#lang racket (require "simulator.rkt" "simulator-structs.rkt" "simulator-helpers.rkt" "compile.rkt" "parse.rkt" "il-structs.rkt") (define (run-compiler code) (compile (parse code) 'val next-linkage)) ;; Test out the compiler, using the simulator. (define-syntax (test stx) (syntax-case stx () [(_ code exp options ...) (with-syntax ([stx stx]) (syntax/loc #'stx (begin (printf "Running ~s ...\n" code) (let*-values([(a-machine num-steps) (run code options ...)] [(actual) (PrimitiveValue->racket (machine-val a-machine))]) (unless (equal? actual exp) (raise-syntax-error #f (format "Expected ~s, got ~s" exp actual) #'stx)) (unless (= (machine-stack-size a-machine) 0) (raise-syntax-error #f (format "Stack is not back to empty as expected!") #'stx)) (unless (null? (machine-control a-machine)) (raise-syntax-error #f (format "Control is not empty as expected!") #'stx)) (printf "ok. ~s steps.\n\n" num-steps)))))])) ;; test, and expect an error (define-syntax (test/exn stx) (syntax-case stx () [(_ code options ...) (with-syntax ([stx stx]) (syntax/loc #'stx (begin (printf "Running/exn ~s ...\n" code) (let/ec return (with-handlers ([exn:fail? (lambda (exn) (printf "ok\n\n") (return))]) (run code options ...)) (raise-syntax-error #f (format "Expected an exception") #'stx)))))])) ;; run: machine -> (machine number) ;; Run the machine to completion. (define (run code #:debug? (debug? false) #:stack-limit (stack-limit false) #:control-limit (control-limit false) #:with-bootstrapping? (with-bootstrapping? false)) (let ([m (new-machine (run-compiler code) with-bootstrapping?)]) (let loop ([steps 0]) (when debug? (when (can-step? m) (printf "|env|=~s, |control|=~s, instruction=~s\n" (length (machine-env m)) (length (machine-control m)) (current-instruction m)))) (when stack-limit (when (> (machine-stack-size m) stack-limit) (error 'run "Stack overflow"))) (when control-limit (when (> (machine-control-size m) control-limit) (error 'run "Control overflow"))) (cond [(can-step? m) (step! m) (loop (add1 steps))] [else (values m steps)])))) ;; Atomic expressions (test '42 42) (test '"hello world" "hello world") (test '#t true) (test '#f false) ;; quoted (test ''(+ 3 4) '(+ 3 4)) ;; Simple definitions (test '(begin (define x 42) (+ x x)) 84) (test '(begin (define x 6) (define y 7) (define z 8) (* x y z)) (* 6 7 8)) ;; Simple branching (test '(if #t 'ok 'not-ok) 'ok) (test '(if #f 'not-ok 'ok) 'ok) ;; Sequencing (test '(begin 1 2 3) 3) (test '(begin 1) 1) (test '(+ (* 3 4) 5) 17) ;; Square (test '(begin (define (f x) (* x x)) (f 3)) 9) ;; Other simple expressions (test '(+ 137 349) 486) (test '(/ 10 5) 2) (test '(- 1 2) -1) (test '(- 3) -3) (test '(*) 1) ;; composition of square (test '(begin (define (f x) (* x x)) (f (f 3))) 81) (test '(begin (define pi 3.14159) (define radius 10) (* pi (* radius radius))) 314.159) (test '(begin (define pi 3.14159) (define radius 10) (define circumference (* 2 pi radius)) circumference) 62.8318) ;; Slightly crazy expression (test '(begin (define (f x) (* x x)) (define (g x) (* x x x)) (- (g (f (+ (g 3) (f 3)))) 1)) 2176782335) ;; Simple application (test '((lambda (x) x) 42) 42) (test '((lambda (x) (begin (* x x))) 42) 1764) (test '((lambda (x y z) x) 3 4 5) 3) (test '((lambda (x y z) y) 3 4 5) 4) (test '((lambda (x y z) z) 3 4 5) 