]
sequence_ [case t of
_ ->
do declareType t
tell [" "]
genName n
tell [";\n"]
| (n, t) <- fs]
tell ["} "]
when b $ tell ["occam_struct_packed "]
genName n
tell [";\n"]
introduceSpec (A.Specification _ n (A.Protocol _ _)) = return ()
introduceSpec (A.Specification _ n (A.ProtocolCase _ ts))
= do tell ["typedef enum {\n"]
sequence_ $ intersperse genComma [genName tag >> tell ["_"] >> genName n
| (tag, _) <- ts]
tell ["\n"]
tell ["} "]
genName n
tell [";\n"]
introduceSpec (A.Specification _ n (A.Proc _ fs p))
= do tell ["void "]
genName n
tell [" (Process *me"]
genFormals fs
tell [") {\n"]
genProcess p
tell ["}\n"]
introduceSpec (A.Specification _ n (A.Function _ _ _ _)) = missing "introduceSpec function"
--introduceSpec (A.Specification _ n (A.Retypes _ am t v))
--introduceSpec (A.Specification _ n (A.RetypesExpr _ am t e))
introduceSpec n = missing $ "introduceSpec " ++ show n
removeSpec :: A.Specification -> CGen ()
removeSpec (A.Specification m n (A.Declaration _ t))
= case t of
A.Array _ t' -> overArray var (\sub -> declareFree t' (sub var))
_ ->
do case declareFree t var of
Just p -> p
Nothing -> return ()
where
var = A.Variable m n
removeSpec _ = return ()
--}}}
--{{{ actuals/formals
prefixComma :: [CGen ()] -> CGen ()
prefixComma cs = sequence_ [genComma >> c | c <- cs]
genActuals :: [A.Actual] -> CGen ()
genActuals as = prefixComma (map genActual as)
genActual :: A.Actual -> CGen ()
genActual actual
= case actual of
A.ActualExpression t e ->
case (t, e) of
(A.Array _ _, A.ExprVariable _ v) ->
do genVariable v
tell [", "]
genVariable v
tell ["_sizes"]
_ -> genExpression e
A.ActualVariable am t v ->
case t of
A.Array _ _ ->
do genVariable v
tell [", "]
genVariable v
tell ["_sizes"]
_ -> fst $ abbrevVariable am t v
numCArgs :: [A.Actual] -> Int
numCArgs [] = 0
numCArgs (A.ActualVariable _ (A.Array _ _) _:fs) = 2 + numCArgs fs
numCArgs (A.ActualExpression (A.Array _ _) _:fs) = 2 + numCArgs fs
numCArgs (_:fs) = 1 + numCArgs fs
genFormals :: [A.Formal] -> CGen ()
genFormals fs = prefixComma (map genFormal fs)
genFormal :: A.Formal -> CGen ()
genFormal (A.Formal am t n)
= case t of
A.Array _ t' ->
do genDecl am t n
tell [", const int *"]
genName n
tell ["_sizes"]
_ -> genDecl am t n
--}}}
--{{{ par modes
--}}}
--{{{ processes
genProcess :: A.Process -> CGen ()
genProcess p = case p of
A.ProcSpec m s p -> genSpec s (genProcess p)
A.Assign m vs es -> genAssign vs es
A.Input m c im -> genInput c im
A.Output m c ois -> genOutput c ois
A.OutputCase m c t ois -> genOutputCase c t ois
A.Skip m -> tell ["/* skip */\n"]
A.Stop m -> genStop m "STOP process"
A.Main m -> tell ["/* main */\n"]
A.Seq m ps -> sequence_ $ map genProcess ps
A.SeqRep m r p -> genReplicator r (genProcess p)
A.If m s -> genIf m s
A.Case m e s -> genCase m e s
A.While m e p -> genWhile e p
A.Par m pm ps -> genPar pm ps
A.ParRep m pm r p -> genParRep pm r p
A.Processor m e p -> missing "PROCESSOR not supported"
A.Alt m b s -> genAlt b s
A.ProcCall m n as -> genProcCall n as
--{{{ assignment
genAssign :: [A.Variable] -> A.ExpressionList -> CGen ()
genAssign [v] el
= case el of
A.FunctionCallList m n es -> missing "function call"
A.ExpressionList m [e] ->
do t <- typeOfVariable v
doAssign t v e
where
doAssign :: A.Type -> A.Variable -> A.Expression -> CGen ()
doAssign t@(A.Array _ subT) toV (A.ExprVariable m fromV)
= overArray fromV (\sub -> Just $ doAssign subT (sub toV) (A.ExprVariable m (sub fromV)))
doAssign t v e
= case scalarType t of
Just _ ->
do genVariable v
tell [" = "]
genExpression e
tell [";\n"]
Nothing -> missing $ "assignment of type " ++ show t
--}}}
--{{{ input
genInput :: A.Variable -> A.InputMode -> CGen ()
genInput c im
= do t <- typeOfVariable c
case t of
A.Timer -> case im of
A.InputSimple m [A.InVariable m' v] -> genTimerRead c v
A.InputAfter m e -> genTimerWait e
_ -> case im of
A.InputSimple m is -> sequence_ $ map (genInputItem c) is
A.InputCase m s -> genInputCase m c s
_ -> missing $ "genInput " ++ show im
genInputCase :: Meta -> A.Variable -> A.Structured -> CGen ()
genInputCase m c s
= do t <- typeOfVariable c
let proto = case t of A.Chan (A.UserProtocol n) -> n
tag <- makeNonce "case_tag"
genName proto
tell [" ", tag, ";\n"]
tell ["ChanInInt ("]
genVariable c
tell [", &", tag, ");\n"]
tell ["switch (", tag, ") {\n"]
genInputCaseBody proto c (return ()) s
tell ["default:\n"]
genStop m "unhandled variant in CASE input"
tell ["}\n"]
-- This handles specs in a slightly odd way, because we can't insert specs into
-- the body of a switch.
