avltree libraries might be useful for immutable hash tables.
This commit is contained in:
parent
988d3af59c
commit
3653b24476
772
js-assembler/runtime-src/avltree.js
Normal file
772
js-assembler/runtime-src/avltree.js
Normal file
|
@ -0,0 +1,772 @@
|
|||
// ----------------------------------------------------------------------
|
||||
// dyoo: the following code comes from the Google Closure Library. I've done
|
||||
// light edits to flatten the namespace from goog.structs to just
|
||||
// AvlTree.
|
||||
// ----------------------------------------------------------------------
|
||||
|
||||
|
||||
// Copyright 2007 The Closure Library Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS-IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
/**
|
||||
* @fileoverview Datastructure: AvlTree.
|
||||
*
|
||||
*
|
||||
* This file provides the implementation of an AVL-Tree datastructure. The tree
|
||||
* maintains a set of unique values in a sorted order. The values can be
|
||||
* accessed efficiently in their sorted order since the tree enforces an O(logn)
|
||||
* maximum height. See http://en.wikipedia.org/wiki/Avl_tree for more detail.
|
||||
*
|
||||
* The big-O notation for all operations are below:
|
||||
* <pre>
|
||||
* Method big-O
|
||||
* ----------------------------------------------------------------------------
|
||||
* - add O(logn)
|
||||
* - remove O(logn)
|
||||
* - clear O(1)
|
||||
* - contains O(logn)
|
||||
* - getCount O(1)
|
||||
* - getMinimum O(1), or O(logn) when optional root is specified
|
||||
* - getMaximum O(1), or O(logn) when optional root is specified
|
||||
* - getHeight O(1)
|
||||
* - getValues O(n)
|
||||
* - inOrderTraverse O(logn + k), where k is number of traversed nodes
|
||||
* - reverseOrderTraverse O(logn + k), where k is number of traversed nodes
|
||||
* </pre>
|
||||
*/
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Constructs an AVL-Tree, which uses the specified comparator to order its
|
||||
* values. The values can be accessed efficiently in their sorted order since
|
||||
* the tree enforces a O(logn) maximum height.
|
||||
*
|
||||
* @param {Function=} opt_comparator Function used to order the tree's nodes.
|
||||
* @constructor
|
||||
* @implements {Collection}
|
||||
*/
|
||||
var AvlTree = function(opt_comparator) {
|
||||
this.comparator_ = opt_comparator ||
|
||||
AvlTree.DEFAULT_COMPARATOR_;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* String comparison function used to compare values in the tree. This function
|
||||
* is used by default if no comparator is specified in the tree's constructor.
|
||||
*
|
||||
* @param {string} a The first string.
|
||||
* @param {string} b The second string.
|
||||
* @return {number} -1 if a < b, 1 if a > b, 0 if a = b.
|
||||
* @private
|
||||
*/
|
||||
AvlTree.DEFAULT_COMPARATOR_ = function(a, b) {
|
||||
if (String(a) < String(b)) {
|
||||
return -1;
|
||||
} else if (String(a) > String(b)) {
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Pointer to the root node of the tree.
|
||||
*
|
||||
* @type {AvlTree.Node}
|
||||
* @private
|
||||
*/
|
||||
AvlTree.prototype.root_ = null;
|
||||
|
||||
|
||||
/**
|
||||
* Comparison function used to compare values in the tree. This function should
|
||||
* take two values, a and b, and return x where:
|
||||
* <pre>
|
||||
* x < 0 if a < b,
|
||||
* x > 0 if a > b,
|
||||
* x = 0 otherwise
|
||||
* </pre>
|
||||
*
|
||||
* @type {Function}
|
||||
* @private
|
||||
*/
|
||||
AvlTree.prototype.comparator_ = null;
|
||||
|
||||
|
||||
/**
|
||||
* Pointer to the node with the smallest value in the tree.
