Add types for unsafe fixnum operations. This allows support for some sequences; in particular in-range now works in some cases (though still requires type annotations).
svn: r18333 original commit: 3d95ef650c1908d79f9b2bf5e3086322cdb494bc
This commit is contained in:
commit
b7d27869fd
|
@ -1,4 +1,4 @@
|
|||
#lang setup/infotab
|
||||
|
||||
(define scribblings '(("ts-reference.scrbl" ())
|
||||
("ts-guide.scrbl" ())))
|
||||
(define scribblings '(("scribblings/ts-reference.scrbl" ())
|
||||
("scribblings/ts-guide.scrbl" (multi-page))))
|
||||
|
|
|
@ -641,6 +641,7 @@
|
|||
|
||||
;; unsafe
|
||||
|
||||
[unsafe-vector-ref (-poly (a) ((-vec a) -Nat . -> . a))]
|
||||
[unsafe-vector-length (-poly (a) ((-vec a) . -> . -Nat))]
|
||||
[unsafe-car (-poly (a b)
|
||||
(cl->*
|
||||
|
@ -649,6 +650,42 @@
|
|||
(cl->*
|
||||
(->acc (list (-pair a b)) b (list -cdr))))]
|
||||
|
||||
[unsafe-fx+
|
||||
(cl->
|
||||
[(-Integer -Integer) -Integer]
|
||||
[(-Nat -Nat) -Nat])]
|
||||
[unsafe-fx- (-Integer -Integer . -> . -Integer)]
|
||||
[unsafe-fx*
|
||||
(cl->
|
||||
[(-Integer -Integer) -Integer]
|
||||
[(-Nat -Nat) -Nat])]
|
||||
[unsafe-fxquotient (-Integer -Integer . -> . -Integer)]
|
||||
[unsafe-fxremainder (-Integer -Integer . -> . -Integer)]
|
||||
[unsafe-fxmodulo (-Integer -Integer . -> . -Integer)]
|
||||
[unsafe-fxabs (-Integer . -> . -Nat)]
|
||||
|
||||
[unsafe-fxand (-Integer -Integer . -> . -Integer)]
|
||||
[unsafe-fxior (-Integer -Integer . -> . -Integer)]
|
||||
[unsafe-fxxor (-Integer -Integer . -> . -Integer)]
|
||||
[unsafe-fxnot (-Integer . -> . -Integer)]
|
||||
[unsafe-fxlshift (-Integer -Integer . -> . -Integer)]
|
||||
[unsafe-fxrshift (-Integer -Integer . -> . -Integer)]
|
||||
|
||||
[unsafe-fx= (-Integer -Integer . -> . -Boolean)]
|
||||
[unsafe-fx< (-Integer -Integer . -> . -Boolean)]
|
||||
[unsafe-fx> (-Integer -Integer . -> . -Boolean)]
|
||||
[unsafe-fx<= (-Integer -Integer . -> . -Boolean)]
|
||||
[unsafe-fx>= (-Integer -Integer . -> . -Boolean)]
|
||||
[unsafe-fxmin
|
||||
(cl->
|
||||
[(-Integer -Integer) -Integer]
|
||||
[(-Nat -Nat) -Nat])]
|
||||
[unsafe-fxmax
|
||||
(cl->
|
||||
[(-Integer -Integer) -Integer]
|
||||
[(-Nat -Nat) -Nat])]
|
||||
|
||||
|
||||
;; scheme/vector
|
||||
[vector-count (-polydots (a b)
|
||||
((list
|
||||
|
|
132
collects/typed-scheme/scribblings/begin.scrbl
Normal file
132
collects/typed-scheme/scribblings/begin.scrbl
Normal file
|
@ -0,0 +1,132 @@
|
|||
#lang scribble/manual
|
||||
|
||||
@begin[(require (for-label (only-meta-in 0 typed/scheme)) scribble/eval
|
||||
"utils.ss" (only-in "quick.scrbl" typed-mod))]
|
||||
|
||||
@(define the-eval (make-base-eval))
|
||||
@(the-eval '(require typed/scheme))
|
||||
|
||||
@title[#:tag "beginning"]{Beginning Typed Scheme}
|
||||
|
||||
Recall the typed module from @secref["quick"]:
|
||||
|
||||
@|typed-mod|
|
||||
|
||||
Let us consider each element of this program in turn.
|
||||
|
||||
@schememod[typed/scheme]
|
||||
|
||||
This specifies that the module is written in the
|
||||
@schememodname[typed/scheme] language, which is a typed version of the
|
||||
@schememodname[scheme] language. Typed versions of other languages
|
||||
are provided as well; for example, the
|
||||
@schememodname[typed/scheme/base] language corresponds to
|
||||
@schememodname[scheme/base].
|
||||
|
||||
@schemeblock[(define-struct: pt ([x : Real] [y : Real]))]
|
||||
|
||||
@margin-note{Many forms in Typed Scheme have the same name as the
|
||||
untyped forms, with a @scheme[:] suffix.}
|
||||
This defines a new structure, name @scheme[pt], with two fields,
|
||||
@scheme[x] and @scheme[y]. Both fields are specified to have the type
|
||||
@scheme[Real], which corresponds to the @rtech{real numbers}.
|
||||
The
|
||||
@scheme[define-struct:] form corresponds to the @scheme[define-struct]
|
||||
form from @schememodname[scheme]---when porting a program from
|
||||
@schememodname[scheme] to @schememodname[typed/scheme], uses of
|
||||
@scheme[define-struct] should be changed to @scheme[define-struct:].
|
||||
|
||||
@schemeblock[(: mag (pt -> Real))]
|
||||
|
||||
This declares that @scheme[mag] has the type @scheme[(pt -> Real)].
|
||||
@;{@scheme[mag] must be defined at the top-level of the module containing
|
||||
the declaration.}
|
||||
|
||||
The type @scheme[(pt -> Real)] is a function type, that is, the type
|
||||
of a procedure. The input type, or domain, is a single argument of
|
||||
type @scheme[pt], which refers to an instance of the @scheme[pt]
|
||||
structure. The @scheme[->] both indicates that this is a function
|
||||
type and separates the domain from the range, or output type, in this
|
||||
case @scheme[Real].
|
||||
|
||||
@schemeblock[
|
||||
(define (mag p)
|
||||
(sqrt (sqr (pt-x p)) (sqr (pt-y p))))
|
||||
]
|
||||
|
||||
This definition is unchanged from the untyped version of the code.
|
||||
The goal of Typed Scheme is to allow almost all definitions to be
|
||||
typechecked without change. The typechecker verifies that the body of
|
||||
the function has the type @scheme[Real], under the assumption that
|
||||
@scheme[p] has the type @scheme[pt], taking these types from the
|
||||
earlier type declaration. Since the body does have this type, the
|
||||
program is accepted.
|
||||
|
||||
|
||||
@section{Datatypes and Unions}
|
||||
|
||||
Many data structures involve multiple variants. In Typed Scheme, we
|
||||
represent these using @italic{union types}, written @scheme[(U t1 t2 ...)].
|
||||
|
||||
@schememod[
|
||||
typed/scheme
|
||||
(define-type-alias Tree (U leaf node))
|
||||
(define-struct: leaf ([val : Number]))
|
||||
(define-struct: node ([left : Tree] [right : Tree]))
|
||||
|
||||
(: tree-height (Tree -> Number))
|
||||
(define (tree-height t)
|
||||
(cond [(leaf? t) 1]
|
||||
[else (max (+ 1 (tree-height (node-left t)))
|
||||
(+ 1 (tree-height (node-right t))))]))
|
||||
|
||||
(: tree-sum (Tree -> Number))
|
||||
(define (tree-sum t)
|
||||
(cond [(leaf? t) (leaf-val t)]
|
||||
[else (+ (tree-sum (node-left t))
|
||||
(tree-sum (node-right t)))]))
|
||||
]
|
||||
|
||||
In this module, we have defined two new datatypes: @scheme[leaf] and
|
||||
@scheme[node]. We've also defined the type alias @scheme[Tree] to be
|
||||
@scheme[(U node leaf)], which represents a binary tree of numbers. In
|
||||
essence, we are saying that the @scheme[tree-height] function accepts
|
||||
a @scheme[Tree], which is either a @scheme[node] or a @scheme[leaf],
|
||||
and produces a number.
