#lang racket/base (require trivial/private/test-common (only-in typed/racket/base ann lambda One Zero -> : Natural Exact-Rational)) ;; Math expressions that fail to typecheck (module+ test (test-compile-error #:require trivial/math #:exn #rx"quotient:|/:|Type Checker" (ann (let ([n 2]) (+: n -2)) Zero) (ann (let ([n 2]) (-: 2 n)) Zero) (ann (let ([n 5]) (*: n 1/5 1)) One) (ann (let ([n 4]) (/: n n)) One) (ann (let ([n 2]) (expt: 3 (-: n n))) One) (ann (expt: 3 2) Zero) (ann (quotient: 3 3) Zero) (ann ((lambda ([x : Natural]) (expt x 3)) 2) Index) ;; -- lambda => back to racket/base (ann ((lambda ([f : (-> Natural Natural Natural)]) (f 0 0)) +:) Zero) (ann ((lambda ([f : (-> Natural Natural Integer)]) (f 0 0)) -:) Zero) (ann ((lambda ([f : (-> Natural Natural Natural)]) (f 0 0)) *:) Zero) (ann ((lambda ([f : (-> Natural Natural Exact-Rational)]) (f 0 0)) /:) Zero) (ann ((lambda ([f : (-> Natural Natural Natural)]) (f 0 1)) expt:) Zero) ;; -- dividing by zero => caught statically (/: 1 1 0) (/: 1 1 (+: 4 -2 -2)) (quotient: 9 0) ;; -- redefine ops => fail (ann (let ([+: (lambda (x y) "hello")]) (+: 1 1)) Integer) (ann (let ([-: (lambda (x y) "hello")]) (-: 1 1)) Integer) (ann (let ([/: (lambda (x y) "hello")]) (/: 1 1)) Integer) (ann (let ([*: (lambda (x y) "hello")]) (*: 1 1)) Integer) (ann (let ([expt: (lambda (x y) "hello")]) (expt: 1 1)) Integer) ))