|
||||
*
|
||||
* @type {AvlTree.Node}
|
||||
* @private
|
||||
*/
|
||||
AvlTree.prototype.minNode_ = null;
|
||||
|
||||
|
||||
/**
|
||||
* Pointer to the node with the largest value in the tree.
|
||||
*
|
||||
* @type {AvlTree.Node}
|
||||
* @private
|
||||
*/
|
||||
AvlTree.prototype.maxNode_ = null;
|
||||
|
||||
|
||||
/**
|
||||
* Keeps track of the number of nodes in the tree.
|
||||
*
|
||||
* @type {number}
|
||||
* @private
|
||||
*/
|
||||
AvlTree.prototype.count_ = 0;
|
||||
|
||||
|
||||
/**
|
||||
* Inserts a node into the tree with the specified value if the tree does
|
||||
* not already contain a node with the specified value. If the value is
|
||||
* inserted, the tree is balanced to enforce the AVL-Tree height property.
|
||||
*
|
||||
* @param {*} value Value to insert into the tree.
|
||||
* @return {boolean} Whether value was inserted into the tree.
|
||||
*/
|
||||
AvlTree.prototype.add = function(value) {
|
||||
// If the tree is empty, create a root node with the specified value
|
||||
if (this.root_ == null) {
|
||||
this.root_ = new AvlTree.Node(value);
|
||||
this.minNode_ = this.root_;
|
||||
this.maxNode_ = this.root_;
|
||||
this.count_ = 1;
|
||||
return true;
|
||||
}
|
||||
|
||||
// Assume a node is not added and change status when one is
|
||||
var retStatus = false;
|
||||
|
||||
// Depth traverse the tree and insert the value if we reach a null node
|
||||
this.traverse_(function(node) {
|
||||
var retNode = null;
|
||||
if (this.comparator_(node.value, value) > 0) {
|
||||
retNode = node.left;
|
||||
if (node.left == null) {
|
||||
var newNode = new AvlTree.Node(value, node);
|
||||
node.left = newNode;
|
||||
if (node == this.minNode_) {
|
||||
this.minNode_ = newNode;
|
||||
}
|
||||
retStatus = true; // Value was added to tree
|
||||
this.balance_(node); // Maintain the AVL-tree balance
|
||||
}
|
||||
} else if (this.comparator_(node.value, value) < 0) {
|
||||
retNode = node.right;
|
||||
if (node.right == null) {
|
||||
var newNode = new AvlTree.Node(value, node);
|
||||
node.right = newNode;
|
||||
if (node == this.maxNode_) {
|
||||
this.maxNode_ = newNode;
|
||||
}
|
||||
retStatus = true; // Value was added to tree
|
||||
this.balance_(node); // Maintain the AVL-tree balance
|
||||
}
|
||||
}
|
||||
return retNode; // If null, we'll stop traversing the tree
|
||||
});
|
||||
|
||||
// If a node was added, increment count
|
||||
if (retStatus) {
|
||||
this.count_ += 1;
|
||||
}
|
||||
|
||||
// Return true if a node was added, false otherwise
|
||||
return retStatus;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Removes a node from the tree with the specified value if the tree contains a
|
||||
* node with this value. If a node is removed the tree is balanced to enforce
|
||||
* the AVL-Tree height property. The value of the removed node is returned.
|
||||
*
|
||||
* @param {*} value Value to find and remove from the tree.
|
||||
* @return {*} The value of the removed node or null if the value was not in
|
||||
* the tree.
|
||||
*/
|
||||
AvlTree.prototype.remove = function(value) {
|
||||
// Assume the value is not removed and set the value when it is removed
|
||||
var retValue = null;
|
||||
|
||||
// Depth traverse the tree and remove the value if we find it
|
||||
this.traverse_(function(node) {
|
||||
var retNode = null;
|
||||
if (this.comparator_(node.value, value) > 0) {
|
||||
retNode = node.left;
|
||||
} else if (this.comparator_(node.value, value) < 0) {
|
||||
retNode = node.right;
|
||||
} else {
|
||||
retValue = node.value;
|
||||
this.removeNode_(node);
|
||||
}
|
||||
return retNode; // If null, we'll stop traversing the tree
|
||||
});
|
||||
|
||||
// If a node was removed, decrement count.