|
||||
|
||||
In order to calculate interesting facts about trees, we have to take
|
||||
them apart and get at their contents. But since accessors such as
|
||||
@scheme[node-left] require a @scheme[node] as input, not a
|
||||
@scheme[Tree], we have to determine which kind of input we
|
||||
were passed.
|
||||
|
||||
For this purpose, we use the predicates that come with each defined
|
||||
structure. For example, the @scheme[leaf?] predicate distinguishes
|
||||
@scheme[leaf]s from all other Typed Scheme values. Therefore, in the
|
||||
first branch of the @scheme[cond] clause in @scheme[tree-sum], we know
|
||||
that @scheme[t] is a @scheme[leaf], and therefore we can get its value
|
||||
with the @scheme[leaf-val] function.
|
||||
|
||||
In the else clauses of both functions, we know that @scheme[t] is not
|
||||
a @scheme[leaf], and since the type of @scheme[t] was @scheme[Tree] by
|
||||
process of elimination we can determine that @scheme[t] must be a
|
||||
@scheme[node]. Therefore, we can use accessors such as
|
||||
@scheme[node-left] and @scheme[node-right] with @scheme[t] as input.
|
||||
|
||||
|
||||
@section{Type Errors}
|
||||
|
||||
When Typed Scheme detects a type error in the module, it raises an
|
||||
error before running the program.
|
||||
|
||||
@examples[#:eval the-eval
|
||||
(add1 "not a number")
|
||||
]
|
||||
|
||||
@;{
|
||||
Typed Scheme also attempts to detect more than one error in the module.
|
||||
|
||||
@examples[#:eval the-eval
|
||||
(string-append "a string" (add1 "not a number"))
|
||||
]
|
||||
}
|
160
collects/typed-scheme/scribblings/more.scrbl
Normal file
160
collects/typed-scheme/scribblings/more.scrbl
Normal file
|
@ -0,0 +1,160 @@
|
|||
#lang scribble/manual
|
||||
|
||||
@begin[(require "utils.ss"
|
||||
scribble/core scribble/eval
|
||||
(for-label (only-meta-in 0 typed/scheme) mzlib/etc))]
|
||||
|
||||
@title[#:tag "more"]{Specifying Types}
|
||||
|
||||
@(define the-eval (make-base-eval))
|
||||
@(the-eval '(require typed/scheme))
|
||||
|
||||
|
||||
The previous section introduced the basics of the Typed Scheme type
|
||||
system. In this section, we will see several new features of the
|
||||
language, allowing types to be specified and used.
|
||||
|
||||
@section{Type Annotation and Binding Forms}
|
||||
|
||||
In general, variables in Typed Scheme must be annotated with their
|
||||
type.
|
||||
|
||||
@subsection{Annotating Definitions}
|
||||
|
||||
We have already seen the @scheme[:] type annotation form. This is
|
||||
useful for definitions, at both the top level of a module
|
||||
|
||||
@schemeblock[
|
||||
(: x Number)
|
||||
(define x 7)]
|
||||
|
||||
and in an internal definition
|
||||
|
||||
@schemeblock[
|
||||
(let ()
|
||||
(: x Number)
|
||||
(define x 7)
|
||||
(add1 x))
|
||||
]
|
||||
|
||||
In addition to the @scheme[:] form, almost all binding forms from
|
||||
@schememodname[scheme] have counterparts which allow the specification
|
||||
of types. The @scheme[define:] form allows the definition of variables
|
||||
in both top-level and internal contexts.
|
||||
|
||||
@schemeblock[
|
||||
(define: x : Number 7)
|
||||
(define: (id [z : Number]) z)]
|
||||
|
||||
Here, @scheme[x] has the type @scheme[Number], and @scheme[id] has the
|
||||
type @scheme[(Number -> Number)]. In the body of @scheme[id],
|
||||
@scheme[z] has the type @scheme[Number].
|
||||
|
||||
@subsection{Annotating Local Binding}
|
||||
|
||||
@schemeblock[
|
||||
(let: ([x : Number 7])
|
||||
(add1 x))
|
||||
]
|
||||
|
||||
The @scheme[let:] form is exactly like @scheme[let], but type
|
||||
annotations are provided for each variable bound. Here, @scheme[x] is
|
||||
given the type @scheme[Number]. The @scheme[let*:] and
|
||||
@scheme[letrec:] are similar.
|
||||
|
||||
@schemeblock[
|
||||
(let-values: ([([x : Number] [y : String]) (values 7 "hello")])
|
||||
(+ x (string-length y)))
|
||||
]
|
||||
|
||||
The @scheme[let*-values:] and @scheme[letrec-values:] forms are similar.
|
||||
|
||||
@subsection{Annotating Functions}
|
||||
|
||||
Function expressions also bind variables, which can be annotated with
|
||||
types. This function expects two arguments, a @scheme[Number] and a
|
||||
@scheme[String]:
|
||||
|
||||
@schemeblock[(lambda: ([x : Number] [y : String]) (+ x 5))]
|
||||
|
||||
This function accepts at least one @scheme[String], followed by
|
||||
arbitrarily many @scheme[Number]s. In the body, @scheme[y] is a list
|
||||
of @scheme[Number]s.
|
||||
|
||||
@schemeblock[(lambda: ([x : String] (unsyntax @tt["."]) [y : Number #,**]) (apply + y))]
|
||||
|
||||
This function has the type @scheme[(String Number #,** -> Number)].
|
||||
Functions defined by cases may also be annotated:
|
||||
|
||||
@schemeblock[(case-lambda: [() 0]
|
||||
[([x : Number]) x])]
|
||||
|
||||
This function has the type
|
||||
@scheme[(case-lambda (-> Number) (Number -> Number))].
|
||||
|
||||
@subsection{Annotating Single Variables}
|
||||
|
||||
When a single variable binding needs annotation, the annotation can be
|
||||
applied to a single variable using a reader extension:
|
||||
|
||||
@schemeblock[
|
||||
(let ([#,(annvar x Number) 7]) (add1 x))]
|
||||
|
||||
This is equivalent to the earlier use of @scheme[let:]. This is
|
||||
especially useful for binding forms which do not have counterparts
|
||||
provided by Typed Scheme, such as @scheme[let+]:
|
||||
|
||||
@schemeblock[
|
||||
(let+ ([val #,(annvar x Number) (+ 6 1)])
|
||||
(* x x))]
|
||||
|
||||
@subsection{Annotating Expressions}
|
||||
|
||||
It is also possible to provide an expected type for a particular
|
||||
expression.
|
||||
|
||||
@schemeblock[(ann (+ 7 1) Number)]
|
||||
|
||||
This ensures that the expression, here @scheme[(+ 7 1)], has the
|
||||
desired type, here @scheme[Number]. Otherwise, the type checker
|
||||
signals an error. For example:
|
||||
|
||||
@interaction[#:eval the-eval
|
||||
(ann "not a number" Number)]
|
||||
|
||||
@section{Type Inference}
|
||||
|
||||
In many cases, type annotations can be avoided where Typed Scheme can
|
||||
infer them. For example, the types of all local bindings using
|
||||
@scheme[let] and @scheme[let*] can be inferred.
|
||||
|
||||
@schemeblock[(let ([x 7]) (add1 x))]
|
||||
|
||||
In this example, @scheme[x] has the type
|
||||
@scheme[Exact-Positive-Integer].
|
||||
|
||||
Similarly, top-level constant definitions do not require annotation:
|
||||
|
||||
@schemeblock[(define y "foo")]
|
||||
|
||||
In this examples, @scheme[y] has the type @scheme[String].
|
||||
|
||||
Finally, the parameter types for loops are inferred from their initial
|
||||
values.
|
||||
|
||||
@schemeblock[
|
||||
(let loop ([x 0] [y (list 1 2 3)])
|
||||
(if (null? y) x (loop (+ x (car y)) (cdr y))))]
|
||||
|
||||
Here @scheme[x] has the inferred type @scheme[Integer], and @scheme[y]
|
||||
has the inferred type @scheme[(Listof Integer)]. The @scheme[loop]
|
||||
variable has type @scheme[(Integer (Listof Integer) -> Integer)].
