[icfp] all prettier

This commit is contained in:
ben 2016-03-16 08:22:17 -04:00
parent a425fa840f
commit f14387469a
5 changed files with 262 additions and 178 deletions

View File

@ -25,6 +25,7 @@
(define Transactions "Transactions on ")
(define/short dsl "DS" (string-append ACM Conference "on Domain-specific languages"))
(define/short asplas "APLAS" (string-append "Asian " Symposium "Programming Languages and Systems"))
(define/short fpca "FPCA" (string-append ACM International Conference "Functional Programming Languages and Computer Architecture"))
(define/short icfp "ICFP" (string-append ACM International Conference "on Functional Programming"))
@ -1216,3 +1217,10 @@
#:author (authors "Tiark Rompf" "Nada Amin")
#:location (proceedings-location icfp #:pages '(2 9))
#:date 2015))
(define lm-dsl-1999
(make-bib
#:title "Domain Specific Embedded Compilers"
#:author (authors "Daan Leijen" "Erik Meijer")
#:location (proceedings-location dsl #:pages '(109 122))
#:date 1999))

View File

@ -193,9 +193,10 @@ The interesting design challenge is making one pattern that covers all
@; =============================================================================
@section[#:tag "sec:impl-interp"]{Illustrative Interpretations}
By now we have seen two useful syntax classes: @racket[id] and
@racket[vector/length].@note{The name @racket[vector/length] should
Both @racket[id] and
@racket[vector/length] are useful syntax classes..@note{The name @racket[vector/length] should
be read as ``vector @emph{with} length information''.}
They recognize syntax objects with certain well-defined properties.
In fact, we use syntax classes as the front-end for each function in @exact{$\interp$}.
@Figure-ref{fig:stxclass} lists all of our syntax classes and ties each to a purpose
motivated in @Secref{sec:usage}.
@ -392,12 +393,17 @@ The only question we ask during elaboration is whether a syntax object is associ
Traditional macros may appear only in the head position of an expression.
For example, the following are illegal uses of the built-in @racket[or]
macro:
@racketblock[
> or
or: bad syntax
> (map or '((#t #f #f) (#f #f)))
or: bad syntax
]
@exact|{
\begin{SCodeFlow}\begin{RktBlk}\begin{SingleColumn}\RktSym{{\Stttextmore}}\mbox{\hphantom{\Scribtexttt{x}}}\RktSym{or}
\evalsto\RktErr{or: bad syntax}
\RktSym{{\Stttextmore}}\mbox{\hphantom{\Scribtexttt{x}}}\RktPn{(}\RktSym{map}\mbox{\hphantom{\Scribtexttt{x}}}\RktSym{or}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{{\textquotesingle}}\RktVal{(}\RktVal{(}\RktVal{\#t}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{\#f}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{\#f}\RktVal{)}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{(}\RktVal{\#f}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{\#f}\RktVal{)}\RktVal{)}\RktPn{)}
\evalsto\RktErr{or: bad syntax}
\end{SingleColumn}\end{RktBlk}\end{SCodeFlow}
}|
Identifier macros are allowed in both higher-order and top-level positions,
just like first-class functions.
@ -416,7 +422,8 @@ By tagging calls to @racket[vector-map] with a syntax property, our system
@centered[
@codeblock{
(vector-length v) == (vector-length (vector-map f v))
(vector-length (vector-map f v))
== (vector-length v)
}
]
@ -436,12 +443,12 @@ Within the binding's scope, the transformer redirects references from a variable
For our purposes, we redirect to an annotated version of the same variable:
@racketblock[
> '(let ([x 4])
(+ x 1))
'(let ([x 4])
(let-syntax ([x (make-rename-transformer #'x
secret-key 4)])
(+ x 1)))
> '(let ([x 4])
(+ x 1))
==> '(let ([x 4])
(let-syntax ([x (make-rename-transformer #'x
secret-key 4)])
(+ x 1)))
]
For definitions, we use a @emph{free-identifier table}.

View File

@ -116,8 +116,6 @@ The arity of the result could also be derived from its textual representation,
Our implementation uses a tagging protocol, and this lets us share information
between unrelated elaboration function in a bottom-up recursive style.
The same protocol helps us implement binding forms: when interpreting a variable,
we check for an associated tag.
Formally speaking, this changes either the codomain of functions in @exact{$\elab$}
or introduces an elaboration environment mapping expressions to values.