|
||||
if (retValue) {
|
||||
// Had traverse_() cleared the tree, set to 0.
|
||||
this.count_ = this.root_ ? this.count_ - 1 : 0;
|
||||
}
|
||||
|
||||
// Return the value that was removed, null if the value was not in the tree
|
||||
return retValue;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Removes all nodes from the tree.
|
||||
*/
|
||||
AvlTree.prototype.clear = function() {
|
||||
this.root_ = null;
|
||||
this.minNode_ = null;
|
||||
this.maxNode_ = null;
|
||||
this.count_ = 0;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Returns true if the tree contains a node with the specified value, false
|
||||
* otherwise.
|
||||
*
|
||||
* @param {*} value Value to find in the tree.
|
||||
* @return {boolean} Whether the tree contains a node with the specified value.
|
||||
*/
|
||||
AvlTree.prototype.contains = function(value) {
|
||||
// Assume the value is not in the tree and set this value if it is found
|
||||
var isContained = false;
|
||||
|
||||
// Depth traverse the tree and set isContained if we find the node
|
||||
this.traverse_(function(node) {
|
||||
var retNode = null;
|
||||
if (this.comparator_(node.value, value) > 0) {
|
||||
retNode = node.left;
|
||||
} else if (this.comparator_(node.value, value) < 0) {
|
||||
retNode = node.right;
|
||||
} else {
|
||||
isContained = true;
|
||||
}
|
||||
return retNode; // If null, we'll stop traversing the tree
|
||||
});
|
||||
|
||||
// Return true if the value is contained in the tree, false otherwise
|
||||
return isContained;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Returns the number of values stored in the tree.
|
||||
*
|
||||
* @return {number} The number of values stored in the tree.
|
||||
*/
|
||||
AvlTree.prototype.getCount = function() {
|
||||
return this.count_;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Returns the value u, such that u is contained in the tree and u < v, for all
|
||||
* values v in the tree where v != u.
|
||||
*
|
||||
* @return {*} The minimum value contained in the tree.
|
||||
*/
|
||||
AvlTree.prototype.getMinimum = function() {
|
||||
return this.getMinNode_().value;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Returns the value u, such that u is contained in the tree and u > v, for all
|
||||
* values v in the tree where v != u.
|
||||
*
|
||||
* @return {*} The maximum value contained in the tree.
|
||||
*/
|
||||
AvlTree.prototype.getMaximum = function() {
|
||||
return this.getMaxNode_().value;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Returns the height of the tree (the maximum depth). This height should
|
||||
* always be <= 1.4405*(Math.log(n+2)/Math.log(2))-1.3277, where n is the
|
||||
* number of nodes in the tree.
|
||||
*
|
||||
* @return {number} The height of the tree.
|
||||
*/
|
||||
AvlTree.prototype.getHeight = function() {
|
||||
return this.root_ ? this.root_.height : 0;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Inserts the values stored in the tree into a new Array and returns the Array.
|
||||
*
|
||||
* @return {Array} An array containing all of the trees values in sorted order.
|
||||
*/
|
||||
AvlTree.prototype.getValues = function() {
|
||||
var ret = [];
|
||||
this.inOrderTraverse(function(value) {
|
||||
ret.push(value);
|
||||
});
|
||||
return ret;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Performs an in-order traversal of the tree and calls {@code func} with each
|
||||
* traversed node, optionally starting from the smallest node with a value >= to
|
||||
* the specified start value. The traversal ends after traversing the tree's
|
||||
* maximum node or when {@code func} returns a value that evaluates to true.
|
||||
*
|
||||
* @param {Function} func Function to call on each traversed node.
|
||||
* @param {Object=} opt_startValue If specified, traversal will begin on the
|
||||
* node with the smallest value >= opt_startValue.