|
||||
|
||||
@section{New Type Names}
|
||||
|
||||
Any type can be given a name with @scheme[define-type-alias].
|
||||
|
||||
@schemeblock[(define-type-alias NN (Number -> Number))]
|
||||
|
||||
Anywhere the name @scheme[NN] is used, it is expanded to
|
||||
@scheme[(Number -> Number)]. Type aliases may not be recursive.
|
48
collects/typed-scheme/scribblings/quick.scrbl
Normal file
48
collects/typed-scheme/scribblings/quick.scrbl
Normal file
|
@ -0,0 +1,48 @@
|
|||
#lang scribble/manual
|
||||
|
||||
@(require "utils.ss" (for-label (only-meta-in 0 typed/scheme)))
|
||||
@(provide typed-mod)
|
||||
|
||||
@title[#:tag "quick"]{Quick Start}
|
||||
|
||||
Given a module written in the @schememodname[scheme] language, using
|
||||
Typed Scheme requires the following steps:
|
||||
|
||||
@itemize[#:style
|
||||
'ordered
|
||||
@item{Change the language to @schememodname[typed/scheme].}
|
||||
@item{Change the uses of @scheme[(require mod)] to
|
||||
@scheme[(require typed/mod)].}
|
||||
@item{Annotate structure definitions and top-level
|
||||
definitions with their types.} ]
|
||||
|
||||
Then, when the program is run, it will automatically be typechecked
|
||||
before any execution, and any type errors will be reported. If there
|
||||
are any type errors, the program will not run.
|
||||
|
||||
Here is an example program, written in the @schememodname[scheme]
|
||||
language:
|
||||
|
||||
@(define typed-mod
|
||||
@schememod[
|
||||
typed/scheme
|
||||
(define-struct: pt ([x : Real] [y : Real]))
|
||||
|
||||
(: mag (pt -> Real))
|
||||
(define (mag p)
|
||||
(sqrt (sqr (pt-x p)) (sqr (pt-y p))))
|
||||
]
|
||||
)
|
||||
|
||||
@schememod[
|
||||
scheme
|
||||
(define-struct pt (x y))
|
||||
|
||||
(code:contract mag : pt -> number)
|
||||
(define (mag p)
|
||||
(sqrt (sqr (pt-x p)) (sqr (pt-y p))))
|
||||
]
|
||||
|
||||
Here is the same program, in @schememodname[typed/scheme]:
|
||||
|
||||
@|typed-mod|
|
299
collects/typed-scheme/scribblings/ts-guide.scrbl
Normal file
299
collects/typed-scheme/scribblings/ts-guide.scrbl
Normal file
|
@ -0,0 +1,299 @@
|
|||
#lang scribble/manual
|
||||
|
||||
@begin[(require "utils.ss" (for-label (only-meta-in 0 typed/scheme)))]
|
||||
|
||||
@title[#:tag "top"]{@bold{Typed Scheme}: Scheme with Static Types}
|
||||
|
||||
@author["Sam Tobin-Hochstadt"]
|
||||
|
||||
@section-index["typechecking" "typechecker" "typecheck"]
|
||||
|
||||
Typed Scheme is a family of languages, each of which enforce
|
||||
that programs written in the language obey a type system that ensures
|
||||
the absence of many common errors. This guide is intended for programmers familiar
|
||||
with PLT Scheme. For an introduction to PLT Scheme, see the @(other-manual '(lib "scribblings/guide/guide.scrbl")).
|
||||
|
||||
@local-table-of-contents[]
|
||||
|
||||
@include-section["quick.scrbl"]
|
||||
@include-section["begin.scrbl"]
|
||||
@include-section["more.scrbl"]
|
||||
@include-section["types.scrbl"]
|
||||
|
||||
@;@section{How the Type System Works}
|
||||
|
||||
@;@section{Integrating with Untyped Code}
|
||||
|
||||
@;{
|
||||
@section{Starting with Typed Scheme}
|
||||
|
||||
If you already know PLT Scheme, or even some other Scheme, it should be
|
||||
easy to start using Typed Scheme.
|
||||
|
||||
@subsection{A First Function}
|
||||
|
||||
The following program defines the Fibonacci function in PLT Scheme:
|
||||
|
||||
@schememod[
|
||||
scheme
|
||||
(define (fib n)
|
||||
(cond [(= 0 n) 1]
|
||||
[(= 1 n) 1]
|
||||
[else (+ (fib (- n 1)) (fib (- n 2)))]))
|
||||
]
|
||||
|
||||
This program defines the same program using Typed Scheme.
|
||||
|
||||
@schememod[
|
||||
typed-scheme
|
||||
(: fib (Number -> Number))
|
||||
(define (fib n)
|
||||
(cond [(= 0 n) 1]
|
||||
[(= 1 n) 1]
|
||||
[else (+ (fib (- n 1)) (fib (- n 2)))]))
|
||||
]
|
||||
|
||||
There are two differences between these programs:
|
||||
|
||||
@itemize[
|
||||
@item*[@elem{The Language}]{@schememodname[scheme] has been replaced by @schememodname[typed-scheme].}
|
||||
|
||||
@item*[@elem{The Type Annotation}]{We have added a type annotation
|
||||
for the @scheme[fib] function, using the @scheme[:] form.} ]
|
||||
|
||||
In general, these are most of the changes that have to be made to a
|
||||
PLT Scheme program to transform it into a Typed Scheme program.
|
||||
@margin-note{Changes to uses of @scheme[require] may also be necessary
|
||||
- these are described later.}
|
||||
|
||||
@subsection[#:tag "complex"]{Adding more complexity}
|
||||
|
||||
Other typed binding forms are also available. For example, we could have
|
||||
rewritten our fibonacci program as follows:
|
||||
|
||||
@schememod[
|
||||
typed-scheme
|
||||
(: fib (Number -> Number))
|
||||
(define (fib n)
|
||||
(let ([base? (or (= 0 n) (= 1 n))])
|
||||
(if base?
|
||||
1
|
||||
(+ (fib (- n 1)) (fib (- n 2))))))
|
||||
]
|
||||
|
||||
This program uses the @scheme[let] binding form, but no new type
|
||||
annotations are required. Typed Scheme infers the type of
|
||||
@scheme[base?].
|
||||
|
||||
We can also define mutually-recursive functions:
|
||||
|
||||
@schememod[
|
||||
typed-scheme
|
||||
(: my-odd? (Number -> Boolean))
|
||||
(define (my-odd? n)
|
||||
(if (= 0 n) #f
|
||||
(my-even? (- n 1))))
|
||||
|
||||
(: my-even? (Number -> Boolean))
|
||||
(define (my-even? n)
|
||||
(if (= 0 n) #t
|
||||
(my-odd? (- n 1))))
|
||||
|
||||
(my-even? 12)
|
||||
]
|
||||
|
||||
As expected, this program prints @schemeresult[#t].
|
||||
|
||||
|
||||
@subsection{Defining New Datatypes}
|
||||
|
||||
If our program requires anything more than atomic data, we must define
|
||||
new datatypes. In Typed Scheme, structures can be defined, similarly
|
||||
to PLT Scheme structures. The following program defines a date
|
||||
structure and a function that formats a date as a string, using PLT
|
||||
Scheme's built-in @scheme[format] function.
|
||||
|
||||
@schememod[
|
||||
typed-scheme
|
||||
(define-struct: Date ([day : Number] [month : String] [year : Number]))
|
||||
|
||||
(: format-date (Date -> String))
|
||||
(define (format-date d)
|
||||
(format "Today is day ~a of ~a in the year ~a"
|
||||
(Date-day d) (Date-month d) (Date-year d)))
|
||||
|
||||
(format-date (make-Date 28 "November" 2006))
|
||||
]
|
||||
|
||||
Here we see the built-in type @scheme[String] as well as a definition
|
||||
of the new user-defined type @scheme[Date]. To define
|
||||
@scheme[Date], we provide all the information usually found in a
|
||||
@scheme[define-struct], but added type annotations to the fields using
|
||||
the @scheme[define-struct:] form.
|
||||
Then we can use the functions that this declaration creates, just as
|
||||
we would have with @scheme[define-struct].
|
||||
|
||||
|
||||
@subsection{Recursive Datatypes and Unions}
|
||||
|
||||
Many data structures involve multiple variants. In Typed Scheme, we
|
||||
represent these using @italic{union types}, written @scheme[(U t1 t2 ...)].