genInputCaseBody :: A.Name -> A.Variable -> CGen () -> A.Structured -> CGen ()
genInputCaseBody proto c coll (A.Spec _ spec s)
= genInputCaseBody proto c (genSpec spec coll) s
genInputCaseBody proto c coll (A.OnlyV _ (A.Variant _ n iis p))
= do tell ["case "]
genName n
tell ["_"]
genName proto
tell [": {\n"]
coll
sequence_ $ map (genInputItem c) iis
genProcess p
tell ["break;\n"]
tell ["}\n"]
genInputCaseBody proto c coll (A.Several _ ss)
= sequence_ $ map (genInputCaseBody proto c coll) ss
genTimerRead :: A.Variable -> A.Variable -> CGen ()
genTimerRead c v
= do tell ["ProcTime (&"]
genVariable c
tell [");\n"]
genVariable v
tell [" = "]
genVariable c
tell [";\n"]
genTimerWait :: A.Expression -> CGen ()
genTimerWait e
= do tell ["ProcTimeAfter ("]
genExpression e
tell [");\n"]
--}}}
--{{{ output
genOutput :: A.Variable -> [A.OutputItem] -> CGen ()
genOutput c ois = sequence_ $ map (genOutputItem c) ois
genOutputCase :: A.Variable -> A.Name -> [A.OutputItem] -> CGen ()
genOutputCase c tag ois
= do t <- typeOfVariable c
let proto = case t of A.Chan (A.UserProtocol n) -> n
tell ["ChanOutInt ("]
genVariable c
tell [", "]
genName tag
tell ["_"]
genName proto
tell [");\n"]
genOutput c ois
--}}}
--{{{ stop
genStop :: Meta -> String -> CGen ()
genStop m s
= do tell ["occam_stop ("]
genMeta m
tell [", \"", s, "\");\n"]
--}}}
--{{{ if
genIf :: Meta -> A.Structured -> CGen ()
genIf m s
= do label <- makeNonce "if_end"
genIfBody label s
genStop m "no choice matched in IF process"
tell [label, ":\n;\n"]
genIfBody :: String -> A.Structured -> CGen ()
genIfBody label s = genStructured s doC
where
doC (A.OnlyC m (A.Choice m' e p))
= do tell ["if ("]
genExpression e
tell [") {\n"]
genProcess p
tell ["goto ", label, ";\n"]
tell ["}\n"]
--}}}
--{{{ case
genCase :: Meta -> A.Expression -> A.Structured -> CGen ()
genCase m e s
= do tell ["switch ("]
genExpression e
tell [") {\n"]
seenDefault <- genCaseBody (return ()) s
when (not seenDefault) $
do tell ["default:\n"]
genStop m "no option matched in CASE process"
tell ["}\n"]
-- FIXME -- can this be made common with genInputCaseBody above?