|
||||
*/
|
||||
AvlTree.prototype.inOrderTraverse =
|
||||
function(func, opt_startValue) {
|
||||
// If our tree is empty, return immediately
|
||||
if (!this.root_) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Depth traverse the tree to find node to begin in-order traversal from
|
||||
var startNode;
|
||||
if (opt_startValue) {
|
||||
this.traverse_(function(node) {
|
||||
var retNode = null;
|
||||
if (this.comparator_(node.value, opt_startValue) > 0) {
|
||||
retNode = node.left;
|
||||
startNode = node;
|
||||
} else if (this.comparator_(node.value, opt_startValue) < 0) {
|
||||
retNode = node.right;
|
||||
} else {
|
||||
startNode = node;
|
||||
}
|
||||
return retNode; // If null, we'll stop traversing the tree
|
||||
});
|
||||
} else {
|
||||
startNode = this.getMinNode_();
|
||||
}
|
||||
|
||||
// Traverse the tree and call func on each traversed node's value
|
||||
var node = startNode, prev = startNode.left ? startNode.left : startNode;
|
||||
while (node != null) {
|
||||
if (node.left != null && node.left != prev && node.right != prev) {
|
||||
node = node.left;
|
||||
} else {
|
||||
if (node.right != prev) {
|
||||
if (func(node.value)) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
var temp = node;
|
||||
node = node.right != null && node.right != prev ?
|
||||
node.right :
|
||||
node.parent;
|
||||
prev = temp;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Performs a reverse-order traversal of the tree and calls {@code func} with
|
||||
* each traversed node, optionally starting from the largest node with a value
|
||||
* <= to the specified start value. The traversal ends after traversing the
|
||||
* tree's minimum node or when func returns a value that evaluates to true.
|
||||
*
|
||||
* @param {Function} func Function to call on each traversed node.
|
||||
* @param {Object=} opt_startValue If specified, traversal will begin on the
|
||||
* node with the largest value <= opt_startValue.
|
||||
*/
|
||||
AvlTree.prototype.reverseOrderTraverse =
|
||||
function(func, opt_startValue) {
|
||||
// If our tree is empty, return immediately
|
||||
if (!this.root_) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Depth traverse the tree to find node to begin reverse-order traversal from
|
||||
var startNode;
|
||||
if (opt_startValue) {
|
||||
this.traverse_(goog.bind(function(node) {
|
||||
var retNode = null;
|
||||
if (this.comparator_(node.value, opt_startValue) > 0) {
|
||||
retNode = node.left;
|
||||
} else if (this.comparator_(node.value, opt_startValue) < 0) {
|
||||
retNode = node.right;
|
||||
startNode = node;
|
||||
} else {
|
||||
startNode = node;
|
||||
}
|
||||
return retNode; // If null, we'll stop traversing the tree
|
||||
}, this));
|
||||
} else {
|
||||
startNode = this.getMaxNode_();
|
||||
}
|
||||
|
||||
// Traverse the tree and call func on each traversed node's value
|
||||
var node = startNode, prev = startNode.right ? startNode.right : startNode;
|
||||
while (node != null) {
|
||||
if (node.right != null && node.right != prev && node.left != prev) {
|
||||
node = node.right;
|
||||
} else {
|
||||
if (node.left != prev) {
|
||||
if (func(node.value)) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
var temp = node;
|
||||
node = node.left != null && node.left != prev ?
|
||||
node.left :
|
||||
node.parent;
|
||||
prev = temp;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Performs a traversal defined by the supplied {@code traversalFunc}. The first
|
||||
* call to {@code traversalFunc} is passed the root or the optionally specified
|
||||
* startNode. After that, calls {@code traversalFunc} with the node returned
|
||||
* by the previous call to {@code traversalFunc} until {@code traversalFunc}
|
||||
* returns null or the optionally specified endNode. The first call to
|
||||
* traversalFunc is passed the root or the optionally specified startNode.
|
||||
*
|
||||
* @param {Function} traversalFunc Function used to traverse the tree. Takes a
|
||||
* node as a parameter and returns a node.
