202 lines
6.8 KiB
Haskell
202 lines
6.8 KiB
Haskell
{-
|
|
Tock: a compiler for parallel languages
|
|
Copyright (C) 2007 University of Kent
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation, either version 2 of the License, or (at your
|
|
option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
-}
|
|
|
|
-- | Evaluate simple literal expressions.
|
|
module EvalLiterals where
|
|
|
|
import Control.Monad.Error
|
|
import Control.Monad.Identity
|
|
import Control.Monad.State
|
|
import Data.Char
|
|
import Data.Generics
|
|
import Data.Int
|
|
import Data.Maybe
|
|
import Data.Word
|
|
import Numeric
|
|
|
|
import qualified AST as A
|
|
import CompState hiding (CSM) -- everything here is read-only
|
|
import Errors
|
|
import Metadata
|
|
import Traversal
|
|
import TypeSizes
|
|
|
|
type EvalM = ErrorT ErrorReport (StateT CompState Identity)
|
|
|
|
instance Die EvalM where
|
|
dieReport = throwError
|
|
|
|
-- | Evaluated values of various types.
|
|
data OccValue =
|
|
OccBool Bool
|
|
| OccByte Word8
|
|
| OccUInt16 Word16
|
|
| OccUInt32 Word32
|
|
| OccUInt64 Word64
|
|
| OccInt8 Int8
|
|
| OccInt16 Int16
|
|
| OccInt CIntReplacement
|
|
| OccInt32 Int32
|
|
| OccInt64 Int64
|
|
| OccReal32 Float
|
|
| OccReal64 Double
|
|
| OccArray [OccValue]
|
|
| OccRecord A.Name [OccValue]
|
|
deriving (Show, Eq, Typeable, Data)
|
|
|
|
-- | Is an expression a constant literal?
|
|
isConstant :: A.Expression -> Bool
|
|
isConstant (A.Literal _ _ (A.ArrayListLiteral _ aes))
|
|
= isConstantStruct aes
|
|
isConstant (A.Literal _ _ (A.RecordLiteral _ es))
|
|
= and $ map isConstant es
|
|
isConstant (A.Literal _ _ _) = True
|
|
isConstant (A.True _) = True
|
|
isConstant (A.False _) = True
|
|
isConstant _ = False
|
|
|
|
-- | Is an array literal element constant?
|
|
isConstantStruct :: A.Structured A.Expression -> Bool
|
|
isConstantStruct (A.Several _ ss) = and $ map isConstantStruct ss
|
|
isConstantStruct (A.Only _ e) = isConstant e
|
|
isConstantStruct (A.ProcThen {}) = False
|
|
isConstantStruct (A.Spec {}) = False
|
|
|
|
-- | Evaluate a byte literal.
|
|
evalByte :: (CSMR m, Die m) => Meta -> String -> m Char
|
|
evalByte m s
|
|
= do ps <- getCompState
|
|
case runEvaluator ps (evalByteLiteral m OccByte s) of
|
|
Left (m', err) ->
|
|
dieReport (m', "Cannot evaluate byte literal: " ++ err)
|
|
Right (OccByte ch) ->
|
|
return (chr $ fromIntegral ch)
|
|
|
|
-- | Run an evaluator operation.
|
|
runEvaluator :: CompState -> EvalM OccValue -> Either ErrorReport OccValue
|
|
runEvaluator ps func
|
|
= runIdentity (evalStateT (runErrorT func) ps)
|
|
|
|
-- | Evaluate a simple literal expression.
|
|
evalSimpleExpression :: A.Expression -> EvalM OccValue
|
|
evalSimpleExpression e@(A.Literal _ _ _) = evalSimpleLiteral e
|
|
evalSimpleExpression e = throwError (Just $ findMeta e, "Not a literal")
|
|
|
|
-- | Turn the result of one of the read* functions into an OccValue,
|
|
-- or throw an error if it didn't parse.
|
|
fromRead :: Meta -> (a -> OccValue) -> (String -> [(a, String)])
|
|
-> String -> EvalM OccValue
|
|
fromRead m cons reader s
|
|
= case reader s of
|
|
[(v, "")] -> return $ cons v
|
|
_ -> throwError (Just m, "Cannot parse literal: " ++ s)
|
|
|
|
-- | Evaluate a simple (non-array) literal.