|
||||
|
||||
@schememod[
|
||||
typed-scheme
|
||||
(define-type-alias Tree (U leaf node))
|
||||
(define-struct: leaf ([val : Number]))
|
||||
(define-struct: node ([left : Tree] [right : Tree]))
|
||||
|
||||
(: tree-height (Tree -> Number))
|
||||
(define (tree-height t)
|
||||
(cond [(leaf? t) 1]
|
||||
[else (max (+ 1 (tree-height (node-left t)))
|
||||
(+ 1 (tree-height (node-right t))))]))
|
||||
|
||||
(: tree-sum (Tree -> Number))
|
||||
(define (tree-sum t)
|
||||
(cond [(leaf? t) (leaf-val t)]
|
||||
[else (+ (tree-sum (node-left t))
|
||||
(tree-sum (node-right t)))]))
|
||||
]
|
||||
|
||||
In this module, we have defined two new datatypes: @scheme[leaf] and
|
||||
@scheme[node]. We've also defined the type alias @scheme[Tree] to be
|
||||
@scheme[(U node leaf)], which represents a binary tree of numbers. In
|
||||
essence, we are saying that the @scheme[tree-height] function accepts
|
||||
a @scheme[Tree], which is either a @scheme[node] or a @scheme[leaf],
|
||||
and produces a number.
|
||||
|
||||
In order to calculate interesting facts about trees, we have to take
|
||||
them apart and get at their contents. But since accessors such as
|
||||
@scheme[node-left] require a @scheme[node] as input, not a
|
||||
@scheme[Tree], we have to determine which kind of input we
|
||||
were passed.
|
||||
|
||||
For this purpose, we use the predicates that come with each defined
|
||||
structure. For example, the @scheme[leaf?] predicate distinguishes
|
||||
@scheme[leaf]s from all other Typed Scheme values. Therefore, in the
|
||||
first branch of the @scheme[cond] clause in @scheme[tree-sum], we know
|
||||
that @scheme[t] is a @scheme[leaf], and therefore we can get its value
|
||||
with the @scheme[leaf-val] function.
|
||||
|
||||
In the else clauses of both functions, we know that @scheme[t] is not
|
||||
a @scheme[leaf], and since the type of @scheme[t] was @scheme[Tree] by
|
||||
process of elimination we can determine that @scheme[t] must be a
|
||||
@scheme[node]. Therefore, we can use accessors such as
|
||||
@scheme[node-left] and @scheme[node-right] with @scheme[t] as input.
|
||||
|
||||
@section[#:tag "poly"]{Polymorphism}
|
||||
|
||||
Typed Scheme offers abstraction over types as well as values.
|
||||
|
||||
@subsection{Polymorphic Data Structures}
|
||||
|
||||
Virtually every Scheme program uses lists and sexpressions. Fortunately, Typed
|
||||
Scheme can handle these as well. A simple list processing program can be
|
||||
written like this:
|
||||
|
||||
@schememod[
|
||||
typed-scheme
|
||||
(: sum-list ((Listof Number) -> Number))
|
||||
(define (sum-list l)
|
||||
(cond [(null? l) 0]
|
||||
[else (+ (car l) (sum-list (cdr l)))]))
|
||||
]
|
||||
|
||||
This looks similar to our earlier programs --- except for the type
|
||||
of @scheme[l], which looks like a function application. In fact, it's
|
||||
a use of the @italic{type constructor} @scheme[Listof], which takes
|
||||
another type as its input, here @scheme[Number]. We can use
|
||||
@scheme[Listof] to construct the type of any kind of list we might
|
||||
want.
|
||||
|
||||
We can define our own type constructors as well. For example, here is
|
||||
an analog of the @tt{Maybe} type constructor from Haskell:
|
||||
|
||||
@schememod[
|
||||
typed-scheme
|
||||
(define-struct: Nothing ())
|
||||
(define-struct: (a) Just ([v : a]))
|
||||
|
||||
(define-type-alias (Maybe a) (U Nothing (Just a)))
|
||||
|
||||
(: find (Number (Listof Number) -> (Maybe Number)))
|
||||
(define (find v l)
|
||||
(cond [(null? l) (make-Nothing)]
|
||||
[(= v (car l)) (make-Just v)]
|
||||
[else (find v (cdr l))]))
|
||||
]
|
||||
|
||||
The first @scheme[define-struct:] defines @scheme[Nothing] to be
|
||||
a structure with no contents.
|
||||
|
||||
The second definition
|
||||
|
||||
@schemeblock[
|
||||
(define-struct: (a) Just ([v : a]))
|
||||
]
|
||||
|
||||
creates a parameterized type, @scheme[Just], which is a structure with
|
||||
one element, whose type is that of the type argument to
|
||||
@scheme[Just]. Here the type parameters (only one, @scheme[a], in
|
||||
this case) are written before the type name, and can be referred to in
|
||||
the types of the fields.
|
||||
|
||||
The type alias definiton
|
||||
@schemeblock[
|
||||
(define-type-alias (Maybe a) (U Nothing (Just a)))
|
||||
]
|
||||
creates a parameterized alias --- @scheme[Maybe] is a potential
|
||||
container for whatever type is supplied.
|
||||
|
||||
The @scheme[find] function takes a number @scheme[v] and list, and
|
||||
produces @scheme[(make-Just v)] when the number is found in the list,
|
||||
and @scheme[(make-Nothing)] otherwise. Therefore, it produces a
|
||||
@scheme[(Maybe Number)], just as the annotation specified.
|
||||
|
||||
@subsection{Polymorphic Functions}
|
||||
|
||||
Sometimes functions over polymorphic data structures only concern
|
||||
themselves with the form of the structure. For example, one might
|
||||
write a function that takes the length of a list of numbers:
|
||||
|
||||
@schememod[
|
||||
typed-scheme
|
||||
(: list-number-length ((Listof Number) -> Integer))
|
||||
(define (list-number-length l)
|
||||
(if (null? l)
|
||||
0
|
||||
(add1 (list-number-length (cdr l)))))]
|
||||
|
||||
and also a function that takes the length of a list of strings:
|
||||
|
||||
@schememod[
|
||||
typed-scheme
|
||||
(: list-string-length ((Listof String) -> Integer))
|
||||
(define (list-string-length l)
|
||||
(if (null? l)
|
||||
0
|
||||
(add1 (list-string-length (cdr l)))))]
|
||||
|
||||
Notice that both of these functions have almost exactly the same
|
||||
definition; the only difference is the name of the function. This
|
||||
is because neither function uses the type of the elements in the
|
||||
definition.
|
||||
|
||||
We can abstract over the type of the element as follows:
|
||||
|
||||
@schememod[
|
||||
typed-scheme
|
||||
(: list-length (All (A) ((Listof A) -> Integer)))
|
||||
(define (list-length l)
|
||||
(if (null? l)
|
||||
0
|
||||
(add1 (list-length (cdr l)))))]
|
||||
|
||||
The new type constructor @scheme[All] takes a list of type
|
||||
variables and a body type. The type variables are allowed to
|
||||
appear free in the body of the @scheme[All] form.
