typed-racket/typed-racket-test/succeed/new-metrics.rkt
2014-12-16 10:07:25 -05:00

509 lines
18 KiB
Racket

#lang typed-scheme
(provide results run-all-tests)
(require (except-in scheme/list count) scheme/math scheme/path mzlib/match
(prefix-in srfi13: srfi/13) scheme/file
(for-syntax scheme/base))
(require/typed (prefix-in srfi48: srfi/48)
[srfi48:format ( Port String String Any * -> Any)] )
(define-type-alias NumF (U Number #f))
(define-type-alias (Unit C) ((C -> (Listof NumF)) -> (Path -> (Listof (U #f (Listof NumF))))))
;; ============================================================
;; CONFIG
(define COLLECTS-PATH (make-parameter (build-path "/home/samth/Desktop/collects-tmp/")))
(define PLANET-CODE-PATH (make-parameter (build-path "/home/samth/Desktop/most-recent-archives/")))
; collects-path : a path to the collects directory to compare
; planet-code-path : a path to the "other" code to compare (i.e. unpacked, most recent versions
; of all planet packages)
;; ============================================================
;; STATS
(: t-test ((Listof Number) (Listof Number) -> Number))
;; computes t value for the given sequences. t-tests measure
;; the extent to which difference in mean between two sets of
;; _interval-valued_ samples (e.g. distances, times, weights, counts ...)
;; can be explained by chance. Generally speaking, higher absolute
;; values of t correspond to higher confidence that an observed difference
;; in mean cannot be explained by chance.
(define (t-test seqA seqB)
(manual-t-test
(avg seqA) (avg seqB)
(variance seqA) (variance seqB)
(length seqA) (length seqB)))
(: manual-t-test (Number Number Number Number Number Number -> Number))
(define (manual-t-test avga avgb vara varb cta ctb)
(/ (- avga avgb)
(assert (sqrt (+ (/ vara cta) (/ varb ctb))) number?)))
(: chi-square ((Listof Number) (Listof Number) -> Number))
;; chi-square is a simple measure of the extent to which the
;; difference in the frequency of 0's and 1's in the first
;; sequence and their frequency in the second sequence can
;; be explained by chance. higher numbers means higher confidence
;; that they cannot.
(define (chi-square seqA seqB)
(with-handlers ([exn:fail? (λ (e) +nan.0)])
(let* ([ct-a (length seqA)]
[ct-b (length seqB)]
[total-subjects (+ ct-a ct-b)]
[a-hits (apply + seqA)]
[b-hits (apply + seqB)] ;; these assume that the data is coded as 1 = present, 0 = not present
[a-misses (- ct-a a-hits)]
[b-misses (- ct-b b-hits)]
[table
`((,a-hits ,b-hits)
(,a-misses ,b-misses))]
[expected (λ: ([i : Integer] [j : Integer])
(/ (* (row-total i table) (col-total j table)) total-subjects))])
(exact->inexact
(table-sum
(λ (i j) (/ (sqr (- (expected i j) (table-ref i j table))) (expected i j)))
table)))))
;; ============================================================
;; UNITS OF MEASUREMENT IMPLEMENTATIONS
(: per-module (All (X) (((Listof Any) -> X) -> (Path -> (List (U #f X))))))
(define (per-module f)
(λ (path)
(with-handlers ([exn:fail:read? (λ (e) (list #f))])
(let ([initial-sexp (with-input-from-file path read)])
(match initial-sexp
[`(module ,_ ,_ ,bodies ...)