View File

@ -42,3 +42,4 @@
\newcommand{\trt}[1]{\emph{#1}}
\newcommand{\tprintf}{\mathsf{t_printf}}
\newcommand{\mod}[1]{$\mathsf{#1}$}
\newcommand{\evalsto}{\RktMeta{}\RktSym{=={\Stttextmore}}\RktMeta{}\mbox{\hphantom{\Scribtexttt{x}}}}

View File

@ -25,21 +25,21 @@ This protocol lets us implement our elaborators as macros that expand into
typed code.
Each elaborator is defined as a @emph{local} transformation on syntax.
Code produced by an elaboration is associated with compile-time data that
other elaborators may access.
In this way, we handle binding forms and propagate information through
@emph{unrelated} program transformations.
Code produced by an elaboration may be associated with compile-time values
for other elaborators to access.
Using these values, we support variable bindings and propagate information upward through
nested elaborations.
@parag{Conventions}
@itemlist[
@item{
Interpretation and elaboration functions are defined over symbolic expressions
and values; specifically, over @emph{syntax objects}.
To distinguish terms and syntax objects representing
terms, we quote the latter and typeset it in green.
For example, @racket[(λ (x) x)] is a term implementing the identity
function and @racket['(λ (x) x)] is a representation that will evaluate
to the identity function.
To distinguish terms and syntax objects,
we quote the latter and typeset it in green.
Hence @racket[(λ (x) x)] is the identity function
and @racket['(λ (x) x)] is a syntax object.
} @item{
Values are typeset in @exact|{\RktVal{green}}| because their syntax and
term representations are identical.
} @item{
@ -48,7 +48,7 @@ Syntax objects carry lexical information, but our examples treat them as
} @item{
We use an infix @tt{::} to write explicit type annotations and casts,
for instance @racket[(x :: Integer)].
These normally have two different syntaxes, respectively
Annotations and casts normally have two different syntaxes, respectively
@racket[(ann x Integer)] and @racket[(cast x Integer)].
}
]
@ -72,7 +72,7 @@ For example, @racket[~s] converts any value to a string and @racket[~b] converts
@exact|{
\begin{SCodeFlow}\begin{RktBlk}\begin{SingleColumn}\Scribtexttt{{\Stttextmore} }\RktPn{(}\RktSym{printf}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{"binary($\sim$s) = $\sim$b"}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{7}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{7}\RktPn{)}
\RktOut{binary(7) = 111}
\evalsto\RktOut{binary(7) = 111}
\begin{SingleColumn}\end{SingleColumn}\end{SingleColumn}\end{RktBlk}\end{SCodeFlow}
}|
@ -84,28 +84,27 @@ This is a simple kind of value error that could be caught statically.
@exact|{
\begin{SCodeFlow}\begin{RktBlk}\begin{SingleColumn}\Scribtexttt{{\Stttextmore} }\RktPn{(}\RktSym{printf}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{"binary($\sim$s) = $\sim$b"}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{"7"}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{"7"}\RktPn{)}
\RktErr{printf: format string requires argument of type $<$exact{-}number$>$}
\evalsto\RktErr{printf: format string requires an exact{-}number}
\begin{SingleColumn}\end{SingleColumn}\end{SingleColumn}\end{RktBlk}\end{SCodeFlow}
}|
Detecting inconsistencies between a format string and its arguments is straightforward
if we define an interpretation @racket[fmt->types] @exact|{$\in \interp$}| for
if we define an interpretation @racket[fmt->types] for
reading types from a format string value.
In Typed Racket this function is rather simple because the most common
directives accept @code{Any} type of value.
@exact|{
\hfill\fbox{\RktMeta{fmt->types} $\in \interp$}
\begin{SCodeFlow}\begin{RktBlk}\begin{SingleColumn}\RktSym{{\Stttextmore}}\mbox{\hphantom{\Scribtexttt{x}}}\RktPn{(}\RktSym{fmt{-}{\Stttextmore}types}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{"binary($\sim$s) = $\sim$b"}\RktPn{)}
\RktVal{{\textquotesingle}}\RktVal{[}\RktVal{Any}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{Integer}\RktVal{]}
\RktSym{{\Stttextmore}}\mbox{\hphantom{\Scribtexttt{x}}}\RktPn{(}\RktSym{fmt{-}{\Stttextmore}types}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{{\textquotesingle}}\RktVal{(}\RktVal{$\lambda$}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{(}\RktVal{x}\RktVal{)}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{x}\RktVal{)}\RktPn{)}
\RktVal{\#false}\end{SingleColumn}\end{RktBlk}\end{SCodeFlow}
\vspace{-4mm}
}|
@racketblock[
> (fmt->types "binary(~s) = ~b")
==> '[Any Integer]
> (fmt->types '(λ (x) x))
==> #false
]
Now to use @racket[fmt->types] in an elaboration.