|
||||
|
||||
}
|
332
collects/typed-scheme/scribblings/ts-reference.scrbl
Normal file
332
collects/typed-scheme/scribblings/ts-reference.scrbl
Normal file
|
@ -0,0 +1,332 @@
|
|||
#lang scribble/manual
|
||||
|
||||
@begin[(require "utils.ss" scribble/eval
|
||||
scheme/sandbox)
|
||||
(require (for-label (only-meta-in 0 typed/scheme)
|
||||
scheme/list srfi/14
|
||||
version/check))]
|
||||
|
||||
|
||||
@title[#:tag "top"]{The Typed Scheme Reference}
|
||||
|
||||
@author["Sam Tobin-Hochstadt"]
|
||||
|
||||
@(defmodulelang* (typed/scheme/base typed/scheme)
|
||||
#:use-sources (typed-scheme/typed-scheme typed-scheme/private/prims))
|
||||
|
||||
@section[#:tag "type-ref"]{Type Reference}
|
||||
|
||||
@subsubsub*section{Base Types}
|
||||
@deftogether[(
|
||||
@defidform[Number]
|
||||
@defidform[Real]
|
||||
@defidform[Integer]
|
||||
@defidform[Natural]
|
||||
@defidform[Exact-Positive-Integer]
|
||||
@defidform[Boolean]
|
||||
@defidform[True]
|
||||
@defidform[False]
|
||||
@defidform[String]
|
||||
@defidform[Keyword]
|
||||
@defidform[Symbol]
|
||||
@defidform[Void]
|
||||
@defidform[Input-Port]
|
||||
@defidform[Output-Port]
|
||||
@defidform[Path]
|
||||
@defidform[Regexp]
|
||||
@defidform[PRegexp]
|
||||
@defidform[Syntax]
|
||||
@defidform[Identifier]
|
||||
@defidform[Bytes]
|
||||
@defidform[Namespace]
|
||||
@defidform[EOF]
|
||||
@defidform[Continuation-Mark-Set]
|
||||
@defidform[Char])]{
|
||||
These types represent primitive Scheme data. Note that @scheme[Integer] represents exact integers.}
|
||||
|
||||
@defidform[Any]{Any Scheme value. All other types are subtypes of @scheme[Any].}
|
||||
|
||||
@defidform[Nothing]{The empty type. No values inhabit this type, and
|
||||
any expression of this type will not evaluate to a value.}
|
||||
|
||||
|
||||
The following base types are parameteric in their type arguments.
|
||||
|
||||
@defform[(Listof t)]{Homogenous @rtech{lists} of @scheme[t]}
|
||||
@defform[(Boxof t)]{A @rtech{box} of @scheme[t]}
|
||||
@defform[(Syntaxof t)]{A @rtech{syntax object} containing a @scheme[t]}
|
||||
@defform[(Vectorof t)]{Homogenous @rtech{vectors} of @scheme[t]}
|
||||
@defform[(Option t)]{Either @scheme[t] of @scheme[#f]}
|
||||
@defform*[[(Parameter t)
|
||||
(Parameter s t)]]{A @rtech{parameter} of @scheme[t]. If two type arguments are supplied,
|
||||
the first is the type the parameter accepts, and the second is the type returned.}
|
||||
@defform[(Pair s t)]{is the pair containing @scheme[s] as the @scheme[car]
|
||||
and @scheme[t] as the @scheme[cdr]}
|
||||
@defform[(HashTable k v)]{is the type of a @rtech{hash table} with key type
|
||||
@scheme[k] and value type @scheme[v].}
|
||||
|
||||
@subsubsub*section{Type Constructors}
|
||||
|
||||
@defform*[#:id -> #:literals (* ...)
|
||||
[(dom ... -> rng)
|
||||
(dom ... rest * -> rng)
|
||||
(dom ... rest ... bound -> rng)
|
||||
(dom -> rng : pred)]]{is the type of functions from the (possibly-empty)
|
||||
sequence @scheme[dom ...] to the @scheme[rng] type. The second form
|
||||
specifies a uniform rest argument of type @scheme[rest], and the
|
||||
third form specifies a non-uniform rest argument of type
|
||||
@scheme[rest] with bound @scheme[bound]. In the third form, the
|
||||
second occurrence of @scheme[...] is literal, and @scheme[bound]
|
||||
must be an identifier denoting a type variable. In the fourth form,
|
||||
there must be only one @scheme[dom] and @scheme[pred] is the type
|
||||
checked by the predicate.}
|
||||
@defform[(U t ...)]{is the union of the types @scheme[t ...]}
|
||||
@defform[(case-lambda fun-ty ...)]{is a function that behaves like all of
|
||||
the @scheme[fun-ty]s. The @scheme[fun-ty]s must all be function
|
||||
types constructed with @scheme[->].}
|
||||
@defform/none[(t t1 t2 ...)]{is the instantiation of the parametric type
|
||||
@scheme[t] at types @scheme[t1 t2 ...]}
|
||||
@defform[(All (v ...) t)]{is a parameterization of type @scheme[t], with
|
||||
type variables @scheme[v ...]}
|
||||
@defform[(List t ...)]{is the type of the list with one element, in order,
|
||||
for each type provided to the @scheme[List] type constructor.}
|
||||
@defform[(values t ...)]{is the type of a sequence of multiple values, with
|
||||
types @scheme[t ...]. This can only appear as the return type of a
|
||||
function.}
|
||||
@defform/none[v]{where @scheme[v] is a number, boolean or string, is the singleton type containing only that value}
|
||||
@defform/none[(quote val)]{where @scheme[val] is a Scheme value, is the singleton type containing only that value}
|
||||
@defform/none[i]{where @scheme[i] is an identifier can be a reference to a type
|
||||
name or a type variable}
|
||||
@defform[(Rec n t)]{is a recursive type where @scheme[n] is bound to the
|
||||
recursive type in the body @scheme[t]}
|
||||
|
||||
Other types cannot be written by the programmer, but are used
|
||||
internally and may appear in error messages.
|
||||
|
||||
@defform/none[(struct:n (t ...))]{is the type of structures named
|
||||
@scheme[n] with field types @scheme[t]. There may be multiple such
|
||||
types with the same printed representation.}
|
||||
@defform/none[<n>]{is the printed representation of a reference to the
|
||||
type variable @scheme[n]}
|
||||
|
||||
@section[#:tag "special-forms"]{Special Form Reference}
|
||||
|
||||
Typed Scheme provides a variety of special forms above and beyond
|
||||
those in PLT Scheme. They are used for annotating variables with types,
|
||||
creating new types, and annotating expressions.
|
||||
|
||||
@subsection{Binding Forms}
|
||||
|
||||
@scheme[_loop], @scheme[_f], @scheme[_a], and @scheme[_v] are names, @scheme[_t] is a type.
|
||||
@scheme[_e] is an expression and @scheme[_body] is a block.
|
||||
|
||||
@defform*[[
|
||||
(let: ([v : t e] ...) . body)
|
||||
(let: loop : t0 ([v : t e] ...) . body)]]{
|
||||
Local bindings, like @scheme[let], each with
|
||||
associated types. In the second form, @scheme[_t0] is the type of the
|
||||
result of @scheme[_loop] (and thus the result of the entire
|
||||
expression as well as the final
|
||||
expression in @scheme[body]).}
|
||||
@deftogether[[
|
||||
@defform[(letrec: ([v : t e] ...) . body)]
|
||||
@defform[(let*: ([v : t e] ...) . body)]
|
||||
@defform[(let-values: ([([v : t] ...) e] ...) . body)]
|
||||
@defform[(letrec-values: ([([v : t] ...) e] ...) . body)]
|
||||
@defform[(let*-values: ([([v : t] ...) e] ...) . body)]]]{
|
||||
Type-annotated versions of
|
||||
@scheme[letrec], @scheme[let*], @scheme[let-values],
|
||||
@scheme[letrec-values], and @scheme[let*-values].}
|
||||
|
||||
@deftogether[[
|
||||
@defform[(let/cc: v : t . body)]
|
||||
@defform[(let/ec: v : t . body)]]]{Type-annotated versions of
|
||||
@scheme[let/cc] and @scheme[let/ec].}
|
||||
|
||||
@subsection{Anonymous Functions}
|
||||
|
||||
@defform/subs[(lambda: formals . body)
|
||||
([formals ([v : t] ...)
|
||||
([v : t] ... . [v : t])])]{
|
||||
A function of the formal arguments @scheme[v], where each formal
|
||||
argument has the associated type. If a rest argument is present, then
|
||||
it has type @scheme[(Listof t)].}
|
||||
@defform[(λ: formals . body)]{
|
||||
An alias for the same form using @scheme[lambda:].}
|
||||
@defform[(plambda: (a ...) formals . body)]{
|
||||
A polymorphic function, abstracted over the type variables
|
||||
@scheme[a]. The type variables @scheme[a] are bound in both the types
|
||||
of the formal, and in any type expressions in the @scheme[body].}
|
||||
@defform[(case-lambda: [formals body] ...)]{
|
||||
A function of multiple arities. Note that each @scheme[formals] must have a
|
||||
different arity.}
|
||||
@defform[(pcase-lambda: (a ...) [formals body] ...)]{
|
||||
A polymorphic function of multiple arities.}
|
||||
|
||||
@subsection{Loops}
|
||||
|
||||
@defform/subs[(do: : u ([id : t init-expr step-expr-maybe] ...)