(list (f bodies))]
[_ (list #f)])))))
(: per-module-top-level-expression ((Any -> (Listof NumF)) -> MetricFn))
(define (per-module-top-level-expression f)
(let ([calc (per-module (λ: ([exprs : (Listof Any)]) (map f exprs)))])
(λ (p) (let ([r (calc p)]) (if (car r) (car r) r)))))
;; ============================================================
;; BASIC CALCULATIONS
;; (for use with metric definitions below)
;; ----------------------------------------
;; depth
(: sexp-depth (Any -> Integer))
(define (sexp-depth sexp)
(cond
[(pair? sexp)
(+ (max-sexp-depth sexp) 1)]
[else 0]))
(: max-sexp-depth (Any -> Integer))
(define (max-sexp-depth losx)
(improper-foldr (λ: ([t : Any] [r : Integer]) (max (sexp-depth t) r)) 0 losx))
(: avg-sexp-depth ((Listof Any) -> Number))
(define (avg-sexp-depth sexps)
(cond
[(null? sexps) 0]
[else (avg (map sexp-depth sexps))]))
;; ----------------------------------------
;; setbang counts
(: count-setbangs/ilist (Any -> Number))
(define (count-setbangs/ilist exprs)
(apply + (imap count-setbangs/expr exprs)))
(: count-setbangs/expr (Any -> Number))
(define (count-setbangs/expr expr)
(match expr
[`(,(? setbang?) ,rest ...) (+ 1 (count-setbangs/ilist rest))]
[('quote _) 0]
[('quasiquote _) 0] ; undercount potentially, but how many `,(set! ...)'s can there be?
[`(,e1 . ,e2) (count-setbangs/ilist expr)]
[_ 0]))
(: setbang? (Any -> Any))
(define (setbang? v)
(and (symbol? v)
(regexp-match #rx"^set(-.*)?!" (symbol->string v))))
;; count-fns
(: count-fns-with-setbangs ((Listof Any) -> Number))
(define (count-fns-with-setbangs exprs)
(apply + (map (λ (e) (if (= (count-setbangs/expr e) 0) 0 1)) exprs)))
(: module-has-setbangs? ((Listof Any) -> Boolean))
(define (module-has-setbangs? exprs) (ormap expr-uses-setbangs? exprs))
(: expr-uses-setbangs? (Any -> Boolean))
(define (expr-uses-setbangs? expr)
(not (= (count-setbangs/expr expr) 0)))
(: setbangs-per-1000-atoms ((Listof Any) -> NumF))
(define (setbangs-per-1000-atoms exprs)
(if (null? exprs)
#f
(let ([set!s (count-setbangs/ilist exprs)]
[atoms (atoms exprs)])
(* (/ set!s atoms) 1000.0))))
;; ----------------------------------------
;; contracts
(: uses-contracts ((Listof Any) -> Boolean))
(define (uses-contracts exprs)
(ormap (λ (e)
(ann
(match e
[`(provide/contract ,_ ...) #t]
[_ #f])
: Boolean))
exprs))
(: contracted-provides ((Listof Any) -> Number))
(define (contracted-provides exprs)
(foldl
(λ: ([t : Any] [r : Number])
(ann
(match t
[(provide/contract ,p ...) (+ (length p) r)]
[_ r]) : Number))
0
exprs))
(: uncontracted-provides ((Listof Any) -> Number))
(define (uncontracted-provides exprs)
(foldl
(λ: ([t : Any] [r : Number])
(ann
(match t
[`(provide ,p ...) (+ (length p) r)]
[_ r]) : Number))
0
exprs))
;; ----------------------------------------
;; macros
(: number-of-macro-definitions (Any -> Number))
(define (number-of-macro-definitions expr)
(match expr
[`(define-syntax ,_ ...) 1]
[`(define-syntaxes (,s ...) ,_ ...) (length s)]
[`(define-syntax-set (,s ...) ,_ ...) (length s)]
[_ 0]))
(: num-of-define-syntax ((Listof Any) -> Number))
(define (num-of-define-syntax exprs)
(foldl (λ: ([t : Any] [r : Number]) (+ (number-of-macro-definitions t) r)) 0 exprs))
;; ----------------------------------------
;; expression size
(: atoms (Any -> Integer))
(define (atoms sexp)
(cond
[(null? sexp) 0]
[(not (pair? sexp)) 1]
