Split typed scheme docs into guide and reference.

svn: r12202

original commit: 9851b3ab783dd81cbf7989f813563874e79a8b02
This commit is contained in:
Sam Tobin-Hochstadt 2008-10-31 16:52:35 +00:00
parent 76916addfd
commit 6235dc2c8b
3 changed files with 202 additions and 186 deletions

View File

@ -1,3 +1,4 @@
#lang setup/infotab
(define scribblings '(("typed-scheme.scrbl" ())))
(define scribblings '(("ts-reference.scrbl" ())
("ts-guide.scrbl" ())))

View File

@ -14,8 +14,6 @@
@author["Sam Tobin-Hochstadt"]
@(defmodulelang typed-scheme)
Typed Scheme is a Scheme-like language, with a type system that
supports common Scheme programming idioms. Explicit type declarations
are required --- that is, there is no type inference. The language
@ -106,7 +104,7 @@ typed-scheme
(if (= 0 n) #t
(my-odd? (- n 1))))
(display (my-even? 12))
(my-even? 12)
]
As expected, this program prints @schemeresult[#t].
@ -129,16 +127,16 @@ typed-scheme
(format "Today is day ~a of ~a in the year ~a"
(Date-day d) (Date-month d) (Date-year d)))
(display (format-date (make-Date 28 "November" 2006)))
(format-date (make-Date 28 "November" 2006))
]
Here we see the new built-in type @scheme[String] as well as a definition
of the new user-defined type @scheme[my-date]. To define
@scheme[my-date], we provide all the information usually found in a
Here we see the built-in type @scheme[String] as well as a definition
of the new user-defined type @scheme[Date]. To define
@scheme[Date], we provide all the information usually found in a
@scheme[define-struct], but added type annotations to the fields using
the @scheme[define-struct:] form.
Then we can use the functions that this declaration creates, just as
we would have with @scheme[define-struct].
we would have with @scheme[define-struct].
@subsection{Recursive Datatypes and Unions}
@ -404,180 +402,3 @@ is
(Listof Boolean) (Listof String) (Listof Number)
->
(Listof Integer))].
@section[#:tag "type-ref"]{Type Reference}
@subsubsub*section{Base Types}
These types represent primitive Scheme data.
@defidform[Number]{A @gtech{number}}
@defidform[Integer]{An @gtech{integer}}
@defidform[Boolean]{Either @scheme[#t] or @scheme[#f]}
@defidform[String]{A @gtech{string}}
@defidform[Keyword]{A literal @gtech{keyword}}
@defidform[Symbol]{A @gtech{symbol}}
@defidform[Void]{@|void-const|}
@defidform[Port]{A @gtech{port}}
@defidform[Path]{A @rtech{path}}
@defidform[Char]{A @gtech{character}}
@defidform[Any]{Any value}
The following base types are parameteric in their type arguments.
@defform[(Listof t)]{Homogenous @gtech{lists} of @scheme[t]}
@defform[(Boxof t)]{A @gtech{box} of @scheme[t]}
@defform[(Vectorof t)]{Homogenous @gtech{vectors} of @scheme[t]}
@defform[(Option t)]{Either @scheme[t] of @scheme[#f]}
@defform*[[(Parameter t)
(Parameter s t)]]{A @rtech{parameter} of @scheme[t]. If two type arguments are supplied,
the first is the type the parameter accepts, and the second is the type returned.}
@defform[(Pair s t)]{is the pair containing @scheme[s] as the @scheme[car]
and @scheme[t] as the @scheme[cdr]}
@subsubsub*section{Type Constructors}
@defform*[#:id -> #:literals (* ...)
[(dom ... -> rng)
(dom ... rest * -> rng)
(dom ... rest ... bound -> rng)
(dom -> rng : pred)]]{is the type of functions from the (possibly-empty)
sequence @scheme[dom ...] to the @scheme[rng] type. The second form
specifies a uniform rest argument of type @scheme[rest], and the
third form specifies a non-uniform rest argument of type
@scheme[rest] with bound @scheme[bound]. In the third form, the
second occurrence of @scheme[...] is literal, and @scheme[bound]
must be an identifier denoting a type variable. In the fourth form,
there must be only one @scheme[dom] and @scheme[pred] is the type
checked by the predicate.}
@defform[(U t ...)]{is the union of the types @scheme[t ...]}
@defform[(case-lambda fun-ty ...)]{is a function that behaves like all of
the @scheme[fun-ty]s. The @scheme[fun-ty]s must all be function
types constructed with @scheme[->].}
@defform/none[(t t1 t2 ...)]{is the instantiation of the parametric type
@scheme[t] at types @scheme[t1 t2 ...]}
@defform[(All (v ...) t)]{is a parameterization of type @scheme[t], with
type variables @scheme[v ...]}
@defform[(List t ...)]{is the type of the list with one element, in order,
for each type provided to the @scheme[List] type constructor.}
@defform[(values t ...)]{is the type of a sequence of multiple values, with
types @scheme[t ...]. This can only appear as the return type of a
function.}
@defform/none[v]{where @scheme[v] is a number, boolean or string, is the singleton type containing only that value}
@defform/none['sym]{where @scheme[sym] is a symbol, is the singleton type containing only that symbol}