|
||||
(stop?-expr finish-expr ...)
|
||||
expr ...+)
|
||||
([step-expr-maybe code:blank
|
||||
step-expr])]{
|
||||
Like @scheme[do], but each @scheme[id] having the associated type @scheme[t], and
|
||||
the final body @scheme[expr] having the type @scheme[u].
|
||||
}
|
||||
|
||||
|
||||
@subsection{Definitions}
|
||||
|
||||
@defform*[[(define: v : t e)
|
||||
(define: (f . formals) : t . body)
|
||||
(define: (a ...) (f . formals) : t . body)]]{
|
||||
These forms define variables, with annotated types. The first form
|
||||
defines @scheme[v] with type @scheme[t] and value @scheme[e]. The
|
||||
second and third forms defines a function @scheme[f] with appropriate
|
||||
types. In most cases, use of @scheme[:] is preferred to use of @scheme[define:].}
|
||||
|
||||
|
||||
|
||||
@subsection{Structure Definitions}
|
||||
@defform/subs[
|
||||
(define-struct: maybe-type-vars name-spec ([f : t] ...))
|
||||
([maybe-type-vars code:blank (v ...)]
|
||||
[name-spec name (name parent)])]{
|
||||
Defines a @rtech{structure} with the name @scheme[name], where the
|
||||
fields @scheme[f] have types @scheme[t]. When @scheme[parent], the
|
||||
structure is a substructure of @scheme[parent]. When
|
||||
@scheme[maybe-type-vars] is present, the structure is polymorphic in the type
|
||||
variables @scheme[v].}
|
||||
|
||||
@defform/subs[
|
||||
(define-struct/exec: name-spec ([f : t] ...) [e : proc-t])
|
||||
([name-spec name (name parent)])]{
|
||||
Like @scheme[define-struct:], but defines an procedural structure.
|
||||
The procdure @scheme[e] is used as the value for @scheme[prop:procedure], and must have type @scheme[proc-t].}
|
||||
|
||||
@subsection{Type Aliases}
|
||||
@defform*[[(define-type-alias name t)
|
||||
(define-type-alias (name v ...) t)]]{
|
||||
The first form defines @scheme[name] as type, with the same meaning as
|
||||
@scheme[t]. The second form is equivalent to
|
||||
@scheme[(define-type-alias name (All (v ...) t))]. Type aliases may
|
||||
refer to other type aliases or types defined in the same module, but
|
||||
cycles among type aliases are prohibited.}
|
||||
|
||||
|
||||
@subsection{Type Annotation and Instantiation}
|
||||
|
||||
@defform[(: v t)]{This declares that @scheme[v] has type @scheme[t].
|
||||
The definition of @scheme[v] must appear after this declaration. This
|
||||
can be used anywhere a definition form may be used.}
|
||||
|
||||
@defform[(provide: [v t] ...)]{This declares that the @scheme[v]s have
|
||||
the types @scheme[t], and also provides all of the @scheme[v]s.}
|
||||
|
||||
@litchar{#{v : t}} This declares that the variable @scheme[v] has type
|
||||
@scheme[t]. This is legal only for binding occurences of @scheme[_v].
|
||||
|
||||
@defform[(ann e t)]{Ensure that @scheme[e] has type @scheme[t], or
|
||||
some subtype. The entire expression has type @scheme[t].
|
||||
This is legal only in expression contexts.}
|
||||
|
||||
@litchar{#{e :: t}} This is identical to @scheme[(ann e t)].
|
||||
|
||||
@defform[(inst e t ...)]{Instantiate the type of @scheme[e] with types
|
||||
@scheme[t ...]. @scheme[e] must have a polymorphic type with the
|
||||
appropriate number of type variables. This is legal only in expression
|
||||
contexts.}
|
||||
|
||||
@litchar|{#{e @ t ...}}| This is identical to @scheme[(inst e t ...)].
|
||||
|
||||
@subsection{Require}
|
||||
|
||||
Here, @scheme[_m] is a module spec, @scheme[_pred] is an identifier
|
||||
naming a predicate, and @scheme[_r] is an optionally-renamed identifier.
|
||||
|
||||
@defform/subs[#:literals (struct opaque)
|
||||
(require/typed m rt-clause ...)
|
||||
([rt-clause [r t]
|
||||
[struct name ([f : t] ...)]
|
||||
[struct (name parent) ([f : t] ...)]
|
||||
[opaque t pred]])
|
||||
]{This form requires identifiers from the module @scheme[m], giving
|
||||
them the specified types.
|
||||
|
||||
The first form requires @scheme[r], giving it type @scheme[t].
|
||||
|
||||
@index["struct"]{The second and third forms} require the struct with name @scheme[name]
|
||||
with fields @scheme[f ...], where each field has type @scheme[t]. The
|
||||
third form allows a @scheme[parent] structure type to be specified.
|
||||
The parent type must already be a structure type known to Typed
|
||||
Scheme, either built-in or via @scheme[require/typed]. The
|
||||
structure predicate has the appropriate Typed Scheme filter type so
|
||||
that it may be used as a predicate in @scheme[if] expressions in Typed
|
||||
Scheme.
|
||||
|
||||
@index["opaque"]{The fourth case} defines a new type @scheme[t]. @scheme[pred], imported from
|
||||
module @scheme[m], is a predicate for this type. The type is defined
|
||||
as precisely those values to which @scheme[pred] produces
|
||||
@scheme[#t]. @scheme[pred] must have type @scheme[(Any -> Boolean)].
|
||||
Opaque types must be required lexically before they are used.
|
||||
|
||||
In all cases, the identifiers are protected with @rtech{contracts} which
|
||||
enforce the specified types. If this contract fails, the module
|
||||
@scheme[m] is blamed.
|
||||
|
||||
Some types, notably polymorphic types constructed with @scheme[All],
|
||||
cannot be converted to contracts and raise a static error when used in
|
||||
a @scheme[require/typed] form.}
|
||||
|
||||
@section{Libraries Provided With Typed Scheme}
|
||||
|
||||
The @schememodname[typed/scheme] language corresponds to the
|
||||
@schememodname[scheme] language---that is, any identifier provided
|
||||
by @schememodname[scheme], such as @scheme[modulo] is available by default in
|
||||
@schememodname[typed/scheme].
|
||||
|
||||
@schememod[typed/scheme
|
||||
(modulo 12 2)
|
||||
]
|
||||
|
||||
The @schememodname[typed/scheme/base] language corresponds to the
|
||||
@schememodname[scheme/base] language.
|
||||
|
||||
Some libraries have counterparts in the @schemeidfont{typed}
|
||||
collection, which provide the same exports as the untyped versions.
|
||||
Such libraries include @schememodname[srfi/14],
|
||||
@schememodname[net/url], and many others.
|
||||
|
||||
@schememod[typed/scheme
|
||||
(require typed/srfi/14)
|
||||
(char-set= (string->char-set "hello")
|
||||
(string->char-set "olleh"))
|
||||
]
|
||||
|
||||
To participate in making more libraries available, please visit
|
||||
@link["http://www.ccs.neu.edu/home/samth/adapt/"]{here}.
|
||||
|
||||
|
||||
Other libraries can be used with Typed Scheme via
|
||||
@scheme[require/typed].
|
||||
|
||||
@schememod[typed/scheme
|
||||
(require/typed version/check
|
||||
[check-version (-> (U Symbol (Listof Any)))])
|
||||
(check-version)
|
||||
]
|
||||
|
||||
@section{Typed Scheme Syntax Without Type Checking}
|
||||
|
||||
@defmodulelang[typed-scheme/no-check]
|
||||
|
||||
On occasions where the Typed Scheme syntax is useful, but actual
|
||||
typechecking is not desired, the @schememodname[typed-scheme/no-check]
|
||||
language is useful. It provides the same bindings and syntax as Typed
|
||||
Scheme, but does no type checking.
