74 lines
2.4 KiB
Racket
74 lines
2.4 KiB
Racket
#lang typed/racket/base
|
|
|
|
;; Constant-folding math operators.
|
|
;; Where possible, they simplify their arguments.
|
|
|
|
(provide
|
|
+: -: *: /:
|
|
;; Same signature as the racket/base operators,
|
|
;; but try to simplify arguments during expansion.
|
|
)
|
|
|
|
(require (for-syntax
|
|
typed/racket/base
|
|
(only-in racket/format ~a)
|
|
(only-in racket/syntax format-id)
|
|
syntax/id-table
|
|
syntax/parse
|
|
trivial/private/common
|
|
))
|
|
|
|
;; =============================================================================
|
|
|
|
(define-syntax make-numeric-operator
|
|
(syntax-parser
|
|
[(_ f:id)
|
|
#:with f: (format-id #'f "~a:" (syntax-e #'f))
|
|
#'(define-syntax f:
|
|
(syntax-parser
|
|
[(g e* (... ...))
|
|
#:with e+* (for/list ([e (in-list (syntax->list #'(e* (... ...))))])
|
|
(expand-expr e))
|
|
(let ([e++ (reduce/op f (syntax->list #'e+*))])
|
|
(if (list? e++)
|
|
(quasisyntax/loc #'g (f #,@e++))
|
|
(quasisyntax/loc #'g #,e++)))]
|
|
[g:id
|
|
(syntax/loc #'g f)]
|
|
[(g e* (... ...))
|
|
(syntax/loc #'g (f e* (... ...)))]))]))
|
|
|
|
(make-numeric-operator +)
|
|
(make-numeric-operator -)
|
|
(make-numeric-operator *)
|
|
(make-numeric-operator /)
|
|
|
|
;; -----------------------------------------------------------------------------
|
|
|
|
;; Simplify a list of expressions using an associative binary operator.
|
|
;; Return either:
|
|
;; - A numeric value
|
|
;; - A list of syntax objects, to be spliced back in the source code
|
|
(define-for-syntax (reduce/op op e*)
|
|
(let loop ([prev #f] ;; (U #f Number), candidate for reduction
|
|
[acc '()] ;; (Listof Syntax), irreducible arguments
|
|
[e* e*]) ;; (Listof Syntax), arguments to process
|
|
(if (null? e*)
|
|
;; then: finished, return a number (prev) or list of expressions (acc)
|
|
(if (null? acc)
|
|
prev
|
|
(reverse (if prev (cons prev acc) acc)))
|
|
;; else: pop the next argument from e*, fold if it's a constant
|
|
(let ([v (quoted-stx-value? (car e*))])
|
|
(if (number? v)
|
|
;; then: reduce the number
|
|
(if prev
|
|
;; Watch for division-by-zero
|
|
(if (and (zero? v) (eq? / op))
|
|
(loop v (cons prev acc) (cdr e*))
|
|
(loop (op prev v) acc (cdr e*)))
|
|
(loop v acc (cdr e*)))
|
|
;; else: save value in acc
|
|
(let ([acc+ (cons (car e*) (if prev (cons prev acc) acc))])
|
|
(loop #f acc+ (cdr e*))))) )))
|