|
||||
* @param {AvlTree.Node=} opt_startNode The node at which the
|
||||
* traversal begins.
|
||||
* @param {AvlTree.Node=} opt_endNode The node at which the
|
||||
* traversal ends.
|
||||
* @private
|
||||
*/
|
||||
AvlTree.prototype.traverse_ =
|
||||
function(traversalFunc, opt_startNode, opt_endNode) {
|
||||
var node = opt_startNode ? opt_startNode : this.root_;
|
||||
var endNode = opt_endNode ? opt_endNode : null;
|
||||
while (node && node != endNode) {
|
||||
node = traversalFunc.call(this, node);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Ensures that the specified node and all its ancestors are balanced. If they
|
||||
* are not, performs left and right tree rotations to achieve a balanced
|
||||
* tree. This method assumes that at most 2 rotations are necessary to balance
|
||||
* the tree (which is true for AVL-trees that are balanced after each node is
|
||||
* added or removed).
|
||||
*
|
||||
* @param {AvlTree.Node} node Node to begin balance from.
|
||||
* @private
|
||||
*/
|
||||
AvlTree.prototype.balance_ = function(node) {
|
||||
|
||||
this.traverse_(function(node) {
|
||||
// Calculate the left and right node's heights
|
||||
var lh = node.left ? node.left.height : 0;
|
||||
var rh = node.right ? node.right.height : 0;
|
||||
|
||||
// Rotate tree rooted at this node if it is not AVL-tree balanced
|
||||
if (lh - rh > 1) {
|
||||
if (node.left.right && (!node.left.left ||
|
||||
node.left.left.height < node.left.right.height)) {
|
||||
this.leftRotate_(node.left);
|
||||
}
|
||||
this.rightRotate_(node);
|
||||
} else if (rh - lh > 1) {
|
||||
if (node.right.left && (!node.right.right ||
|
||||
node.right.right.height < node.right.left.height)) {
|
||||
this.rightRotate_(node.right);
|
||||
}
|
||||
this.leftRotate_(node);
|
||||
}
|
||||
|
||||
// Recalculate the left and right node's heights
|
||||
lh = node.left ? node.left.height : 0;
|
||||
rh = node.right ? node.right.height : 0;
|
||||
|
||||
// Set this node's height
|
||||
node.height = Math.max(lh, rh) + 1;
|
||||
|
||||
// Traverse up tree and balance parent
|
||||
return node.parent;
|
||||
}, node);
|
||||
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Performs a left tree rotation on the specified node.
|
||||
*
|
||||
* @param {AvlTree.Node} node Pivot node to rotate from.
|
||||
* @private
|
||||
*/
|
||||
AvlTree.prototype.leftRotate_ = function(node) {
|
||||
// Re-assign parent-child references for the parent of the node being removed
|
||||
if (node.isLeftChild()) {
|
||||
node.parent.left = node.right;
|
||||
node.right.parent = node.parent;
|
||||
} else if (node.isRightChild()) {
|
||||
node.parent.right = node.right;
|
||||
node.right.parent = node.parent;
|
||||
} else {
|
||||
this.root_ = node.right;
|
||||
this.root_.parent = null;
|
||||
}
|
||||
|
||||
// Re-assign parent-child references for the child of the node being removed
|
||||
var temp = node.right;
|
||||
node.right = node.right.left;
|
||||
if (node.right != null) node.right.parent = node;
|
||||
temp.left = node;
|
||||
node.parent = temp;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Performs a right tree rotation on the specified node.
|
||||
*
|
||||
* @param {AvlTree.Node} node Pivot node to rotate from.