Given a call to @racket[printf], we check the number of arguments and
@ -113,20 +112,17 @@ Given a call to @racket[printf], we check the number of arguments and
For all other syntax patterns, @racket[t-printf] is the identity elaboration.
@exact|{
\hfill\fbox{$\elabf \in \interp$}
\begin{SCodeFlow}\begin{RktBlk}\begin{SingleColumn}\RktSym{{\Stttextmore}}\mbox{\hphantom{\Scribtexttt{x}}}\RktPn{(}\RktSym{t{-}printf}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{{\textquotesingle}}\RktVal{(}\RktVal{printf}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{"$\sim$a"}\RktVal{)}\RktPn{)}
\RktSym{$\perp$}
\RktSym{{\Stttextmore}}\mbox{\hphantom{\Scribtexttt{x}}}\RktPn{(}\RktSym{t{-}printf}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{{\textquotesingle}}\RktVal{(}\RktVal{printf}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{"$\sim$b"}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{"2"}\RktVal{)}\RktPn{)}
\RktVal{{\textquotesingle}}\RktVal{(}\RktVal{printf}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{"$\sim$b"}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{(}\RktVal{"2"}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{{\hbox{\texttt{::}}}}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{Integer}\RktVal{)}\RktVal{)}
\RktSym{{\Stttextmore}}\mbox{\hphantom{\Scribtexttt{x}}}\RktPn{(}\RktSym{t{-}printf}\mbox{\hphantom{\Scribtexttt{x}}}\RktSym{printf}\RktPn{)}
\RktVal{{\textquotesingle}}\RktVal{printf}\end{SingleColumn}\end{RktBlk}\end{SCodeFlow}
\hfill\fbox{$\elabf \in \elab$}
\vspace{-4mm}
}|
@racketblock[
> ⟦'(printf "~a")⟧
==> ⊥
> ⟦'(printf "~b" 2)⟧
==> '(printf "~b" (2 :: Integer))
> ⟦'printf ⟧
==> 'printf
]
The first example is rejected immediately as a syntax error.
The second is a valid elaboration, but will lead to a static type error.
@ -141,8 +137,10 @@ The third example demonstrates that higher-order
Regular expressions are often used to capture sub-patterns within a string.
@racketblock[
> (regexp-match #rx"(.*)@(.*)" "toni@merchant.net")
'("toni@merchant.net" "toni" "merchant.net")
> (regexp-match #rx"-(2*)-" "111-222-3333")
==> '("-222-" "222")
> (regexp-match #rx"¥(.*)" "$2,000")
==> #false
]
The first argument to @racket[regexp-match] is a regular expression pattern.
@ -154,19 +152,12 @@ If the match succeeds, the result is a list containing the entire matched string
and substrings corresponding to each group captured by a sub-pattern.
If the match fails, @racket[regexp-match] returns @racket[#false].
@racketblock[
> (regexp-match #rx"-(2*)-" "111-222-3333")
'("-222-" "222")
> (regexp-match #rx"¥(.*)" "$2,000")
#false
]
Certain groups can also fail to capture even when the overall match succeeds.
Groups may fail to capture even when the overall match succeeds.
This can happen when a group is followed by a Kleene star.
@racketblock[
> (regexp-match #rx"(a)*(b)" "b")
'("b" #f "b")
==> '("b" #f "b")
]
Therefore, a catch-all type for @racket[regexp-match] is fairly large:
@ -174,20 +165,18 @@ Therefore, a catch-all type for @racket[regexp-match] is fairly large:
Using this general type is cumbersome for simple patterns
where a match implies that all groups will successfully capture.