5) ;; And this should fail because it's not a lambda (test/exn '(not-a-procedure 5)) ;; We should see an error here, since the arity is wrong (test/exn '((lambda (x y z) x) 3)) (test/exn '((lambda (x y z) z) 3)) (test/exn '((lambda (x y z) x) 3 4 5 6)) ; factorial (test '(begin (define (f x) (if (= x 0) 1 (* x (f (sub1 x))))) (f 0)) 1) (test '(begin (define (f x) (if (= x 0) 1 (* x (f (sub1 x))))) (f 1)) 1) (test '(begin (define (f x) (if (= x 0) 1 (* x (f (sub1 x))))) (f 2)) 2) (test '(begin (define (f x) (if (= x 0) 1 (* x (f (sub1 x))))) (f 100)) 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000 ) ;; Tail calling behavior: watch that the stack never grows beyond 8. (test '(begin (define (f x acc) (if (= x 0) acc (f (sub1 x) (* x acc)))) (f 1000 1)) (letrec ([f (lambda (x) (if (= x 0) 1 (* x (f (sub1 x)))))]) (f 1000)) #:control-limit 3 #:stack-limit 8) ;; And from experimental testing, anything below 7 will break. (test/exn '(begin (define (f x acc) (if (= x 0) acc (f (sub1 x) (* x acc)))) (f 1000 1)) (letrec ([f (lambda (x) (if (= x 0) 1 (* x (f (sub1 x)))))]) (f 1000)) #:stack-limit 7) ;; tak test (test '(begin (define (tak x y z) (if (>= y x) z (tak (tak (- x 1) y z) (tak (- y 1) z x) (tak (- z 1) x y)))) (tak 18 12 6)) 7) (test '((let* ([x 42] [f (lambda () x)]) f)) 42) (test '((let* ([x 42] [y 43] [f (lambda () (list x y))]) f)) (list 42 43)) (test '(begin (define (m f l) (if (null? l) l (cons (f (car l)) (m f (cdr l))))) (m (lambda (x) (add1 x)) '(2 3 4 5))) '(3 4 5 6)) (test '(+ (+ 3 4) 6) (+ 3 4 6)) (test '(+ (+ 3 (+ 4 5)) 6) (+ 3 4 5 6)) (test '(begin (define (foo y) y) (define (sum-iter x acc) (if (= x 0) acc (let* ([y (sub1 x)] [z (+ x acc)]) (foo y) (sum-iter y z)))) (sum-iter 300 0)) 45150 #:stack-limit 8 #:control-limit 4) ;; deriv (test '(begin (define (deriv-aux a) (list '/ (deriv a) a)) (define (map f l) (if (null? l) l (cons (f (car l)) (map f (cdr l))))) (define (deriv a) (if (not (pair? a)) (if (eq? a 'x) 1 0) (if (eq? (car a) '+) (cons '+ (map deriv (cdr a))) (if (eq? (car a) '-) (cons '- (map deriv (cdr a))) (if (eq? (car a) '*) (list '* a (cons '+ (map deriv-aux (cdr a)))) (if (eq? (car a) '/) (list '- (list '/ (deriv (cadr a)) (caddr a)) (list '/ (cadr a) (list '* (caddr a) (caddr a) (deriv (caddr a))))) 'error)))))) (deriv '(+ (* 3 x x) (* a x x) (* b x) 5))) '(+ (* (* 3 x x) (+ (/ 0 3) (/ 1 x) (/ 1 x))) (* (* a x x) (+ (/ 0 a) (/ 1 x) (/ 1 x))) (* (* b x) (+ (/ 0 b) (/ 1 x))) 0)) ;; Foldl (test '(begin (define (foldl f acc lst) (if (null? lst) acc (foldl f (f (car lst) acc) (cdr lst)))) (foldl (lambda (x acc) (* x acc)) 1 '(1 2 3 4 5 6 7 8 9 10))) (* 1 2 3 4 5 6 7 8 9 10)) ;; iterating, with some crazy expressions (test '(begin (define (iterate f x n) (if (= n 0) x (iterate f (f x) (sub1 n)))) (list (iterate (lambda (x) (* x x)) 20 2) (iterate add1 1 1000) (iterate (lambda (x) (iterate (lambda (y) (+ x y)) x x)) 1 3))) (list 160000 1001 42)) ;; Trying out closures (test '(begin (define delta 1) (define (diff f) (lambda (x) (/ (- (f (+ x delta)) (f x)) delta))) (define 2x (diff (lambda (x) (* x x)))) (define two (diff 2x)) (list (2x 1000) (two 2011))) (list 2001 2)) (test '(begin (define (square x) (* x x)) (square (square 3))) 81) (test '(begin (define (square x) (* x x)) (define (sum-of-squares x y) (+ (square