|
||||
|
||||
Examples:
|
||||
|
||||
@schememod[typed-scheme/no-check
|
||||
(: x Number)
|
||||
(define x "not-a-number")]
|
260
collects/typed-scheme/scribblings/types.scrbl
Normal file
260
collects/typed-scheme/scribblings/types.scrbl
Normal file
|
@ -0,0 +1,260 @@
|
|||
#lang scribble/manual
|
||||
|
||||
@begin[(require "utils.ss"
|
||||
scribble/core scribble/eval
|
||||
(for-label (only-meta-in 0 typed/scheme) mzlib/etc))]
|
||||
|
||||
@(define the-eval (make-base-eval))
|
||||
@(the-eval '(require typed/scheme))
|
||||
|
||||
@title[#:tag "types"]{Types in Typed Scheme}
|
||||
|
||||
Typed Scheme provides a rich variety of types to describe data. This
|
||||
section introduces them.
|
||||
|
||||
@section{Basic Types}
|
||||
|
||||
The most basic types in Typed Scheme are those for primitive data,
|
||||
such as @scheme[True] and @scheme[False] for booleans, @scheme[String]
|
||||
for strings, and @scheme[Char] for characters.
|
||||
|
||||
@interaction[#:eval the-eval
|
||||
'"hello, world"
|
||||
#\f
|
||||
#t
|
||||
#f]
|
||||
|
||||
Each symbol is given a unique type containing only that symbol. The
|
||||
@scheme[Symbol] type includes all symbols.
|
||||
|
||||
@interaction[#:eval the-eval
|
||||
'foo
|
||||
'bar]
|
||||
|
||||
Typed Scheme also provides a rich hierarchy for describing particular
|
||||
kinds of numbers.
|
||||
|
||||
@interaction[#:eval the-eval
|
||||
0
|
||||
-7
|
||||
14
|
||||
3.2
|
||||
7+2.8i]
|
||||
|
||||
Finally, any value is itself a type:
|
||||
|
||||
@interaction[#:eval the-eval
|
||||
(ann 23 : 23)]
|
||||
|
||||
@section{Function Types}
|
||||
|
||||
We have already seen some examples of function types. Function types
|
||||
are constructed using @scheme[->], with the argument types before the
|
||||
arrow and the result type after. Here are some example function
|
||||
types:
|
||||
|
||||
@schemeblock[
|
||||
(Number -> Number)
|
||||
(String String -> Boolean)
|
||||
(Char -> (values String Natural))
|
||||
]
|
||||
|
||||
The first type requires a @scheme[Number] as input, and produces a
|
||||
@scheme[Number]. The second requires two arguments. The third takes
|
||||
one argument, and produces @rtech{multiple values}, of types
|
||||
@scheme[String] and @scheme[Natural]. Here are example functions for
|
||||
each of these types.
|
||||
|
||||
@interaction[#:eval the-eval
|
||||
(lambda: ([x : Number]) x)
|
||||
(lambda: ([a : String] [b : String]) (equal? a b))
|
||||
(lambda: ([c : Char]) (values (string c) (char->integer c)))]
|
||||
|
||||
|
||||
@section{Union Types}
|
||||
|
||||
Sometimes a value can be one of several types. To specify this, we
|
||||
can use a union type, written with the type constructor @scheme[U].
|
||||
|
||||
@interaction[#:eval the-eval
|
||||
(let ([a-number 37])
|
||||
(if (even? a-number)
|
||||
'yes
|
||||
'no))]
|
||||
|
||||
Any number of types can be combined together in a union, and nested
|
||||
unions are flattened.
|
||||
|
||||
@schemeblock[(U Number String Boolean Char)]
|
||||
|
||||
@section{Recursive Types}
|
||||
|
||||
@deftech{Recursive types} can refer to themselves. This allows a type
|
||||
to describe an infinite family of data. For example, this is the type
|
||||
of binary trees of numbers.
|
||||
|
||||
@schemeblock[
|
||||
(Rec BT (U Number (Pair BT BT)))]
|
||||
|
||||
The @scheme[Rec] type constructor specifies that the type @scheme[BT]
|
||||
refers to the whole binary tree type within the body of the
|
||||
@scheme[Rec] form.
|
||||
|
||||
@section{Structure Types}
|
||||
|
||||
Using @scheme[define-struct:] introduces new types, distinct from any
|
||||
previous type.
|
||||
|
||||
@schemeblock[(define-struct: point ([x : Real] [y : Real]))]
|
||||
|
||||
Instances of this structure, such as @scheme[(make-point 7 12)], have type @scheme[point].
|
||||
|
||||
@section{Subtyping}
|
||||
|
||||
In Typed Scheme, all types are placed in a hierarchy, based on what
|
||||
values are included in the type. When an element of a larger type is
|
||||
expected, an element of a smaller type may be provided. The smaller
|
||||
type is called a @deftech{subtype} of the larger type. The larger
|
||||
type is called a @deftech{supertype}. For example,
|
||||
@scheme[Integer] is a subtype of @scheme[Real], since every integer is
|
||||
a real number. Therefore, the following code is acceptable to the
|
||||
type checker:
|
||||
|
||||
@schemeblock[
|
||||
(: f (Real -> Real))
|
||||
(define (f x) (* x 0.75))
|
||||
|
||||
(: x Integer)
|
||||
(define x -125)
|
||||
|
||||
(f x)
|
||||
]
|
||||
|
||||
All types are subtypes of the @scheme[Any] type.
|
||||
|
||||
The elements of a union type are individually subtypes of the whole
|
||||
union, so @scheme[String] is a subtype of @scheme[(U String Number)].
|
||||
One function type is a subtype of another if they have the same number
|
||||
of arguments, the subtype's arguments are more permissive (is a supertype), and the
|
||||
subtype's result type is less permissive (is a subtype).
|
||||
For example, @scheme[(Any -> String)] is a subtype of @scheme[(Number
|
||||
-> (U String #f))].
|
||||
|
||||
@;@section{Occurrence Typing}
|
||||
|
||||
@section{Polymorphism}
|
||||
|
||||
Typed Scheme offers abstraction over types as well as values.
|
||||
|
||||
@subsection{Polymorphic Data Structures}
|
||||
|
||||
Virtually every Scheme program uses lists and sexpressions. Fortunately, Typed
|
||||
Scheme can handle these as well. A simple list processing program can be
|
||||
written like this:
|
||||
|
||||
@schememod[
|
||||
typed/scheme
|
||||
(: sum-list ((Listof Number) -> Number))
|
||||
(define (sum-list l)
|
||||
(cond [(null? l) 0]
|
||||
[else (+ (car l) (sum-list (cdr l)))]))
|
||||
]
|
||||
|
||||
This looks similar to our earlier programs --- except for the type
|
||||
of @scheme[l], which looks like a function application. In fact, it's
|
||||
a use of the @italic{type constructor} @scheme[Listof], which takes
|
||||
another type as its input, here @scheme[Number]. We can use
|
||||
@scheme[Listof] to construct the type of any kind of list we might
|
||||
want.
|
||||
|
||||
We can define our own type constructors as well. For example, here is
|
||||
an analog of the @tt{Maybe} type constructor from Haskell:
|
||||
|
||||
@schememod[
|
||||
typed/scheme
|
||||
(define-struct: None ())
|
||||
(define-struct: (a) Some ([v : a]))
|
||||
|
||||
(define-type-alias (Opt a) (U None (Some a)))
|
||||
|
||||
(: find (Number (Listof Number) -> (Opt Number)))
|
||||
(define (find v l)
|
||||
(cond [(null? l) (make-None)]
|
||||
[(= v (car l)) (make-Some v)]
|
||||
[else (find v (cdr l))]))
|
||||
]
|
||||
|
||||
The first @scheme[define-struct:] defines @scheme[None] to be
|
||||
a structure with no contents.
|
||||
|
||||
The second definition
|
||||
|
||||
@schemeblock[
|
||||
(define-struct: (a) Some ([v : a]))
|
||||
]
|
||||
|
||||
creates a parameterized type, @scheme[Just], which is a structure with
|
||||
one element, whose type is that of the type argument to
|
||||
@scheme[Just]. Here the type parameters (only one, @scheme[a], in
|
||||
this case) are written before the type name, and can be referred to in
|
||||
the types of the fields.
|
||||
|
||||
The type alias definiton
|
||||
@schemeblock[
|
||||
(define-type-alias (Opt a) (U None (Some a)))
|
||||
]
|
||||
creates a parameterized alias --- @scheme[Opt] is a potential
|
||||
container for whatever type is supplied.