@racketblock[
> (define (get-domain (email : String)) : String
(cond
[(regexp-match #rx"(.*)@(.*)" email)
=> third]
[else "Match Failed"]))
]
@exact|{
\begin{SCodeFlow}\begin{RktBlk}\begin{SingleColumn}\RktSym{{\Stttextmore}}\mbox{\hphantom{\Scribtexttt{x}}}\RktPn{(}\RktSym{define}\mbox{\hphantom{\Scribtexttt{x}}}\RktPn{(}\RktSym{get{-}domain}\mbox{\hphantom{\Scribtexttt{x}}}\RktPn{[}\RktSym{full{-}name}\mbox{\hphantom{\Scribtexttt{x}}}\RktSym{{\hbox{\texttt{:}}}}\mbox{\hphantom{\Scribtexttt{x}}}\RktSym{String}\RktPn{]}\RktPn{)}\mbox{\hphantom{\Scribtexttt{x}}}\RktSym{{\hbox{\texttt{:}}}}\mbox{\hphantom{\Scribtexttt{x}}}\RktSym{String}
\mbox{\hphantom{\Scribtexttt{xxxx}}}\RktPn{(}\RktSym{cond}
\mbox{\hphantom{\Scribtexttt{xxxxx}}}\RktPn{[}\RktPn{(}\RktSym{regexp{-}match}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{\#rx"({\hbox{\texttt{.}}}*)@({\hbox{\texttt{.}}}*)"}\mbox{\hphantom{\Scribtexttt{x}}}\RktSym{full{-}name}\RktPn{)}
\mbox{\hphantom{\Scribtexttt{xxxxxx}}}\RktSym{={\Stttextmore}}\mbox{\hphantom{\Scribtexttt{x}}}\RktSym{third}\RktPn{]}
\mbox{\hphantom{\Scribtexttt{xxxxx}}}\RktPn{[}\RktSym{else}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{"Match Failed"}\RktPn{]}\RktPn{)}\RktPn{)}
\RktErr{Error: expected $<$String$>$, got $<$(U \#false String)$>$}
\end{SingleColumn}\end{RktBlk}\end{SCodeFlow}
\vspace{-1mm}%
$\!\!$\evalsto\RktErr{Type Error: expected String, got (U \#false String)}%
\vspace{1mm}
}|
@ -198,15 +187,17 @@ We alleviate the need for casts and guards in simple patterns
If there is any doubt whether a group will capture, we default to the general
@racket[regexp-match] type.
@todo{fbox} @racket[rx->groups] @exact|{$\in \interp$}|
@exact|{
\hfill\fbox{$\RktMeta{rx->groups} \in \interp$}
\vspace{-4mm}
}|
@racketblock[
> (rx->groups #rx"(a)(b)(c)")
3
==> 3
> (rx->groups #rx"((a)b)")
2
==> 2
> (rx->groups #rx"(a)*(b)")
#false
==> #false
]
The corresponding elaboration
@ -214,28 +205,36 @@ The corresponding elaboration
It also raises syntax errors when an uncompiled regular expression contains
unmatched parentheses.
@todo{fbox}
@exact|{
\vspace{1mm}
\hfill\fbox{$\elabf \in \elab$}
\vspace{-4mm}
}|
@racketblock[
> (t-regexp '(regexp-match #rx"(a)b" str))
'((regexp-match #rx"(a)b" str)
:: (U #f (List String String)))
> (t-regexp '(regexp-match "(" str))
> ⟦'(regexp-match #rx"(a)b" str)⟧
==> '((regexp-match #rx"(a)b" str)
:: (U #f (List String String)))
> ⟦'(regexp-match "(" str)⟧
==>
]
@; =============================================================================
@section{Anonymous Functions}
By tokenizing symbolic λ-expressions, we can interpret their domain
statically. @todo{fbox} @racket[fun->domain] @exact|{$\in \interp$}|
By tokenizing symbolic λ-expressions, we can statically infer their domain.
@exact|{
\hfill\fbox{$\RktMeta{fun->domain} \in \interp$}
\vspace{-4mm}
}|
@racketblock[
> (fun->domain '(λ (x y z) (x (z y) y)))
'[Any Any Any]
> (fun->domain '(λ ([x : Real] [y : Real]) x))
'[Real Real]
> (fun->domain '(λ (x y z)
(x (z y) y)))
==> '[Any Any Any]
> (fun->domain '(λ ([x : Real] [y : Real])
x))
==> '[Real Real]
]
When domain information is available at calls to a @racket[curry] function,
@ -243,15 +242,15 @@ When domain information is available at calls to a @racket[curry] function,
Conceptually, we give @racket[curry] the unusable type @racket[(⊥ -> )] and
elaboration produces a subtype @racket[curry_i].
