[icfp] a pretty section 2

This commit is contained in:
ben 2016-03-16 06:15:20 -04:00
parent 0a84ae4c62
commit a425fa840f
2 changed files with 28 additions and 29 deletions

View File

@ -24,21 +24,22 @@ Using @exact|{\RktMeta{expr}}| to denote the set of syntactically valid, symboli
@exact|{$$\interp\ : \big\{\RktMeta{expr} \rightarrow ({\RktVal{val}} \cup {\tt \RktVal{\#false}})\big\}$$}|
If @exact|{${\tt p?} \in \interp$}| and @exact|{${\tt e} \in \emph{expr}$}|,
If @exact|{\RktMeta{p?} $\in \interp$}| and @exact|{\RktMeta{e} $\in \RktMeta{expr}$}|,
it may be useful to think of
@exact|{${\tt (p?~e)}$}| as @emph{evidence} that the expression @exact|{${\tt e}$}|
is recognized by @exact|{${\tt p?}$}|.
Alternatively, @exact|{${\tt (p?~e)}$}| is a kind of interpolant@~cite[c-jsl-1997],
representing key data embedded in @exact|{${\tt e}$}|.
Correct interpretation functions @exact|{${\tt p?}$}| obey two guidelines:
@exact|{\RktMeta{(p? e)}}| as @emph{evidence} that the expression @exact|{\RktMeta{e}}|
is recognized by @exact|{\RktMeta{p?}}|.
Alternatively, @exact|{\RktMeta{(p? e)}}| is a kind of interpolant@~cite[c-jsl-1997],
representing data embedded in @exact|{\RktMeta{e}}| that justifies a certain
program transformation.
Correct interpretation functions @exact|{\RktMeta{p?}}| obey two guidelines:
@itemize[
@item{
The expressions for which @exact|{${\tt p?}$}| returns a non-@racket[#false]
The expressions for which @exact|{\RktMeta{p?}}| returns a non-@racket[#false]
value must have some common structure.
}
@item{
Non-@racket[#false] results @exact|{${\tt (p?~e)}$}| are computed by a
Non-@racket[#false] results @exact|{\RktMeta{(p? e)}}| are computed by a
uniform algorithm and must have some common structure.
}
]
@ -51,50 +52,48 @@ Functions in the set @exact|{$\elab$}| of @emph{elaborations}
map expressions to expressions, for instance replacing a call to @racket[curry]
with a call to @racket[curry_3].
We write elaboration functions as @exact{$\elabf$} and their application
to an expression @exact{$e$} as @exact{$\llbracket e \rrbracket$}.
to an expression @exact|{\RktMeta{e}}| as @exact|{$\llbracket$\RktMeta{e}$\rrbracket$}|.
Elaborations are allowed to fail raising syntax errors, which we notate as
@exact|{$\bot$}|.
@exact|{$$\elab : \big\{ {\RktMeta{expr}} \rightarrow ({\RktMeta{expr}} \cup \bot)\big\} $$}|
The correctness specification for an elaborator @exact{$\elabf \in \elab$}
is defined in terms of the language's typing judgment @exact|{$~\vdash {\tt e} : \tau$}|
and evaluation relation @exact|{$\untyped{{\tt e}} \Downarrow {\tt v}$}|.
The notation @exact|{$\untyped{{\tt e}}$}| is the untyped erasure of @exact|{${\tt e}$}|.
is defined in terms of the language's typing judgment @exact|{$~\vdash \RktMeta{e} : \tau$}|
and evaluation relation @exact|{$\untyped{\RktMeta{e}} \Downarrow \RktVal{v}$}|.
