tock-mirror/common/OccamEDSL.hs

230 lines
6.5 KiB
Haskell

{-
Tock: a compiler for parallel languages
Copyright (C) 2008 University of Kent
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 2 of the License, or (at your
option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.
-}
module OccamEDSL (ExpInp, ExpInpT, oSEQ, oPAR, oPROC, oSKIP, oINT,
Occ, a, b, c, x, y, z, (*?), (*!), (*:=), decl, oempty, testOccamPass, ExpInpC(..)) where
import Control.Monad.State
import Data.Generics
import Test.HUnit hiding (State)
import qualified AST as A
import CompState
import Metadata
import Pass
import TestUtils
import Utils
-- The rough rules for converting occam to pseudo-occam are to stick a lower-case
-- o on the front of keywords, turn colons into dollars, put an asterisk before
-- every operator, empty items (e.g. following declarations) into oempty
-- and stick decl on the front of declarations (and indent the scope) and make
-- all the items in a SEQ or PAR into a list.
-- Other things to remember:
-- * The variables must each be used once, since their declaration is added to
-- the state
-- * Scope is more explicit in this, so you must indent for a variable's scope
--
-- The following:
--
-- PROC foo (INT a)
-- :
--
-- PROC bar ()
-- SEQ
-- INT y:
-- SEQ
-- BYTE x:
-- x := 3
-- BYTE z:
-- PAR
-- y := 0
-- z := 2
-- y := 1
-- :
--
-- becomes:
--
-- sPROC "foo" [(oINT, a)]
-- oempty
-- $
-- sPROC "bar" [] (
-- oSEQ [
-- decl oINT y $
-- oSEQ
-- [
-- [decl oBYTE x $
-- x *:= 3
-- ,decl oBYTE z $
-- sPAR
-- [y *:= 0
-- ,z *:= 2
-- ]
-- ,y *:= 1
-- ]
-- ]
-- $
-- oempty
-- This is an item that allows the expected and input values to be manipulated
-- together, or separately
data ExpInp a = ExpInp a a
data Monad m => ExpInpT m a = ExpInpT {
fstExpInpT :: m a,
sndExpInpT :: m a }
instance MonadTrans ExpInpT where
lift m = ExpInpT m m
instance Monad m => Monad (ExpInpT m) where
return x = ExpInpT (return x) (return x)
(>>=) (ExpInpT x y) f
= ExpInpT (x >>= (fstExpInpT . f)) (y >>= (sndExpInpT . f))
liftExpInp :: Monad m => ExpInp a -> ExpInpT m a
liftExpInp (ExpInp x y) = ExpInpT (return x) (return y)
instance Functor ExpInp where
fmap f (ExpInp x y) = ExpInp (f x) (f y)
instance Monad ExpInp where
return x = ExpInp x x
(>>=) (ExpInp x y) f = ExpInp (let ExpInp x' _ = f x in x')
(let ExpInp _ y' = f y in y')
instance MonadState s (ExpInpT (State s)) where
get = ExpInpT get get
put x = ExpInpT (put x) (put x)
instance CSMR (ExpInpT (State CompState)) where
getCompState = get
type O a = ExpInpT (State CompState) a
type Occ a = O a
class ProcessC a where
structProcess :: a -> A.Structured A.Process
fromProcess :: A.Process -> a
instance ProcessC A.Process where
structProcess = A.Only emptyMeta
fromProcess = id
instance ProcessC (A.Structured A.Process) where
structProcess = id
fromProcess = A.Only emptyMeta
oSEQ, oPAR :: ProcessC c => [O (A.Structured A.Process)] -> O c
oSEQ = liftM (fromProcess . A.Seq emptyMeta . A.Several emptyMeta) . sequence
oPAR = liftM (fromProcess . A.Par emptyMeta A.PlainPar . A.Several emptyMeta) . sequence
singlify :: Data a => A.Structured a -> A.Structured a
singlify (A.Several _ [s]) = s
singlify ss = ss
oPROC :: Data a => String -> [(A.Type, A.Variable)] -> O A.Process -> O (A.Structured
a) -> O (A.Structured a)
oPROC str params body scope = do
p <- body
s <- scope
defineProc str [(A.nameName name, A.Original, t) | (t, A.Variable _ name) <- params]
return $ A.Spec emptyMeta (A.Specification emptyMeta (simpleName str) $
A.Proc emptyMeta A.PlainSpec formals p
) (singlify s)
where
formals = [A.Formal A.Original t n | (t, A.Variable _ n) <- params]
oSKIP :: ProcessC a => O a
oSKIP = return $ fromProcess $ A.Skip emptyMeta
oINT :: ExpInp A.Type
oINT = return A.Int
a,b,c,x,y,z :: ExpInp A.Variable
a = return $ variable "a"
b = return $ variable "b"
c = return $ variable "c"
x = return $ variable "x"
y = return $ variable "y"
z = return $ variable "z"
(*?) :: ExpInp A.Variable -> ExpInp A.Variable -> O (A.Structured A.Process)
(*?) bch bdest = do
ch <- liftExpInp bch
dest <- liftExpInp bdest
return $ A.Only emptyMeta $ A.Input emptyMeta ch (A.InputSimple emptyMeta [A.InVariable emptyMeta dest])
(*!), (*:=) :: CanBeExpression e => ExpInp A.Variable -> ExpInp e -> O (A.Structured A.Process)
(*!) bch bsrc = do
ch <- liftExpInp bch
src <- liftExpInp bsrc >>* expr
return $ A.Only emptyMeta $ A.Output emptyMeta ch [A.OutExpression emptyMeta
src]
(*:=) bdest bsrc = do
dest <- liftExpInp bdest
src <- liftExpInp bsrc >>* expr
return $ A.Only emptyMeta $ A.Assign emptyMeta [dest] (A.ExpressionList emptyMeta
[src])
decl :: Data a => ExpInp A.Type -> ExpInp A.Variable -> O (A.Structured a) ->
O (A.Structured a)
decl bty bvar scope = do
ty <- liftExpInp bty
(A.Variable _ name) <- liftExpInp bvar
defineVariable (A.nameName name) ty
s <- scope
return $ A.Spec emptyMeta (A.Specification emptyMeta name $ A.Declaration emptyMeta ty)
(singlify s)
class CanBeExpression a where
expr :: a -> A.Expression
instance CanBeExpression A.Variable where
expr = A.ExprVariable emptyMeta
instance CanBeExpression A.Expression where
expr = id
instance CanBeExpression Int where
expr = A.Literal emptyMeta A.Int . A.IntLiteral emptyMeta . show
oempty :: Data a => O (A.Structured a)
oempty = return $ A.Several emptyMeta []
testOccamPass :: String -> O A.AST -> Pass -> Test
testOccamPass str code pass
= let ExpInpT expm inpm = liftM singlify code
(exp, expS) = runState expm emptyState
(inp, inpS) = runState inpm emptyState
in TestCase $ testPassWithStateCheck str exp pass inp (put inpS) (assertEqual
str (csNames expS) . csNames)
class ExpInpC a where
shouldComeFrom :: a -> a -> a
instance ExpInpC (ExpInp a) where
shouldComeFrom (ExpInp exp _) (ExpInp _ inp) = ExpInp exp inp
instance ExpInpC (ExpInpT (State CompState) a) where
shouldComeFrom (ExpInpT exp _) (ExpInpT _ inp) = ExpInpT exp inp