@defform/none[i]{where @scheme[i] is an identifier can be a reference to a type
name or a type variable}
@defform[(Rec n t)]{is a recursive type where @scheme[n] is bound to the
recursive type in the body @scheme[t]}
Other types cannot be written by the programmer, but are used
internally and may appear in error messages.
@defform/none[(struct:n (t ...))]{is the type of structures named
@scheme[n] with field types @scheme[t]. There may be multiple such
types with the same printed representation.}
@defform/none[<n>]{is the printed representation of a reference to the
type variable @scheme[n]}
@section[#:tag "special-forms"]{Special Form Reference}
Typed Scheme provides a variety of special forms above and beyond
those in PLT Scheme. They are used for annotating variables with types,
creating new types, and annotating expressions.
@subsection{Binding Forms}
@scheme[_loop], @scheme[_f], @scheme[_a], and @scheme[_v] are names, @scheme[_t] is a type.
@scheme[_e] is an expression and @scheme[_body] is a block.
@defform*[[(define: v : t e)
(define: (f [v : t] ...) : t . body)
(define: (a ...) (f [v : t] ...) : t . body)]]{
These forms define variables, with annotated types. The first form
defines @scheme[v] with type @scheme[t] and value @scheme[e]. The
second and third forms defines a function @scheme[f] with appropriate
types. In most cases, use of @scheme[:] is preferred to use of @scheme[define:].}
@defform*[[
(let: ([v : t e] ...) . body)
(let: loop : t0 ([v : t e] ...) . body)]]{where @scheme[_t0] is the type of the
result of @scheme[_loop] (and thus the result of the entire expression).}
@defform[
(letrec: ([v : t e] ...) . body)]{}
@defform[
(let*: ([v : t e] ...) . body)]{}
@defform*[[
(lambda: ([v : t] ...) . body)
(lambda: ([v : t] ... . [v : t]) . body)]]{}
@defform*[[
(plambda: (a ...) ([v : t] ...) . body)
(plambda: (a ...) ([v : t] ... . [v : t]) . body)]]{}
@defform[
(case-lambda: [formals body] ...)]{where @scheme[_formals] is like
the second element of a @scheme[lambda:]}
@defform[
(pcase-lambda: (a ...) [formals body] ...)]{where @scheme[_formals] is like
the second element of a @scheme[lambda:].}
@subsection{Structure Definitions}
@defform*[[
(define-struct: name ([f : t] ...))
(define-struct: (name parent) ([f : t] ...))
(define-struct: (v ...) name ([f : t] ...))
(define-struct: (v ...) (name parent) ([f : t] ...))]]{
Defines a @rtech{structure} with the name @scheme[name], where the
fields @scheme[f] have types @scheme[t]. The second and fourth forms
define @scheme[name] to be a substructure of @scheme[parent]. The
last two forms define structures that are polymorphic in the type
variables @scheme[v].}
@subsection{Type Aliases}
@defform*[[(define-type-alias name t)
(define-type-alias (name v ...) t)]]{
The first form defines @scheme[name] as type, with the same meaning as
@scheme[t]. The second form is equivalent to
@scheme[(define-type-alias name (All (v ...) t))]. Type aliases may
refer to other type aliases or types defined in the same module, but
cycles among type aliases are prohibited.}
@subsection{Type Annotation and Instantiation}
@defform[(: v t)]{This declares that @scheme[v] has type @scheme[t].
The definition of @scheme[v] must appear after this declaration. This
can be used anywhere a definition form may be used.}
@litchar{#{v : t}} This declares that the variable @scheme[v] has type
@scheme[t]. This is legal only for binding occurences of @scheme[_v].
@defform[(ann e t)]{Ensure that @scheme[e] has type @scheme[t], or
some subtype. The entire expression has type @scheme[t].
This is legal only in expression contexts.}
@litchar{#{e :: t}} This is identical to @scheme[(ann e t)].
@defform[(inst e t ...)]{Instantiate the type of @scheme[e] with types
@scheme[t ...]. @scheme[e] must have a polymorphic type with the
appropriate number of type variables. This is legal only in expression
contexts.}
@litchar|{#{e @ t ...}}| This is identical to @scheme[(inst e t ...)].
@subsection{Require}
Here, @scheme[_m] is a module spec, @scheme[_pred] is an identifier
naming a predicate, and @scheme[_r] is an optionally-renamed identifier.
@defform*[[
(require/typed r t m)
(require/typed m [r t] ...)
]]{The first form requires @scheme[r] from module @scheme[m], giving
it type @scheme[t]. The second form generalizes this to multiple identifiers.}
@defform[(require/opaque-type t pred m)]{
This defines a new type @scheme[t]. @scheme[pred], imported from
module @scheme[m], is a predicate for this type. The type is defined
as precisely those values to which @scheme[pred] produces
@scheme[#t]. @scheme[pred] must have type @scheme[(Any -> Boolean)].}
@defform[(require-typed-struct name ([f : t] ...) m)]{}