|
||||
|
||||
The @scheme[find] function takes a number @scheme[v] and list, and
|
||||
produces @scheme[(make-Some v)] when the number is found in the list,
|
||||
and @scheme[(make-None)] otherwise. Therefore, it produces a
|
||||
@scheme[(Opt Number)], just as the annotation specified.
|
||||
|
||||
@subsection{Polymorphic Functions}
|
||||
|
||||
Sometimes functions over polymorphic data structures only concern
|
||||
themselves with the form of the structure. For example, one might
|
||||
write a function that takes the length of a list of numbers:
|
||||
|
||||
@schememod[
|
||||
typed/scheme
|
||||
(: list-number-length ((Listof Number) -> Integer))
|
||||
(define (list-number-length l)
|
||||
(if (null? l)
|
||||
0
|
||||
(add1 (list-number-length (cdr l)))))]
|
||||
|
||||
and also a function that takes the length of a list of strings:
|
||||
|
||||
@schememod[
|
||||
typed/scheme
|
||||
(: list-string-length ((Listof String) -> Integer))
|
||||
(define (list-string-length l)
|
||||
(if (null? l)
|
||||
0
|
||||
(add1 (list-string-length (cdr l)))))]
|
||||
|
||||
Notice that both of these functions have almost exactly the same
|
||||
definition; the only difference is the name of the function. This
|
||||
is because neither function uses the type of the elements in the
|
||||
definition.
|
||||
|
||||
We can abstract over the type of the element as follows:
|
||||
|
||||
@schememod[
|
||||
typed/scheme
|
||||
(: list-length (All (A) ((Listof A) -> Integer)))
|
||||
(define (list-length l)
|
||||
(if (null? l)
|
||||
0
|
||||
(add1 (list-length (cdr l)))))]
|
||||
|
||||
The new type constructor @scheme[All] takes a list of type
|
||||
variables and a body type. The type variables are allowed to
|
||||
appear free in the body of the @scheme[All] form.
|
||||
|
||||
|
||||
@include-section["varargs.scrbl"]
|
||||
|
||||
@;@section{Refinement Types}
|
23
collects/typed-scheme/scribblings/utils.ss
Normal file
23
collects/typed-scheme/scribblings/utils.ss
Normal file
|
@ -0,0 +1,23 @@
|
|||
#lang at-exp scheme
|
||||
|
||||
(require scribble/manual scribble/core)
|
||||
(provide (all-defined-out))
|
||||
|
||||
(define (item* header . args) (apply item @bold[header]{: } args))
|
||||
(define-syntax-rule (tmod forms ...) (schememod typed-scheme forms ...))
|
||||
(define (gtech . x)
|
||||
(apply tech x #:doc '(lib "scribblings/guide/guide.scrbl")))
|
||||
(define (rtech . x)
|
||||
(apply tech x #:doc '(lib "scribblings/reference/reference.scrbl")))
|
||||
|
||||
(define ** (let ([* #f]) @scheme[*]))
|
||||
|
||||
(define-syntax-rule (annvar x t)
|
||||
(make-element #f (list @schemeparenfont["#{"]
|
||||
@scheme[x : t]
|
||||
@schemeparenfont["}"])))
|
||||
|
||||
(define-syntax-rule (annexpr x t)
|
||||
(make-element #f (list @schemeparenfont["#{"]
|
||||
@scheme[x :: t]
|
||||
@schemeparenfont["}"])))
|
105
collects/typed-scheme/scribblings/varargs.scrbl
Normal file
105
collects/typed-scheme/scribblings/varargs.scrbl
Normal file
|
@ -0,0 +1,105 @@
|
|||
#lang scribble/manual
|
||||
|
||||
@begin[(require "utils.ss" (for-label typed/scheme/base))]
|
||||
|
||||
@title[#:tag "varargs"]{Variable-Arity Functions: Programming with Rest Arguments}
|
||||
|
||||
Typed Scheme can handle some uses of rest arguments.
|
||||
|
||||
@section{Uniform Variable-Arity Functions}
|
||||
|
||||
In Scheme, one can write a function that takes an arbitrary
|
||||
number of arguments as follows:
|
||||
|
||||
@schememod[
|
||||
scheme
|
||||
(define (sum . xs)
|
||||
(if (null? xs)
|
||||
0
|
||||
(+ (car xs) (apply sum (cdr xs)))))
|
||||
|
||||
(sum)
|
||||
(sum 1 2 3 4)
|
||||
(sum 1 3)]
|
||||
|
||||
The arguments to the function that are in excess to the
|
||||
non-rest arguments are converted to a list which is assigned
|
||||
to the rest parameter. So the examples above evaluate to
|
||||
@schemeresult[0], @schemeresult[10], and @schemeresult[4].
|
||||
|
||||
We can define such functions in Typed Scheme as well:
|
||||
|
||||
@schememod[
|
||||
typed/scheme
|
||||
(: sum (Number * -> Number))
|
||||
(define (sum . xs)
|
||||
(if (null? xs)
|
||||
0
|
||||
(+ (car xs) (apply sum (cdr xs)))))]
|
||||
|
||||
This type can be assigned to the function when each element
|
||||
of the rest parameter is used at the same type.
|
||||
|
||||
@section{Non-Uniform Variable-Arity Functions}
|
||||
|
||||
However, the rest argument may be used as a heterogeneous list.
|
||||
Take this (simplified) definition of the Scheme function @scheme[map]:
|
||||
|
||||
@schememod[
|
||||
scheme
|
||||
(define (map f as . bss)
|
||||
(if (or (null? as)
|
||||
(ormap null? bss))
|
||||
null
|
||||
(cons (apply f (car as) (map car bss))
|
||||
(apply map f (cdr as) (map cdr bss)))))
|
||||
|
||||
(map add1 (list 1 2 3 4))
|
||||
(map cons (list 1 2 3) (list (list 4) (list 5) (list 6)))
|
||||
(map + (list 1 2 3) (list 2 3 4) (list 3 4 5) (list 4 5 6))]
|
||||
|
||||
Here the different lists that make up the rest argument @scheme[bss]
|
||||
can be of different types, but the type of each list in @scheme[bss]
|
||||
corresponds to the type of the corresponding argument of @scheme[f].
|
||||
We also know that, in order to avoid arity errors, the length of
|
||||
@scheme[bss] must be one less than the arity of @scheme[f] (as
|
||||
@scheme[as] corresponds to the first argument of @scheme[f]).
|
||||
|
||||
The example uses of @scheme[map] evaluate to @schemeresult[(list 2 3 4 5)],
|
||||
@schemeresult[(list (list 1 4) (list 2 5) (list 3 6))], and
|
||||
@schemeresult[(list 10 14 18)].
|
||||
|
||||
In Typed Scheme, we can define @scheme[map] as follows:
|
||||
|
||||
@schememod[
|
||||
typed/scheme
|
||||
(: map
|
||||
(All (C A B ...)
|
||||
((A B ... B -> C) (Listof A) (Listof B) ... B
|
||||
->
|
||||
(Listof C))))
|
||||
(define (map f as . bss)
|
||||
(if (or (null? as)
|
||||
(ormap null? bss))
|
||||
null
|
||||
(cons (apply f (car as) (map car bss))
|
||||
(apply map f (cdr as) (map cdr bss)))))]
|
||||
|
||||
Note that the type variable @scheme[B] is followed by an
|
||||
ellipsis. This denotes that B is a dotted type variable
|
||||
which corresponds to a list of types, much as a rest
|
||||
argument corresponds to a list of values. When the type
|
||||
of @scheme[map] is instantiated at a list of types, then
|
||||
each type @scheme[t] which is bound by @scheme[B] (notated by
|
||||
the dotted pre-type @scheme[t ... B]) is expanded to a number
|
||||
of copies of @scheme[t] equal to the length of the sequence
|
||||
assigned to @scheme[B]. Then @scheme[B] in each copy is
|
||||
replaced with the corresponding type from the sequence.
|
||||
|
||||
So the type of @scheme[(inst map Integer Boolean String Number)]
|
||||
is
|
||||
|
||||
@scheme[((Boolean String Number -> Integer)
|
||||
(Listof Boolean) (Listof String) (Listof Number)
|
||||
->
|
||||
(Listof Integer))].
|
Loading…
Reference in New Issue
Block a user