x) (square y))) (sum-of-squares 3 4)) 25) (test '(begin (define (sqrt-iter guess x) (if (good-enough? guess x) guess (sqrt-iter (improve guess x) x))) (define (improve guess x) (average guess (/ x guess))) (define (square x) (* x x)) (define (average x y) (/ (+ x y) 2)) (define (good-enough? guess x) (< (abs (- (square guess) x)) 0.001)) (define (sqrt x) (sqrt-iter 1.0 x)) (list (sqrt 9) (sqrt 23942) (sqrt 31337))) '(3.00009155413138 154.73202642085838 177.02259745919164)) ;; fibonacci (test '(begin (define (fib n) (if (= n 0) 0 (if (= n 1) 1 (+ (fib (- n 1)) (fib (- n 2)))))) (fib 10)) 55) ;; Fibonacci, iterative. This should be computable while using at most 10 spots. (test '(begin (define (fib n) (fib-iter 1 0 n)) (define (fib-iter a b count) (if (= count 0) b (fib-iter (+ a b) a (- count 1)))) (fib 10000)) 33644764876431783266621612005107543310302148460680063906564769974680081442166662368155595513633734025582065332680836159373734790483865268263040892463056431887354544369559827491606602099884183933864652731300088830269235673613135117579297437854413752130520504347701602264758318906527890855154366159582987279682987510631200575428783453215515103870818298969791613127856265033195487140214287532698187962046936097879900350962302291026368131493195275630227837628441540360584402572114334961180023091208287046088923962328835461505776583271252546093591128203925285393434620904245248929403901706233888991085841065183173360437470737908552631764325733993712871937587746897479926305837065742830161637408969178426378624212835258112820516370298089332099905707920064367426202389783111470054074998459250360633560933883831923386783056136435351892133279732908133732642652633989763922723407882928177953580570993691049175470808931841056146322338217465637321248226383092103297701648054726243842374862411453093812206564914032751086643394517512161526545361333111314042436854805106765843493523836959653428071768775328348234345557366719731392746273629108210679280784718035329131176778924659089938635459327894523777674406192240337638674004021330343297496902028328145933418826817683893072003634795623117103101291953169794607632737589253530772552375943788434504067715555779056450443016640119462580972216729758615026968443146952034614932291105970676243268515992834709891284706740862008587135016260312071903172086094081298321581077282076353186624611278245537208532365305775956430072517744315051539600905168603220349163222640885248852433158051534849622434848299380905070483482449327453732624567755879089187190803662058009594743150052402532709746995318770724376825907419939632265984147498193609285223945039707165443156421328157688908058783183404917434556270520223564846495196112460268313970975069382648706613264507665074611512677522748621598642530711298441182622661057163515069260029861704945425047491378115154139941550671256271197133252763631939606902895650288268608362241082050562430701794976171121233066073310059947366875 #:stack-limit 10 #:control-limit 3) ;; Exponentiation (test '(begin (define (expt b n) (if (= n 0) 1 (* b (expt b (- n 1))))) (expt 2 30)) (expt 2 30)) (test '(begin (define (expt b n) (expt-iter b n 1)) (define (expt-iter b counter product) (if (= counter 0) product (expt-iter b (- counter 1) (* b product)))) (expt 2 30)) (expt 2 30)) (test '(begin (define (fast-expt b n) (cond ((= n 