View File

@ -0,0 +1,194 @@
#lang scribble/doc
@begin[(require scribble/manual)
(require (for-label typed-scheme))]
@begin[
(define (item* header . args) (apply item @bold[header]{: } args))
(define-syntax-rule (tmod forms ...) (schememod typed-scheme forms ...))
(define (gtech . x) (apply tech x #:doc '(lib "scribblings/guide/guide.scrbl")))
(define (rtech . x) (apply tech x #:doc '(lib "scribblings/reference/reference.scrbl")))
]
@title[#:tag "top"]{The Typed Scheme Reference}
@author["Sam Tobin-Hochstadt"]
@(defmodulelang typed-scheme)
@section[#:tag "type-ref"]{Type Reference}
@subsubsub*section{Base Types}
These types represent primitive Scheme data.
@defidform[Number]{A @gtech{number}}
@defidform[Integer]{An @gtech{integer}}
@defidform[Boolean]{Either @scheme[#t] or @scheme[#f]}
@defidform[String]{A @gtech{string}}
@defidform[Keyword]{A literal @gtech{keyword}}
@defidform[Symbol]{A @gtech{symbol}}
@defidform[Void]{@|void-const|}
@defidform[Port]{A @gtech{port}}
@defidform[Path]{A @rtech{path}}
@defidform[Char]{A @gtech{character}}
@defidform[Any]{Any value}
The following base types are parameteric in their type arguments.
@defform[(Listof t)]{Homogenous @gtech{lists} of @scheme[t]}
@defform[(Boxof t)]{A @gtech{box} of @scheme[t]}
@defform[(Vectorof t)]{Homogenous @gtech{vectors} of @scheme[t]}
@defform[(Option t)]{Either @scheme[t] of @scheme[#f]}
@defform*[[(Parameter t)
(Parameter s t)]]{A @rtech{parameter} of @scheme[t]. If two type arguments are supplied,
the first is the type the parameter accepts, and the second is the type returned.}
@defform[(Pair s t)]{is the pair containing @scheme[s] as the @scheme[car]
and @scheme[t] as the @scheme[cdr]}
@subsubsub*section{Type Constructors}
@defform*[#:id -> #:literals (* ...)
[(dom ... -> rng)
(dom ... rest * -> rng)
(dom ... rest ... bound -> rng)
(dom -> rng : pred)]]{is the type of functions from the (possibly-empty)
sequence @scheme[dom ...] to the @scheme[rng] type. The second form
specifies a uniform rest argument of type @scheme[rest], and the
third form specifies a non-uniform rest argument of type
@scheme[rest] with bound @scheme[bound]. In the third form, the
second occurrence of @scheme[...] is literal, and @scheme[bound]
must be an identifier denoting a type variable. In the fourth form,
there must be only one @scheme[dom] and @scheme[pred] is the type
checked by the predicate.}
@defform[(U t ...)]{is the union of the types @scheme[t ...]}
@defform[(case-lambda fun-ty ...)]{is a function that behaves like all of
the @scheme[fun-ty]s. The @scheme[fun-ty]s must all be function
types constructed with @scheme[->].}
@defform/none[(t t1 t2 ...)]{is the instantiation of the parametric type
@scheme[t] at types @scheme[t1 t2 ...]}
@defform[(All (v ...) t)]{is a parameterization of type @scheme[t], with
type variables @scheme[v ...]}
@defform[(List t ...)]{is the type of the list with one element, in order,
for each type provided to the @scheme[List] type constructor.}
@defform[(values t ...)]{is the type of a sequence of multiple values, with
types @scheme[t ...]. This can only appear as the return type of a
function.}
@defform/none[v]{where @scheme[v] is a number, boolean or string, is the singleton type containing only that value}
@defform/none['sym]{where @scheme[sym] is a symbol, is the singleton type containing only that symbol}
@defform/none[i]{where @scheme[i] is an identifier can be a reference to a type
name or a type variable}
@defform[(Rec n t)]{is a recursive type where @scheme[n] is bound to the
recursive type in the body @scheme[t]}
Other types cannot be written by the programmer, but are used
internally and may appear in error messages.
@defform/none[(struct:n (t ...))]{is the type of structures named
@scheme[n] with field types @scheme[t]. There may be multiple such
types with the same printed representation.}
@defform/none[<n>]{is the printed representation of a reference to the
type variable @scheme[n]}
@section[#:tag "special-forms"]{Special Form Reference}
