tock-mirror/common/EvalLiterals.hs

202 lines
6.8 KiB
Haskell

{-
Tock: a compiler for parallel languages
Copyright (C) 2007 University of Kent
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 2 of the License, or (at your
option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.
-}
-- | Evaluate simple literal expressions.
module EvalLiterals where
import Control.Monad.Error
import Control.Monad.Identity
import Control.Monad.State
import Data.Char
import Data.Generics
import Data.Int
import Data.Maybe
import Data.Word
import Numeric
import qualified AST as A
import CompState hiding (CSM) -- everything here is read-only
import Errors
import Metadata
import Traversal
import TypeSizes
type EvalM = ErrorT ErrorReport (StateT CompState Identity)
instance Die EvalM where
dieReport = throwError
-- | Evaluated values of various types.
data OccValue =
OccBool Bool
| OccByte Word8
| OccUInt16 Word16
| OccUInt32 Word32
| OccUInt64 Word64
| OccInt8 Int8
| OccInt16 Int16
| OccInt CIntReplacement
| OccInt32 Int32
| OccInt64 Int64
| OccReal32 Float
| OccReal64 Double
| OccArray [OccValue]
| OccRecord A.Name [OccValue]
deriving (Show, Eq, Typeable, Data)
-- | Is an expression a constant literal?
isConstant :: A.Expression -> Bool
isConstant (A.Literal _ _ (A.ArrayListLiteral _ aes))
= isConstantStruct aes
isConstant (A.Literal _ _ (A.RecordLiteral _ es))
= and $ map isConstant es
isConstant (A.Literal _ _ _) = True
isConstant (A.True _) = True
isConstant (A.False _) = True
isConstant _ = False
-- | Is an array literal element constant?
isConstantStruct :: A.Structured A.Expression -> Bool
isConstantStruct (A.Several _ ss) = and $ map isConstantStruct ss
isConstantStruct (A.Only _ e) = isConstant e
isConstantStruct (A.ProcThen {}) = False
isConstantStruct (A.Spec {}) = False
-- | Evaluate a byte literal.
evalByte :: (CSMR m, Die m) => Meta -> String -> m Char
evalByte m s
= do ps <- getCompState
case runEvaluator ps (evalByteLiteral m OccByte s) of
Left (m', err) ->
dieReport (m', "Cannot evaluate byte literal: " ++ err)
Right (OccByte ch) ->
return (chr $ fromIntegral ch)
-- | Run an evaluator operation.
runEvaluator :: CompState -> EvalM OccValue -> Either ErrorReport OccValue
runEvaluator ps func
= runIdentity (evalStateT (runErrorT func) ps)
-- | Evaluate a simple literal expression.
evalSimpleExpression :: A.Expression -> EvalM OccValue
evalSimpleExpression e@(A.Literal _ _ _) = evalSimpleLiteral e
evalSimpleExpression e = throwError (Just $ findMeta e, "Not a literal")
-- | Turn the result of one of the read* functions into an OccValue,
-- or throw an error if it didn't parse.
fromRead :: Meta -> (a -> OccValue) -> (String -> [(a, String)])
-> String -> EvalM OccValue
fromRead m cons reader s
= case reader s of
[(v, "")] -> return $ cons v
_ -> throwError (Just m, "Cannot parse literal: " ++ s)
-- | Evaluate a simple (non-array) literal.
evalSimpleLiteral :: A.Expression -> EvalM OccValue
evalSimpleLiteral (A.Literal m t lr)
= underlyingType m t >>= \t' -> case t' of
A.Infer -> defaults
A.Byte -> into OccByte
A.UInt16 -> into OccUInt16
A.UInt32 -> into OccUInt32
A.UInt64 -> into OccUInt64
A.Int8 -> into OccInt8
A.Int16 -> into OccInt16
A.Int -> into OccInt
A.Int32 -> into OccInt32
A.Int64 -> into OccInt64
A.Real32 -> intoF OccReal32
A.Real64 -> intoF OccReal64
_ -> bad
where
defaults :: EvalM OccValue
defaults
= case lr of
A.ByteLiteral _ s -> evalByteLiteral m OccByte s
A.IntLiteral _ s -> fromRead m OccInt (readSigned readDec) s
A.HexLiteral _ s -> fromRead m OccInt readHex s
A.RealLiteral _ s -> fromRead m OccReal32 readFloat' s
_ -> bad
into :: (Num t, Real t) => (t -> OccValue) -> EvalM OccValue
into cons
= case lr of
A.ByteLiteral _ s -> evalByteLiteral m cons s
A.IntLiteral _ s -> fromRead m cons (readSigned readDec) s
A.HexLiteral _ s -> fromRead m cons readHex s
_ -> bad
intoF :: RealFrac t => (t -> OccValue) -> EvalM OccValue
intoF cons
= case lr of
A.ByteLiteral _ s -> evalByteLiteral m cons s
A.IntLiteral _ s -> fromRead m cons (readSigned readDec) s
A.HexLiteral _ s -> fromRead m cons readHex s
A.RealLiteral _ s -> fromRead m cons readFloat' s
_ -> bad
-- readFloat only handles unsigned values, so we need to look out for the negation
-- ourselves:
readFloat' :: RealFrac a => ReadS a
readFloat' [] = []
readFloat' ('-':rest) = [(negate x, s) | (x, s) <- readFloat rest]
readFloat' s = readFloat s
bad :: EvalM OccValue
bad = throwError (Just m, "Cannot evaluate literal")
m = findMeta lr
-- | Evaluate a byte literal.
evalByteLiteral :: Num t => Meta -> (t -> OccValue) -> String -> EvalM OccValue
evalByteLiteral m cons ('*':'#':hex)
= do OccInt n <- fromRead m OccInt readHex hex
return $ cons (fromIntegral n)
evalByteLiteral _ cons ['*', ch]
= return $ cons (fromIntegral $ ord $ star ch)
where
star :: Char -> Char
star 'c' = '\r'
star 'n' = '\n'
star 't' = '\t'
star 's' = ' '
star c = c
evalByteLiteral _ cons [ch]
= return $ cons (fromIntegral $ ord ch)
evalByteLiteral m _ _ = throwError (Just m, "Bad BYTE literal")
-- | Resolve a datatype into its underlying type -- i.e. if it's a named data
-- type, then return the underlying real type. This will recurse.
underlyingType :: forall m. (CSMR m, Die m) => Meta -> A.Type -> m A.Type
underlyingType m = applyTopDownM (resolveUserType m)
-- After resolving a user type, we have to recurse
-- on the resulting type, so we must use a top-down transformation.
-- | Like underlyingType, but only do the "outer layer": if you give this a
-- user type that's an array of user types, then you'll get back an array of
-- user types.
resolveUserType :: (CSMR m, Die m) => Meta -> A.Type -> m A.Type
resolveUserType m (A.UserDataType n)
= do st <- specTypeOfName n
case st of
A.DataType _ t -> resolveUserType m t
_ -> dieP m $ "Not a type name: " ++ show n
resolveUserType _ t = return t