|
|
evalSimpleLiteral :: A.Expression -> EvalM OccValue
|
|
evalSimpleLiteral (A.Literal m t lr)
|
|
= underlyingType m t >>= \t' -> case t' of
|
|
A.Infer -> defaults
|
|
A.Byte -> into OccByte
|
|
A.UInt16 -> into OccUInt16
|
|
A.UInt32 -> into OccUInt32
|
|
A.UInt64 -> into OccUInt64
|
|
A.Int8 -> into OccInt8
|
|
A.Int16 -> into OccInt16
|
|
A.Int -> into OccInt
|
|
A.Int32 -> into OccInt32
|
|
A.Int64 -> into OccInt64
|
|
A.Real32 -> intoF OccReal32
|
|
A.Real64 -> intoF OccReal64
|
|
_ -> bad
|
|
where
|
|
defaults :: EvalM OccValue
|
|
defaults
|
|
= case lr of
|
|
A.ByteLiteral _ s -> evalByteLiteral m OccByte s
|
|
A.IntLiteral _ s -> fromRead m OccInt (readSigned readDec) s
|
|
A.HexLiteral _ s -> fromRead m OccInt readHex s
|
|
A.RealLiteral _ s -> fromRead m OccReal32 readFloat' s
|
|
_ -> bad
|
|
|
|
into :: (Num t, Real t) => (t -> OccValue) -> EvalM OccValue
|
|
into cons
|
|
= case lr of
|
|
A.ByteLiteral _ s -> evalByteLiteral m cons s
|
|
A.IntLiteral _ s -> fromRead m cons (readSigned readDec) s
|
|
A.HexLiteral _ s -> fromRead m cons readHex s
|
|
_ -> bad
|
|
|
|
intoF :: RealFrac t => (t -> OccValue) -> EvalM OccValue
|
|
intoF cons
|
|
= case lr of
|
|
A.ByteLiteral _ s -> evalByteLiteral m cons s
|
|
A.IntLiteral _ s -> fromRead m cons (readSigned readDec) s
|
|
A.HexLiteral _ s -> fromRead m cons readHex s
|
|
A.RealLiteral _ s -> fromRead m cons readFloat' s
|
|
_ -> bad
|
|
|
|
-- readFloat only handles unsigned values, so we need to look out for the negation
|
|
-- ourselves:
|
|
readFloat' :: RealFrac a => ReadS a
|
|
readFloat' [] = []
|
|
readFloat' ('-':rest) = [(negate x, s) | (x, s) <- readFloat rest]
|
|
readFloat' s = readFloat s
|
|
|
|
|
|
bad :: EvalM OccValue
|
|
bad = throwError (Just m, "Cannot evaluate literal")
|
|
|
|
m = findMeta lr
|
|
|
|
-- | Evaluate a byte literal.
|
|
evalByteLiteral :: Num t => Meta -> (t -> OccValue) -> String -> EvalM OccValue
|
|
evalByteLiteral m cons ('*':'#':hex)
|
|
= do OccInt n <- fromRead m OccInt readHex hex
|
|
return $ cons (fromIntegral n)
|
|
evalByteLiteral _ cons ['*', ch]
|
|
= return $ cons (fromIntegral $ ord $ star ch)
|
|
where
|
|
star :: Char -> Char
|
|
star 'c' = '\r'
|
|
star 'n' = '\n'
|
|
star 't' = '\t'
|
|
star 's' = ' '
|
|
star c = c
|
|
evalByteLiteral _ cons [ch]
|
|
= return $ cons (fromIntegral $ ord ch)
|
|
evalByteLiteral m _ _ = throwError (Just m, "Bad BYTE literal")
|
|
|
|
-- | Resolve a datatype into its underlying type -- i.e. if it's a named data
|
|
-- type, then return the underlying real type. This will recurse.
|
|
underlyingType :: forall m. (CSMR m, Die m) => Meta -> A.Type -> m A.Type
|
|
underlyingType m = applyTopDownM (resolveUserType m)
|
|
-- After resolving a user type, we have to recurse
|
|
-- on the resulting type, so we must use a top-down transformation.
|
|
|
|
-- | Like underlyingType, but only do the "outer layer": if you give this a
|
|
-- user type that's an array of user types, then you'll get back an array of
|
|
-- user types.
|
|
resolveUserType :: (CSMR m, Die m) => Meta -> A.Type -> m A.Type
|
|
resolveUserType m (A.UserDataType n)
|
|
= do st <- specTypeOfName n
|
|
case st of
|
|
A.DataType _ t -> resolveUserType m t
|
|
_ -> dieP m $ "Not a type name: " ++ show n
|
|
resolveUserType _ t = return t
|
|
|