|
||||
* @private
|
||||
*/
|
||||
AvlTree.prototype.rightRotate_ = function(node) {
|
||||
// Re-assign parent-child references for the parent of the node being removed
|
||||
if (node.isLeftChild()) {
|
||||
node.parent.left = node.left;
|
||||
node.left.parent = node.parent;
|
||||
} else if (node.isRightChild()) {
|
||||
node.parent.right = node.left;
|
||||
node.left.parent = node.parent;
|
||||
} else {
|
||||
this.root_ = node.left;
|
||||
this.root_.parent = null;
|
||||
}
|
||||
|
||||
// Re-assign parent-child references for the child of the node being removed
|
||||
var temp = node.left;
|
||||
node.left = node.left.right;
|
||||
if (node.left != null) node.left.parent = node;
|
||||
temp.right = node;
|
||||
node.parent = temp;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Removes the specified node from the tree and ensures the tree still
|
||||
* maintains the AVL-tree balance.
|
||||
*
|
||||
* @param {AvlTree.Node} node The node to be removed.
|
||||
* @private
|
||||
*/
|
||||
AvlTree.prototype.removeNode_ = function(node) {
|
||||
// Perform normal binary tree node removal, but balance the tree, starting
|
||||
// from where we removed the node
|
||||
if (node.left != null || node.right != null) {
|
||||
var b = null; // Node to begin balance from
|
||||
var r; // Node to replace the node being removed
|
||||
if (node.left != null) {
|
||||
r = this.getMaxNode_(node.left);
|
||||
if (r != node.left) {
|
||||
r.parent.right = r.left;
|
||||
if (r.left) r.left.parent = r.parent;
|
||||
r.left = node.left;
|
||||
r.left.parent = r;
|
||||
b = r.parent;
|
||||
}
|
||||
r.parent = node.parent;
|
||||
r.right = node.right;
|
||||
if (r.right) r.right.parent = r;
|
||||
if (node == this.maxNode_) this.maxNode_ = r;
|
||||
} else {
|
||||
r = this.getMinNode_(node.right);
|
||||
if (r != node.right) {
|
||||
r.parent.left = r.right;
|
||||
if (r.right) r.right.parent = r.parent;
|
||||
r.right = node.right;
|
||||
r.right.parent = r;
|
||||
b = r.parent;
|
||||
}
|
||||
r.parent = node.parent;
|
||||
r.left = node.left;
|
||||
if (r.left) r.left.parent = r;
|
||||
if (node == this.minNode_) this.minNode_ = r;
|
||||
}
|
||||
|
||||
// Update the parent of the node being removed to point to its replace
|
||||
if (node.isLeftChild()) {
|
||||
node.parent.left = r;
|
||||
} else if (node.isRightChild()) {
|
||||
node.parent.right = r;
|
||||
} else {
|
||||
this.root_ = r;
|
||||
}
|
||||
|
||||
// Balance the tree
|
||||
this.balance_(b ? b : r);
|
||||
} else {
|
||||
// If the node is a leaf, remove it and balance starting from its parent
|
||||
if (node.isLeftChild()) {
|
||||
this.special = 1;
|
||||
node.parent.left = null;
|
||||
if (node == this.minNode_) this.minNode_ = node.parent;
|
||||
this.balance_(node.parent);
|
||||
} else if (node.isRightChild()) {
|
||||
node.parent.right = null;
|
||||
if (node == this.maxNode_) this.maxNode_ = node.parent;
|
||||
this.balance_(node.parent);
|
||||
} else {
|
||||
this.clear();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Returns the node with the smallest value in tree, optionally rooted at
|
||||
* {@code opt_rootNode}.
|
||||
*
|
||||
* @param {AvlTree.Node=} opt_rootNode Optional root node.
|
||||
* @return {AvlTree.Node} The node with the smallest value in
|
||||
* the tree.
|
||||
* @private
|
||||
*/
|
||||
AvlTree.prototype.getMinNode_ = function(opt_rootNode) {
|
||||
if (!opt_rootNode) {
|
||||
return this.minNode_;
|
||||
}
|
||||
|
||||
var minNode = opt_rootNode;
|
||||
this.traverse_(function(node) {
|
||||
var retNode = null;
|
||||
if (node.left) {
|
||||
minNode = node.left;
|
||||
retNode = node.left;
|
||||
}
|
||||
return retNode; // If null, we'll stop traversing the tree
|
||||
}, opt_rootNode);
|
||||
|
||||
return minNode;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Returns the node with the largest value in tree, optionally rooted at
|
||||
* opt_rootNode.