@todo{fbox} @exact|{$\in \elab$}|
@exact|{
\hfill\fbox{$\elabf \in \elab$}
\vspace{-4mm}
}|
@racketblock[
> ('(curry (λ (x y) x)))
'(curry_2 (λ (x y) x))
> ⟦'(curry (λ (x y) x))⟧
==> '(curry_2 (λ (x y) x))
]
@;Our implementation generates each @racket[curry_i] at compile-time by folding
@; over the interpreted domain.
This same technique can be used to implement generalized @racket[map] in
languages without variable-arity polymorphism@~cite[stf-esop-2009].
@ -263,10 +262,16 @@ This same technique can be used to implement generalized @racket[map] in
> (define defendant*
'("Bush" "Georgia"))
> (map cite plaintiff* defendant*)
Rasul v. Bush, U.S.
Chisholm v. Georgia, U.S.
]
@exact|{
\vspace{-1mm}%
$\!\!$\evalsto\RktOut{Rasul v. Bush, U.S.}\\
$\hphantom{xxxxx}$\RktOut{Chisholm v. Georgia, U.S.}
\vspace{1mm}
}|
Leaving out an argument to @racket[printf] or passing an extra list
when calling @racket[map] will raise an arity error during elaboration.
On the other hand, if we modified @racket[cite] to take a third argument
@ -280,12 +285,15 @@ The identity interpretation @exact{$\RktMeta{id} \in \interp$}
lifts values to the elaboration environment.
When composed with a filter, we can recognize types of compile-time constants.
@todo{fbox id-int = int}
@exact|{
\hfill\fbox{$\RktMeta{int?} \circ \RktMeta{id} = \RktMeta{int?} \in \interp$}
\vspace{-4mm}
}|
@racketblock[
> (int? 2)
2
==> 2
> (int? "~s")
#false
==> #false
]
Constant-folding versions of arithmetic operators are now easy to define
@ -293,24 +301,34 @@ Constant-folding versions of arithmetic operators are now easy to define
Our implementation re-uses a single fold/elaborate loop to make
textualist wrappers over @racket[+], @racket[expt] and others.
@todo{fbox}
@exact|{
\vspace{2mm}
\hfill\fbox{$\elabf \in \elab$}
\vspace{-4mm}
}|
@racketblock[
> (define a 3)
> (define b (/ 1 (- a a)))
Error: division by zero
> (define a ⟦3⟧)
> (define b ⟦(/ 1 (- a a))⟧)
]
@exact|{
\vspace{-1mm}%
$\!\!$\evalsto\RktErr{Error: division by zero}%
\vspace{1mm}
}|
Partial folds also work as expected.
@racketblock[
> (* 2 3 7 z)
'(* 42 z)
==> '(* 42 z)
]
Taken alone, this re-implementation of constant folding in an earlier compiler
stage is not terribly exciting.
But our arithmetic elaborators cooperate with other elaborators, for example
size-aware vector operations.
stage is not very exciting.
But since folded expressions propagate their result upwards to arbitrary
analyses, we can combine these elaborations with a size-aware vector library to
guard against index errors access at computed locations.
@; =============================================================================
@ -321,30 +339,40 @@ Fixed-length data structures are often initialized with a constant or
Racket's vectors are one such structure.
For each built-in vector constructor, we thus define an interpretation:
@todo{fbox vector->size in interp}
@exact|{
\vspace{2mm}
\hfill\fbox{$\RktMeta{vector->size} \in \interp$}
\vspace{-4mm}
}|
@racketblock[
> (vector->size '#(0 1 2))
3
==> 3
> (vector->size '(make-vector 100))
100
==> 100
> (vector->size '(make-vector (/ 12 3)))
4
==> 4
]
After interpreting, we associate the size with the new vector at compile-time.
Other elaborators can use and propagate these sizes; for instance, we have
implemented elaborating layers for thirteen standard vector operations.
implemented elaborating layers for 13 standard vector operations.
Together, they constitute a length-aware vector library that serves as a
drop-in replacement for existing code.
If size information is missing, the operators default to Typed Racket's behavior.
If size information is ever missing, the operators silently default
to Typed Racket's behavior.