[else (+ (atoms (car sexp)) (atoms (cdr sexp)))]))
(: max-atoms ((Listof Any) -> NumF))
(define (max-atoms exprs)
(let ([atom-counts (map atoms exprs)])
(if (null? atom-counts)
#f
(apply max atom-counts))))
(: avg-atoms ((Listof Any) -> NumF))
(define (avg-atoms exprs)
(let ([atom-counts (map atoms exprs)])
(if (null? atom-counts)
#f
(avg (map atoms exprs)))))
(: total-atoms ((Listof Any) -> Number))
(define (total-atoms exprs)
(apply + (map atoms exprs)))
;; ============================================================
;; METRIC DEFINITIONS
;; 'a 'b metric : (string * (listof sexp -> 'a option) * ((listof 'a) (listof 'a) -> 'b)
(define-typed-struct (b c d) metric ([analysis-unit : (Unit c)]
[computation : (c -> d)]
[>display : ((Listof d) (Listof d) -> b)]))
(define-type-alias Table (Listof (Listof Number)))
(define-type-alias Atom-display (cons Symbol (Listof Number)))
(: standard-display (Symbol ((Listof Number) -> Number) ((Listof Number) (Listof Number) -> Number)
-> ((Listof NumF) (Listof NumF) -> Atom-display)))
(define ((standard-display name summarize significance-test) seqA seqB)
(let ([clean-seqA (nonfalses seqA)]
[clean-seqB (nonfalses seqB)])
(list name (summarize clean-seqA) (summarize clean-seqB) (significance-test clean-seqA clean-seqB))))
(: interval (All (c) ((Unit c) Symbol (c -> NumF) -> (metric Atom-display c NumF))))
(define (interval u name compute) (make-metric u compute (standard-display name avg t-test)))
(: count (All (c) ((Unit c) Symbol (c -> Boolean) -> (metric Atom-display c NumF))))
(define (count u name compute) (make-metric u (λ: ([es : c]) (if (compute es) 1 0)) (standard-display name avg chi-square)))
(: combine-metrics (All (c) ((Listof (metric Atom-display c NumF)) -> (metric (Listof Atom-display) c (Listof NumF)))))
(define (combine-metrics ms)
(let ([u (metric-analysis-unit (car ms))])
;; This test now redundant b/c of typechecking
(unless (andmap (λ: ([m : (metric Atom-display c NumF) ]) (eq? u (metric-analysis-unit m))) ms)
(error 'combine-metrics "all combined metrics must operate on the same unit of analysis"))
(make-metric
u
(λ: ([exprs : c]) (map (λ: ([m : (metric Atom-display c NumF)]) ((metric-computation m) exprs)) ms))
(λ: ([seqA : (Listof (Listof NumF))] [seqB : (Listof (Listof NumF))])
(map (λ: ([m : (metric Atom-display c NumF)]
[sA : (Listof NumF)]
[sB : (Listof NumF)])
((metric->display m) sA sB)) ms (pivot seqA) (pivot seqB))))))
;; FIXME - (filter (lambda (x) x) l)
(: nonfalses (All (X) ((Listof (U #f X)) -> (Listof X))))
(define (nonfalses l)
(let loop ([lst l])
(if (null? lst)
'()
(let ([x (car lst)])
(if x
(cons x (loop (cdr lst)))
(loop (cdr lst)))))))
(: avg ((Listof Number) -> Number))
(define (avg l) (/ (exact->inexact (apply + l)) (length l)))
(: avg* ((Listof Number) -> Number))
(define (avg* l) (avg (nonfalses l)))
(define-syntax define-metrics
(syntax-rules ()
[(define-metrics all-metrics-id unit-of-analysis (name kind fn) ...)
(begin
(define u unit-of-analysis)
(define name (kind u 'name fn )) ...
(define all-metrics-id (combine-metrics (list name ...))))]))
(define-metrics module-metrics #{per-module @ (Listof NumF)}
(maximum-sexp-depth interval max-sexp-depth)
(average-sexp-depth interval avg-sexp-depth)
(number-of-setbangs/mod interval count-setbangs/ilist)
(number-of-exprs interval #{length @ Any})
(uses-setbang?/mod count module-has-setbangs?)