|
||||
*
|
||||
* @param {AvlTree.Node=} opt_rootNode Optional root node.
|
||||
* @return {AvlTree.Node} The node with the largest value in
|
||||
* the tree.
|
||||
* @private
|
||||
*/
|
||||
AvlTree.prototype.getMaxNode_ = function(opt_rootNode) {
|
||||
if (!opt_rootNode) {
|
||||
return this.maxNode_;
|
||||
}
|
||||
|
||||
var maxNode = opt_rootNode;
|
||||
this.traverse_(function(node) {
|
||||
var retNode = null;
|
||||
if (node.right) {
|
||||
maxNode = node.right;
|
||||
retNode = node.right;
|
||||
}
|
||||
return retNode; // If null, we'll stop traversing the tree
|
||||
}, opt_rootNode);
|
||||
|
||||
return maxNode;
|
||||
};
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Constructs an AVL-Tree node with the specified value. If no parent is
|
||||
* specified, the node's parent is assumed to be null. The node's height
|
||||
* defaults to 1 and its children default to null.
|
||||
*
|
||||
* @param {*} value Value to store in the node.
|
||||
* @param {AvlTree.Node=} opt_parent Optional parent node.
|
||||
* @constructor
|
||||
*/
|
||||
AvlTree.Node = function(value, opt_parent) {
|
||||
/**
|
||||
* The value stored by the node.
|
||||
*
|
||||
* @type {*}
|
||||
*/
|
||||
this.value = value;
|
||||
|
||||
/**
|
||||
* The node's parent. Null if the node is the root.
|
||||
*
|
||||
* @type {AvlTree.Node}
|
||||
*/
|
||||
this.parent = opt_parent ? opt_parent : null;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* The node's left child. Null if the node does not have a left child.
|
||||
*
|
||||
* @type {AvlTree.Node?}
|
||||
*/
|
||||
AvlTree.Node.prototype.left = null;
|
||||
|
||||
|
||||
/**
|
||||
* The node's right child. Null if the node does not have a right child.
|
||||
*
|
||||
* @type {AvlTree.Node?}
|
||||
*/
|
||||
AvlTree.Node.prototype.right = null;
|
||||
|
||||
|
||||
/**
|
||||
* The height of the tree rooted at this node.
|
||||
*
|
||||
* @type {number}
|
||||
*/
|
||||
AvlTree.Node.prototype.height = 1;
|
||||
|
||||
|
||||
/**
|
||||
* Returns true iff the specified node has a parent and is the right child of
|
||||
* its parent.
|
||||
*
|
||||
* @return {boolean} Whether the specified node has a parent and is the right
|
||||
* child of its parent.
|
||||
*/
|
||||
AvlTree.Node.prototype.isRightChild = function() {
|
||||
return !!this.parent && this.parent.right == this;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Returns true iff the specified node has a parent and is the left child of
|
||||
* its parent.
|
||||
*
|
||||
* @return {boolean} Whether the specified node has a parent and is the left
|
||||
* child of its parent.
|
||||
*/
|
||||
AvlTree.Node.prototype.isLeftChild = function() {
|
||||
return !!this.parent && this.parent.left == this;
|
||||
};
|
|
@ -1231,6 +1231,7 @@ Whalesong uses code and utilities from the following external projects:
|
|||
@item{JSON (@url{http://www.json.org/js.html})}
|
||||
@item{jquery (@url{http://jquery.com/})}
|
||||
@item{Google Closure Compiler (@url{http://code.google.com/p/closure-compiler/})}
|
||||
@item{Google Closure Library (@url{http://code.google.com/closure/library/}) (avltree.js)}
|
||||
|
||||
|
||||
@item{excanvas (@url{http://excanvas.sourceforge.net/})}
|
||||
|
|
Loading…
Reference in New Issue
Block a user