@exact|{
\vspace{2mm}
\hfill\fbox{$\elabf \in \elab$}
\vspace{-4mm}
}|
@racketblock[
> (vector-ref (make-vector 3) 4)
> (vector-length (vector-append '#(A B) '#(C D)))
4
> (vector-ref (vector-map add1 '#(3 3 3)) 4)
(unsafe-ref (vector-map add1 '#(3 3 3)) 4)
> ⟦(vector-ref (make-vector 3) (+ 2 2))⟧
==>
> (vector-length (vector-append '#(A B) '#(C D)))
==> 4
> ⟦(vector-ref (vector-map add1 '#(3 3 3)) 0)⟧
==> (unsafe-ref (vector-map add1 '#(3 3 3)) 0)
]
For the most part, these elaborations simply manage sizes and
@ -355,29 +383,29 @@ We do, however, optimize vector references to unsafe primitives and
@; =============================================================================
@section[#:tag "sec:sql"]{Database Schema}
@; db
@; TODO Ocaml, Haskell story
@; TODO connect to ew-haskell-2012 os-icfp-2008
Racket's @racket[db] library provides a string-based API for executing SQL
queries.@note{Technically, we use @tt{sql} as an abbreviation for @tt{postgresql}.
Although the Racket library supports many database systems, we have only implemented
a postgres front-end.}
queries.@note{In this section, we use @tt{sql} as an abbreviation for @tt{postgresql}.}
After connecting to a database, SQL queries embedded in strings can be run
for effects and row values (represented as Racket vectors).
to retrieve row values, represented as Racket vectors.
Queries may optionally contain @emph{query parameters}---natural numbers
prefixed by a dollar sign (@tt{$}).
Arguments substituted for query parameters are guarded against SQL injection.
@todo{format the multi-line strings}
@racketblock[
> (define C (sql-connect #:user "admin"
#:database "SCOTUS"))
> (query-row C
"SELECT plaintiff FROM rulings WHERE name = '$1' LIMIT 1"
2001)
'#("Kyllo")
]
@exact|{
\begin{SCodeFlow}\begin{RktBlk}\begin{SingleColumn}\RktSym{{\Stttextmore}}\mbox{\hphantom{\Scribtexttt{x}}}\RktPn{(}\RktSym{define}\mbox{\hphantom{\Scribtexttt{x}}}\RktSym{C}\mbox{\hphantom{\Scribtexttt{x}}}\RktPn{(}\RktSym{sql{-}connect}\mbox{\hphantom{\Scribtexttt{x}}}\RktPn{\#{\hbox{\texttt{:}}}user}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{"admin"}
\mbox{\hphantom{\Scribtexttt{xxxxxxxxxxxxxxxxxxxxxxxxx}}}\RktPn{\#{\hbox{\texttt{:}}}database}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{"SCOTUS"}\RktPn{)}\RktPn{)}
\RktSym{{\Stttextmore}}\mbox{\hphantom{\Scribtexttt{x}}}\RktPn{(}\RktSym{query{-}row}\mbox{\hphantom{\Scribtexttt{x}}}\RktSym{C}
\mbox{\hphantom{\Scribtexttt{xxxx}}}\RktVal{"SELECT plaintiff FROM rulings}\\
\mbox{\hphantom{\Scribtexttt{xxxxx}}}\RktVal{WHERE name = {\textquotesingle}\$1{\textquotesingle} LIMIT 1"}
\mbox{\hphantom{\Scribtexttt{xxxx}}}\RktVal{2001}\RktPn{)}
\evalsto\RktVal{\#}\RktVal{(}\RktVal{"Kyllo"}\RktVal{)}\end{SingleColumn}\end{RktBlk}\end{SCodeFlow}
}|
This is a far cry from language-integrated query@~cite[mbb-sigmod-2006] or
Scala's LMS@~cite[ra-icfp-2015], but the interface
@ -396,6 +424,7 @@ The situation worsens if the programmer uses multiple database connections.
One can either alias one query function to multiple identifiers (each with a specific type)
or weaken type signatures and manually type-cast query results.
@subsection{Phantom Types To the Rescue}
By associating a database schema with each connection, our elaboration technique
can provide a uniform solution to these issues.
We specialize both the input and output of calls to @racket[query-row],
@ -404,16 +433,22 @@ We specialize both the input and output of calls to @racket[query-row],
Our solution, however, is not entirely annotation-free.