(uses-contracts? count uses-contracts)
(number-of-contracts interval contracted-provides)
(num-uncontracted-provides interval uncontracted-provides)
(number-of-macro-defs interval num-of-define-syntax)
(maximum-num-atoms interval max-atoms)
(average-num-atoms interval avg-atoms)
(total-num-atoms/mod interval total-atoms)
(set!s-per-1000-atoms interval setbangs-per-1000-atoms))
(define-metrics tl-expr-metrics per-module-top-level-expression
(uses-setbang?/fn count expr-uses-setbangs?)
(number-of-setbangs/fn interval count-setbangs/expr)
(total-num-atoms/fn interval atoms))
(: all-metrics (List (metric (Listof Atom-display) (Listof Any) (Listof NumF))
(metric (Listof Atom-display) Any (Listof NumF)) ))
(define all-metrics (list module-metrics tl-expr-metrics))
;; ============================================================
;; EXPERIMENT RUNNING
(define-syntax (define-excluder stx)
(define (path->clause c)
(syntax-case c ()
[(item ...)
#`[`(#,@(reverse (syntax-e #'(item ...))) ,_ (... ...)) #t]]
[item
#`[`(item) #t]]))
(syntax-case stx ()
[(_ name path ...)
(with-syntax ([(match-clause ...) (map path->clause (syntax-e #'(path ...)))])
#`(define (name p )
(let* ([dirnames (map path->string (filter path? (explode-path p)))])
(match (reverse dirnames) ; goofy backwards matching because ... matches greedily
match-clause ...
[_ #f]))))]))
(: default-excluder (Path -> Boolean))
(define-excluder default-excluder
"compiled" ".svn" #;("collects" "drscheme") #;("collects" "framework"))
(define exclude-directory? (make-parameter default-excluder))
;; ----------------------------------------
;; apply-to-scheme-files: (path[file] -> X) path[directory] -> (listof X)
;; applies the given function to each .rkt or .ss or .scm file in the given
;; directory hierarchy; returns all results in a list
(: apply-to-scheme-files (All (X) ((Path -> X) Path -> (Listof X))))
(define (apply-to-scheme-files f root)
(fold-files
(λ: ([path : Path] [kind : (U 'file 'dir 'link)] [acc : (Listof X)])
(case kind
[(file)
(let ([extension (filename-extension path)])
(cond
[(not extension) (values acc #t)]
[(regexp-match #rx"(ss|scm)$" extension)
(let ([resl (f path)])
(if resl
(values (cons resl acc) #t)
(values acc #t)))]
[else (values acc #t)]))]
[(dir)
(let* ([p (normalize-path path root)])
(if ((exclude-directory?) p)
(values acc #f)
(values acc #t)))]
[(link) (values acc #t)]))
'()
root))
(define-typed-struct (a b c) result ([metric : (metric b c a)] [seqA : (Listof a)] [seqB : (Listof a)]))
(define-type-alias MetricFn (Path -> (Listof (U #f (Listof NumF)))))
(define-type-alias (M b c) (metric b c (Listof NumF)))
(define-type-alias (M2 b c c*) (U (M b c) (M b c*)))
;; get-sequences : (listof 'a metric) path -> (listof (listof 'a))
(: get-sequences (All (b c C) ((List (M b c) (M b C)) Path -> (Listof (Listof (Listof NumF))))))
(define (get-sequences metrics path)
(: selector (case-lambda [(M b c) -> MetricFn] [(M b C) -> MetricFn]))
(define (selector m) ((metric-analysis-unit m) (metric-computation m)))
(let* ([metric-fns (map #{selector :: ((M2 b c C) -> MetricFn)} metrics)]
[result-seqs (apply-to-scheme-files
(λ: ([file : Path])
(map (λ: ([fn : MetricFn]) (fn file)) metric-fns)) path)])
(map
(λ: ([l : (Listof (Listof (U #f (Listof NumF))))])
(nonfalses (apply append l)))
(pivot (nonfalses result-seqs)))))
(: compare*
(All (b c c*)
((List (M b c) (M b c*))
->
(List (result (Listof NumF) b c)
(result (Listof NumF) b c*)))))
(define (compare* metrics)