genCaseBody :: CGen () -> A.Structured -> CGen Bool
genCaseBody coll (A.Spec _ spec s)
= genCaseBody (genSpec spec coll) s
genCaseBody coll (A.OnlyO _ (A.Option _ es p))
= do sequence_ [tell ["case "] >> genExpression e >> tell [":\n"] | e <- es]
tell ["{\n"]
coll
genProcess p
tell ["break;\n"]
tell ["}\n"]
return False
genCaseBody coll (A.OnlyO _ (A.Else _ p))
= do tell ["default:\n"]
tell ["{\n"]
coll
genProcess p
tell ["}\n"]
return True
genCaseBody coll (A.Several _ ss)
= do seens <- mapM (genCaseBody coll) ss
return $ or seens
--}}}
--{{{ while
genWhile :: A.Expression -> A.Process -> CGen ()
genWhile e p
= do tell ["while ("]
genExpression e
tell [") {\n"]
genProcess p
tell ["}\n"]
--}}}
--{{{ par
genPar :: A.ParMode -> [A.Process] -> CGen ()
genPar pm ps
= do pids <- mapM (\_ -> makeNonce "pid") ps
sequence_ $ [do tell ["Process *", pid, " = "]
genProcAlloc p
tell [";\n"]
| (pid, p) <- (zip pids ps)]
case pm of
A.PlainPar ->
do tell ["ProcPar ("]
sequence_ $ [tell [pid, ", "] | pid <- pids]
tell ["NULL);\n"]
_ -> missing $ "genPar " ++ show pm
sequence_ $ [tell ["ProcAllocClean (", pid, ");\n"] | pid <- pids]
genParRep :: A.ParMode -> A.Replicator -> A.Process -> CGen ()
genParRep pm rep p
= do pids <- makeNonce "pids"
index <- makeNonce "i"
tell ["Process *", pids, "["]
genReplicatorSize rep
tell [" + 1];\n"]
tell ["int ", index, " = 0;\n"]
genReplicator rep $ do tell [pids, "[", index, "++] = "]
genProcAlloc p
tell [";\n"]
tell [pids, "[", index, "] = NULL;\n"]
tell ["ProcParList (", pids, ");\n"]
tell [index, " = 0;\n"]
genReplicator rep $ tell ["ProcAllocClean (", pids, "[", index, "++]);\n"]
genProcAlloc :: A.Process -> CGen ()
genProcAlloc (A.ProcCall m n as)
= do tell ["ProcAlloc ("]
genName n
-- FIXME stack size fixed here
let stackSize = 65536
tell [", ", show stackSize, ", ", show $ numCArgs as]
genActuals as
tell [")"]
--}}}
--{{{ alt
genAlt :: Bool -> A.Structured -> CGen ()
genAlt isPri s
= do tell ["AltStart ();\n"]
tell ["{\n"]
genAltEnable s
tell ["}\n"]
-- Like occ21, this is always a PRI ALT, so we can use it for both.
tell ["AltWait ();\n"]
id <- makeNonce "alt_id"
tell ["int ", id, " = 0;\n"]
tell ["{\n"]
genAltDisable id s
tell ["}\n"]
fired <- makeNonce "alt_fired"
tell ["int ", fired, " = AltEnd ();\n"]
tell [id, " = 0;\n"]
label <- makeNonce "alt_end"
tell ["{\n"]
genAltProcesses id fired label s
tell ["}\n"]
tell [label, ":\n;\n"]
withIf :: A.Expression -> CGen () -> CGen ()
withIf cond body
= do tell ["if ("]
genExpression cond
tell [") {\n"]
body
tell ["}\n"]
genAltEnable :: A.Structured -> CGen ()
genAltEnable s = genStructured s doA
where
doA (A.OnlyA _ alt)
= case alt of
A.Alternative _ c im _ -> doIn c im
A.AlternativeCond _ e c im _ -> withIf e $ doIn c im
A.AlternativeSkip _ e _ -> withIf e $ tell ["AltEnableSkip ();\n"]
doIn c im
= do t <- inputType c im
case t of
ITTimerRead -> missing "timer read in ALT"
ITTimerAfter ->
do let time = case im of A.InputAfter _ e -> e
tell ["AltEnableTimer ("]
genExpression time
tell [");\n"]
ITOther ->
do tell ["AltEnableChannel ("]
genVariable c
tell [");\n"]
genAltDisable :: String -> A.Structured -> CGen ()
genAltDisable id s = genStructured s doA
where
doA (A.OnlyA _ alt)
= case alt of
A.Alternative _ c im _ -> doIn c im
A.AlternativeCond _ e c im _ -> withIf e $ doIn c im
A.AlternativeSkip _ e _ -> withIf e $ tell ["AltDisableSkip (", id, "++);\n"]
doIn c im
= do t <- inputType c im
case t of
ITTimerRead -> missing "timer read in ALT"
ITTimerAfter ->
do let time = case im of A.InputAfter _ e -> e
tell ["AltDisableTimer (", id, "++, "]
genExpression time
tell [");\n"]
ITOther ->
do tell ["AltDisableChannel (", id, "++, "]
genVariable c
tell [");\n"]
genAltProcesses :: String -> String -> String -> A.Structured -> CGen ()
genAltProcesses id fired label s = genStructured s doA
where
doA (A.OnlyA _ alt)
= case alt of
A.Alternative _ c im p -> doIn c im p
A.AlternativeCond _ e c im p -> withIf e $ doIn c im p
A.AlternativeSkip _ e p -> withIf e $ doCheck (genProcess p)
doIn c im p
= do t <- inputType c im
case t of
ITTimerRead -> missing "timer read in ALT"
ITTimerAfter -> doCheck (genProcess p)
ITOther -> doCheck (genInput c im >> genProcess p)
doCheck body
= do tell ["if (", id, "++ == ", fired, ") {\n"]
body
tell ["goto ", label, ";\n"]
tell ["}\n"]
--}}}
--{{{ proc call
genProcCall :: A.Name -> [A.Actual] -> CGen ()
genProcCall n as
= do genName n
tell [" (me"]
genActuals as
tell [");\n"]
--}}}
--}}}