We need a schema representing the target database; for this, we ask
the programmer to supply an S-expression of symbols and types
that passes a @exact{$\RktMeta{schema?} \in \interp$} predicate.
@; (@racket[schema?]@exact{$\,\circ\,$}@racket[id]) @exact{$\in \interp$}
that passes a @racket[schema?] predicate.
This approach is similar to phantom types@~cite[lm-dsl-1999].
@exact|{
\vspace{1mm}
\hfill\fbox{$\RktMeta{schema?} \in \interp$}
\vspace{-4mm}
}|
@racketblock[
> (define scotus-schema
'([decisions [(id . Natural)
(plaintiff . String)
(defendant . String)
(year . Natural)]]))
> (schema? scotus-schema)
==> '([decisions ....])
]
The above schema represents a database with at least one table, called @racket[decisions],
@ -426,33 +461,46 @@ In addition to the @exact{$\RktMeta{schema?}$} predicate, we define one more
The first elaboration is for connecting to a database.
We require a statically-known schema object and elaborate to a normal connection.
@exact{$\RktMeta{sql-connect} \in \elab$}
@exact|{
\vspace{1mm}
\hfill\fbox{$\elabf \in \elab$}
\vspace{-4mm}
}|
@racketblock[
> (sc '(sql-connect #:user "admin"
#:database "SCOTUS"))
> (sc '(sql-connect scotus-schema
#:user "admin"
#:database "SCOTUS"))
'(sql-connect #:user "admin"
#:database "SCOTUS")
> '(sql-connect #:user "admin"
#:database "SCOTUS")⟧
==>
> '(sql-connect scotus-schema
#:user "admin"
#:database "SCOTUS")⟧
==> '(sql-connect #:user "admin"
#:database "SCOTUS")
]
The next interpretation and elaboration are for reading constraints from
query strings.
We parse @tt{SELECT} statements and extract
We parse @tt{SELECT} statements using @racket[sql->constr] and extract
@itemlist[
@item{the names of selected columns,}
@item{the table name, and}
@item{an association from query parameters to column names.}
]
@todo{fbox}
@racketblock[
> "SELECT defendant FROM decisions WHERE plaintiff = '$1'"
'[(defendant) decisions ($1 . plaintiff)]
> "SELECT * FROM loans"
'[* decisions ()]
]
@exact|{
\vspace{1mm}
\hfill\fbox{$\RktMeta{sql->constr} \in \interp$}
\vspace{-4mm}
\begin{SCodeFlow}\begin{RktBlk}\begin{SingleColumn}
\RktSym{{\Stttextmore}}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{"SELECT defendant FROM decisions}\\
\mbox{\hphantom{\Scribtexttt{xxxx}}}\RktVal{WHERE plaintiff = {\textquotesingle}\$1{\textquotesingle}"}
\RktSym{=={\Stttextmore}}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{{\textquotesingle}}\RktVal{[}\RktVal{(}\RktVal{defendant}\RktVal{)}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{decisions}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{(}\RktVal{\$1}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{{\hbox{\texttt{.}}} }\RktVal{plaintiff}\RktVal{)}\RktVal{]}
\RktSym{{\Stttextmore}}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{"SELECT * FROM loans"}
\RktSym{=={\Stttextmore}}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{{\textquotesingle}}\RktVal{[}\RktVal{*}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{decisions}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{(}\RktVal{)}\RktVal{]}\end{SingleColumn}\end{RktBlk}\end{SCodeFlow}
}|
The schema, connection, and query constraints now come together in elaborations
such as @exact{$\RktMeta{query-exec} \in \elab$}.
@ -460,24 +508,46 @@ There is still a non-trivial amount of work to be done resolving wildcards and
validating row names before the type-annotated result is produced,
but all the necessary information is available, statically.
@racketblock[
> (t '(query-row C
"SELECT plaintiff FROM decisions WHERE year = '$1' LIMIT 1"
2006))
'((query-row C
"SELECT ..."
(2006 : Natural))
:: (Vector String))
> (t '(query-row C
"SELECT * FROM decisions WHERE plaintiff = '$1' LIMIT 1"
"United States"))
'((query-row C
"SELECT ..."