(let* ([seqAs (get-sequences metrics (COLLECTS-PATH))]
[seqBs (get-sequences metrics (PLANET-CODE-PATH))])
(list
(make-result (car metrics) (car seqAs) (car seqBs))
(make-result (cadr metrics) (cadr seqAs) (cadr seqBs)))))
(: show (All (a b c) ((result a b c) -> b)))
(define (show result)
((metric->display (result-metric result))
(result-seqA result)
(result-seqB result)))
(: pretty-print-result
(case-lambda
((result (Listof NumF) (Listof Atom-display) (Listof Any)) -> Void)
((result (Listof NumF) (Listof Atom-display) Any) -> Void)))
(define (pretty-print-result result)
(for-each
(λ: ([l : (Listof Any)])
(apply srfi48:format
(current-output-port)
"~26F | ~8,2F | ~6,2F | ~12,2F\n"
(format "~a" (car l))
(cdr l)))
(list* '("test name" "collects" "planet" "significance")
'("---------" "--------" "------" "------------")
(show result))))
;; applies only to the combined metric [or more generally to listof-answer results]
(: total (All (b c) (Integer (result (Listof Number) b c) -> (Listof Number))))
(define (total experiment-number result)
(: total/s (Table -> Number))
(define (total/s s) (apply + (list-ref (pivot s) experiment-number)))
(list (total/s (result-seqA result)) (total/s (result-seqB result))))
;; ============================================================
;; UTILITY
(: imap (All (Y) ((Any -> Y) Any -> (Listof Y))))
(define (imap f il)
(cond
[(null? il) '()]
[(not (pair? il)) (list (f il))]
[else (cons (f (car il)) (imap f (cdr il)))]))
(: pivot (All (X) ((Listof (Listof X)) -> (Listof (Listof X)))))
(define (pivot l)
(cond
[(null? l) '()]
[else
(let ([n (length (car l))])
(build-list n (λ: ([i : Integer]) (map (λ: ([j : (Listof X)]) (list-ref j i)) l))))]))
(: variance ((Listof Number) -> Number))
(define (variance xs)
(let ([avg (/ (apply + xs) (length xs))])
(/ (apply + (map (λ: ([x : Number]) (sqr (- x avg))) xs))
(sub1 (length xs)))))
(: table-ref (Integer Integer Table -> Number))
(define (table-ref i j table)
(list-ref (list-ref table i) j))
(: row-total (Integer Table -> Number))
(define (row-total i table)
(apply + (list-ref table i)))
(: col-total (Integer Table -> Number))
(define (col-total j table)
(apply + (map (λ: ([x : (Listof Number)]) (list-ref x j)) table)))
(: table-sum ((Integer Integer -> Number) Table -> Number))
(define (table-sum f table)
(let ([rows (length table)]
[cols (length (car table))])
(let loop ([i 0] [j 0] [#{sum : Number} 0])
(cond
[(>= j cols) sum]
[(>= i rows) (loop 0 (add1 j) sum)]
[else (loop (add1 i) j (+ sum (f i j)))]))))
(: improper-foldr (All (Y) ((Any Y -> Y) Y Any -> Y)))
(define (improper-foldr f b l)
(cond
[(null? l) b]
[(not (pair? l))
(f l b)]
[else
(f (car l) (improper-foldr f b (cdr l)))]))
(: /* (All (a ...) ((Listof Number) (Listof Number) ... a -> (Listof Number))))
(define (/* arg . args)
(apply map (λ: ([n : Number] . [ns : Number ... a]) (apply / n ns)) arg args))
;; ============================================================
;; MAIN ENTRY POINT
(: results (U #f (Listof (U (result (Listof NumF) (Listof Atom-display) (Listof Any))
(result (Listof NumF) (Listof Atom-display) Any)))))
(define results #f) ; just in case i want to do some more analysis on the results afterwards,
; so i don't have to waste a minute if i forget to bind the return value to something
(define (run-all-tests)
(let ([rs (compare* all-metrics)])
(set! results rs)
(for-each
(ann pretty-print-result ((U (result (Listof NumF) (Listof Atom-display) (Listof Any))
(result (Listof NumF) (Listof Atom-display) Any))
-> Any))
rs)
rs))