trivial/math.rkt
2015-12-14 02:36:53 -05:00

74 lines
2.4 KiB
Racket

#lang typed/racket/base
;; Constant-folding math operators.
;; Where possible, they simplify their arguments.
(provide
+: -: *: /:
;; Same signature as the racket/base operators,
;; but try to simplify arguments during expansion.
)
(require (for-syntax
typed/racket/base
(only-in racket/format ~a)
(only-in racket/syntax format-id)
syntax/id-table
syntax/parse
trivial/private/common
))
;; =============================================================================
(define-syntax make-numeric-operator
(syntax-parser
[(_ f:id)
#:with f: (format-id #'f "~a:" (syntax-e #'f))
#'(define-syntax f:
(syntax-parser
[(g e* (... ...))
#:with e+* (for/list ([e (in-list (syntax->list #'(e* (... ...))))])
(expand-expr e))
(let ([e++ (reduce/op f (syntax->list #'e+*))])
(if (list? e++)
(quasisyntax/loc #'g (f #,@e++))
(quasisyntax/loc #'g #,e++)))]
[g:id
(syntax/loc #'g f)]
[(g e* (... ...))
(syntax/loc #'g (f e* (... ...)))]))]))
(make-numeric-operator +)
(make-numeric-operator -)
(make-numeric-operator *)
(make-numeric-operator /)
;; -----------------------------------------------------------------------------
;; Simplify a list of expressions using an associative binary operator.
;; Return either:
;; - A numeric value
;; - A list of syntax objects, to be spliced back in the source code
(define-for-syntax (reduce/op op e*)
(let loop ([prev #f] ;; (U #f Number), candidate for reduction
[acc '()] ;; (Listof Syntax), irreducible arguments
[e* e*]) ;; (Listof Syntax), arguments to process
(if (null? e*)
;; then: finished, return a number (prev) or list of expressions (acc)
(if (null? acc)
prev
(reverse (if prev (cons prev acc) acc)))
;; else: pop the next argument from e*, fold if it's a constant
(let ([v (quoted-stx-value? (car e*))])
(if (number? v)
;; then: reduce the number
(if prev
;; Watch for division-by-zero
(if (and (zero? v) (eq? / op))
(loop v (cons prev acc) (cdr e*))
(loop (op prev v) acc (cdr e*)))
(loop v acc (cdr e*)))
;; else: save value in acc
(let ([acc+ (cons (car e*) (if prev (cons prev acc) acc))])
(loop #f acc+ (cdr e*))))) )))