("United States" : String))
:: (Vector Natural String String Natural))
> (t '(query-row C "SELECT foo FROM decisions"))
]
@exact|{
\vspace{1mm}
\hfill\fbox{$\elabf \in \elab$}
\vspace{-4mm}
\begin{SCodeFlow}\begin{RktBlk}\begin{SingleColumn}\RktSym{{\Stttextmore}}\mbox{\hphantom{\Scribtexttt{x}}}\RktSym{$[\![$}\RktVal{{\textquotesingle}}\RktVal{(}\RktVal{query{-}row}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{C}
\mbox{\hphantom{\Scribtexttt{xxxxxx}}}\RktVal{"SELECT plaintiff FROM decisions}\\
\mbox{\hphantom{\Scribtexttt{xxxxxxx}}}\RktVal{WHERE year = {\textquotesingle}\$1{\textquotesingle} LIMIT 1"}
\mbox{\hphantom{\Scribtexttt{xxxxx}}}\RktVal{2006}\RktVal{)}\RktSym{$]\!]$}
\RktSym{=={\Stttextmore}}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{{\textquotesingle}}\RktVal{(}\RktVal{(}\RktVal{query{-}row}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{C}
\mbox{\hphantom{\Scribtexttt{xxxxxxxx}}}\RktVal{"SELECT {\hbox{\texttt{.}}}{\hbox{\texttt{.}}}{\hbox{\texttt{.}}}{\hbox{\texttt{.}}}"}
\mbox{\hphantom{\Scribtexttt{xxxxxxxx}}}\RktVal{(}\RktVal{2006}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{{\hbox{\texttt{:}}}}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{Natural}\RktVal{)}\RktVal{)}
\mbox{\hphantom{\Scribtexttt{xxxxxx}}}\RktVal{{\hbox{\texttt{:}}}{\hbox{\texttt{:}}}}\mbox{\hphantom{\Scribtexttt{xxx}}}\RktVal{(}\RktVal{Vector}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{String}\RktVal{)}\RktVal{)}
\\
\\
\RktSym{{\Stttextmore}}\mbox{\hphantom{\Scribtexttt{x}}}\RktSym{$[\![$}\RktVal{{\textquotesingle}}\RktVal{(}\RktVal{query{-}row}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{C}
\mbox{\hphantom{\Scribtexttt{xxxxxx}}}\RktVal{"SELECT * FROM decisions}\\
\mbox{\hphantom{\Scribtexttt{xxxxxxx}}}\RktVal{WHERE plaintiff = {\textquotesingle}\$1{\textquotesingle} LIMIT 1"}
\mbox{\hphantom{\Scribtexttt{xxxxxxxx}}}\RktVal{"United States"}\RktVal{)}\RktSym{$]\!]$}
\RktSym{=={\Stttextmore}}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{{\textquotesingle}}\RktVal{(}\RktVal{(}\RktVal{query{-}row}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{C}
\mbox{\hphantom{\Scribtexttt{xxxxxxxx}}}\RktVal{"SELECT {\hbox{\texttt{.}}}{\hbox{\texttt{.}}}{\hbox{\texttt{.}}}"}
\mbox{\hphantom{\Scribtexttt{xxxxxxxx}}}\RktVal{(}\RktVal{"United States"}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{{\hbox{\texttt{:}}}}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{String}\RktVal{)}\RktVal{)}
\mbox{\hphantom{\Scribtexttt{xxxxxx}}}\RktVal{{\hbox{\texttt{:}}}{\hbox{\texttt{:}}}}\mbox{\hphantom{\Scribtexttt{xxx}}}\RktVal{(}\RktVal{Vector}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{Natural}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{String}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{String}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{Natural}\RktVal{)}\RktVal{)}
\\
\\
\RktSym{{\Stttextmore}}\mbox{\hphantom{\Scribtexttt{x}}}\RktSym{$[\![$}\RktVal{{\textquotesingle}}\RktVal{(}\RktVal{query{-}row}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{C}\mbox{\hphantom{\Scribtexttt{x}}}\RktVal{"SELECT foo FROM decisions"}\RktVal{)}\RktSym{$]\!]$}
\RktSym{=={\Stttextmore}}\mbox{\hphantom{\Scribtexttt{x}}}\RktSym{$\perp$}\end{SingleColumn}\end{RktBlk}\end{SCodeFlow}
}|
Results produced by @racket[query-row] are vectors with a known length;
as such they cooperate with our library of vector operations described in