The notation @exact|{$\untyped{\RktMeta{e}}$}| is the untyped erasure
of @exact|{\RktMeta{e}}|.
We also assume a subtyping relation @exact|{$\subt$}| on types.
Let @exact|{$\elabfe{{\tt e}} = {\tt e'}$}|:
Let @exact|{$\elabfe{\RktMeta{e}} = \RktMeta{e'}$}|:
@itemlist[
@item{@emph{
If @exact|{$~\vdash {\tt e} : \tau$}| and @exact|{$~\vdash {\tt e'} : \tau'$}|
If @exact|{$~\vdash \RktMeta{e} : \tau$}| and @exact|{$~\vdash \RktMeta{e'} : \tau'$}|
@exact|{\\}|
then @exact|{$\tau' \subt \tau$}|
@exact|{\\}|
and both
@exact|{$\untyped{{\tt e}} \Downarrow {\tt v}$}| and
@exact|{$\untyped{{\tt e'}} \Downarrow {\tt v}$}|.
@exact|{$\untyped{\RktMeta{e}} \Downarrow \RktVal{v}$}| and
@exact|{$\untyped{\RktMeta{e'}} \Downarrow \RktVal{v}$}|.
}}
@; e:t e':t' => t' <: t /\ e <=> e'
@item{@emph{
If @exact|{$~\not\vdash {\tt e} : \tau$}| but @exact|{$~\vdash {\tt e'} : \tau'$}|
If @exact|{$~\not\vdash \RktMeta{e} : \tau$}| but @exact|{$~\vdash \RktMeta{e'} : \tau'$}|
@exact|{\\}|
then @exact|{$\untyped{{\tt e}} \Downarrow {\tt v}$}| and
@exact|{$\untyped{{\tt e'}} \Downarrow {\tt v}$}|.
then @exact|{$\untyped{\RktMeta{e}} \Downarrow \RktVal{v}$}| and
@exact|{$\untyped{\RktMeta{e'}} \Downarrow \RktVal{v}$}|.
}}
@; -e:t e':t' => e <=> e'
@item{@emph{
If @exact|{$~\vdash {\tt e} : \tau$}| but @exact|{${\tt e'} = \bot$}|
or @exact|{$~\not\vdash {\tt e'} : \tau'$}|
If @exact|{$~\vdash \RktMeta{e} : \tau$}| but @exact|{$\RktMeta{e'} = \bot$}|
or @exact|{$~\not\vdash \RktMeta{e'} : \tau'$}|
@exact|{\\}|
then @exact|{$\untyped{{\tt e}} \Downarrow \mathsf{wrong}$}| or
@exact|{$\untyped{{\tt e}}$}| diverges.
then @exact|{$\untyped{\RktMeta{e}} \Downarrow \RktMeta{wrong}$}| or
@exact|{$\untyped{\RktMeta{e}}$}| diverges.
}}
@; e:t -e':t' => e^
]
If neither @exact|{${\tt e}$}| nor @exact|{${\tt e'}$}| type checks, then we have no guarantees
If neither @exact|{\RktMeta{e}}| nor @exact|{\RktMeta{e'}}| type checks, then we have no guarantees
about the run-time behavior of either term.
In a perfect world both would diverge, but the fundamental limitations of
static typing@~cite[fagan-dissertation-1992] and computability
@ -119,6 +118,6 @@ Our implementation uses a tagging protocol, and this lets us share information
between unrelated elaboration function in a bottom-up recursive style.
The same protocol helps us implement binding forms: when interpreting a variable,
we check for an associated tag.
Formally speaking, this either changes the codomain of functions in @exact{$\elab$}
Formally speaking, this changes either the codomain of functions in @exact{$\elab$}
or introduces an elaboration environment mapping expressions to values.

View File

@ -32,7 +32,7 @@
\usepackage{amssymb}
\newcommand{\interp}{\mathcal{I}}
\newcommand{\untyped}[1]{\hat{#1}}
\newcommand{\untyped}[1]{{\,#1}_\flat}
\newcommand{\trans}{\mathcal{T}}
\newcommand{\elab}{\mathcal{E}}
\newcommand{\elabfe}[1]{\llbracket #1 \rrbracket}