Typed Scheme provides a variety of special forms above and beyond
those in PLT Scheme. They are used for annotating variables with types,
creating new types, and annotating expressions.
@subsection{Binding Forms}
@scheme[_loop], @scheme[_f], @scheme[_a], and @scheme[_v] are names, @scheme[_t] is a type.
@scheme[_e] is an expression and @scheme[_body] is a block.
@defform*[[(define: v : t e)
(define: (f [v : t] ...) : t . body)
(define: (a ...) (f [v : t] ...) : t . body)]]{
These forms define variables, with annotated types. The first form
defines @scheme[v] with type @scheme[t] and value @scheme[e]. The
second and third forms defines a function @scheme[f] with appropriate
types. In most cases, use of @scheme[:] is preferred to use of @scheme[define:].}
@defform*[[
(let: ([v : t e] ...) . body)
(let: loop : t0 ([v : t e] ...) . body)]]{where @scheme[_t0] is the type of the
result of @scheme[_loop] (and thus the result of the entire expression).}
@defform[
(letrec: ([v : t e] ...) . body)]{}
@defform[
(let*: ([v : t e] ...) . body)]{}
@defform*[[
(lambda: ([v : t] ...) . body)
(lambda: ([v : t] ... . [v : t]) . body)]]{}
@defform*[[
(plambda: (a ...) ([v : t] ...) . body)
(plambda: (a ...) ([v : t] ... . [v : t]) . body)]]{}
@defform[
(case-lambda: [formals body] ...)]{where @scheme[_formals] is like
the second element of a @scheme[lambda:]}
@defform[
(pcase-lambda: (a ...) [formals body] ...)]{where @scheme[_formals] is like
the second element of a @scheme[lambda:].}
@subsection{Structure Definitions}
@defform*[[
(define-struct: name ([f : t] ...))
(define-struct: (name parent) ([f : t] ...))
(define-struct: (v ...) name ([f : t] ...))
(define-struct: (v ...) (name parent) ([f : t] ...))]]{
Defines a @rtech{structure} with the name @scheme[name], where the
fields @scheme[f] have types @scheme[t]. The second and fourth forms
define @scheme[name] to be a substructure of @scheme[parent]. The
last two forms define structures that are polymorphic in the type
variables @scheme[v].}
@subsection{Type Aliases}
@defform*[[(define-type-alias name t)
(define-type-alias (name v ...) t)]]{
The first form defines @scheme[name] as type, with the same meaning as
@scheme[t]. The second form is equivalent to
@scheme[(define-type-alias name (All (v ...) t))]. Type aliases may
refer to other type aliases or types defined in the same module, but
cycles among type aliases are prohibited.}
@subsection{Type Annotation and Instantiation}
@defform[(: v t)]{This declares that @scheme[v] has type @scheme[t].
The definition of @scheme[v] must appear after this declaration. This
can be used anywhere a definition form may be used.}
@litchar{#{v : t}} This declares that the variable @scheme[v] has type
@scheme[t]. This is legal only for binding occurences of @scheme[_v].
@defform[(ann e t)]{Ensure that @scheme[e] has type @scheme[t], or
some subtype. The entire expression has type @scheme[t].
This is legal only in expression contexts.}
@litchar{#{e :: t}} This is identical to @scheme[(ann e t)].
@defform[(inst e t ...)]{Instantiate the type of @scheme[e] with types
@scheme[t ...]. @scheme[e] must have a polymorphic type with the
appropriate number of type variables. This is legal only in expression
contexts.}
@litchar|{#{e @ t ...}}| This is identical to @scheme[(inst e t ...)].
@subsection{Require}
Here, @scheme[_m] is a module spec, @scheme[_pred] is an identifier
naming a predicate, and @scheme[_r] is an optionally-renamed identifier.
@defform*[[
(require/typed r t m)
(require/typed m [r t] ...)
]]{The first form requires @scheme[r] from module @scheme[m], giving
it type @scheme[t]. The second form generalizes this to multiple identifiers.}
@defform[(require/opaque-type t pred m)]{
This defines a new type @scheme[t]. @scheme[pred], imported from
module @scheme[m], is a predicate for this type. The type is defined
as precisely those values to which @scheme[pred] produces
@scheme[#t]. @scheme[pred] must have type @scheme[(Any -> Boolean)].}
@defform[(require-typed-struct name ([f : t] ...) m)]{}