0) 1) ((even? n) (square (fast-expt b (/ n 2)))) (else (* b (fast-expt b (- n 1)))))) (define (square x) (* x x)) (define (expt b n) (fast-expt b n)) (define (even? n) (= (remainder n 2) 0)) (list (expt 2 30) (expt 2 23984000))) (list (expt 2 30) (expt 2 23984000))) (test '(begin (define (length l) (if (null? l) 0 (+ 1 (length (cdr l))))) (display (length (list 1 2 3 4 5 6))) (newline) #;(display (length (list "hello" "world"))) #;(newline)) (void)) (test '(begin (define (sum-integers a b) (if (> a b) 0 (+ a (sum-integers (+ a 1) b)))) (sum-integers 1 100)) (* 50 101)) (test '(begin (define (sum term a next b) (if (> a b) 0 (+ (term a) (sum term (next a) next b)))) (define (inc n) (+ n 1)) (define (identity x) x) (define (cube x) (* x x x)) (define (sum-cubes a b) (sum cube a inc b)) (define (sum-integers a b) (sum identity a inc b)) (list (sum-cubes 1 10) (sum-integers 1 10))) (list 3025 55)) ;; Lexical scope bug: make sure that parameters shadow toplevels. (test '(begin (define x 42) (define (f x) (+ x 1)) (f 16)) 17) (test '(let () 5) 5) (test '(let* ([x 3] [y 4] [z 17]) (+ x y z)) 24) (test '(list (let* ([x 3] [y (+ x 1)] [z (+ x y)]) (list x y z)) 4) (list (list 3 4 7) 4)) (test '(list (let* ([x 3] [y (+ x 1)] [z (+ x y)]) (list x y z)) (let* ([x 17] [y (+ x 1)] [z (+ x y)]) (list x y z))) (list (list 3 4 7) (list 17 18 35))) (test '(let* ([x 0] [x (add1 x)] [x (add1 x)]) x) 2) (test '(begin (define (sum-iter x acc) (if (= x 0) acc (let* ([y (sub1 x)] [z (+ x acc)]) (sum-iter y z)))) (sum-iter 300 0)) 45150 #:stack-limit 8 #:control-limit 3) (test '(let ([x 16]) (call/cc (lambda (k) (+ x x)))) 32 #:with-bootstrapping? #t) (test '(add1 (let ([x 16]) (call/cc (lambda (k) (k 0) (+ x x))))) 1 #:with-bootstrapping? #t) ;; Reference: http://lists.racket-lang.org/users/archive/2009-January/029812.html (let ([op (open-output-string)]) (parameterize ([current-simulated-output-port op]) (test '(begin (define program (lambda () (let ((y (call/cc (lambda (c) c)))) (display 1) (call/cc (lambda (c) (y c))) (display 2) (call/cc (lambda (c) (y c))) (display 3)))) (program)) (void) #:with-bootstrapping? #t) (unless (string=? (get-output-string op) "11213") (error "puzzle failed: ~s" (get-output-string op))))) ;; ctak (test '(begin (define (ctak x y z) (call-with-current-continuation (lambda (k) (ctak-aux k x y z)))) (define (ctak-aux k x y z) (cond ((not (< y x)) ;xy (k z)) (else (call-with-current-continuation (ctak-aux k (call-with-current-continuation (lambda (k) (ctak-aux k (- x 1) y z))) (call-with-current-continuation (lambda (k) (ctak-aux k (- y 1) z x))) (call-with-current-continuation (lambda (k) (ctak-aux k (- z 1) x y)))))))) (ctak 18 12 6)) 7 #:with-bootstrapping? #t) (test '(let ([x 3] [y 4]) (let ([x y] [y x]) (list x y))) (list 4 3)) (test '(letrec ([f (lambda (x) (if (= x 0) 1 (* x (f (sub1 x)))))]) (f 10)) 3628800) (test '(letrec ([e (lambda (x) (if (= x 0) #t (o (sub1 x))))] [o (lambda (x) (if (= x 0) #f (e (sub1 x))))]) (list (e 1236) (e 2391))) (list #t #f)) (test '(let loop ([i 0]) (cond [(= i 5) '(ok)] [else (cons i (loop (add1 i)))])) '(0 1 2 3 4 ok)) (test '(begin (define counter 0) (set! counter (add1 counter)) counter) 1) (test '(begin (define x 16) (define (f x) (set! x (add1 x)) x) (list (f 3) (f 4) x)) (list 4 5 16)) (test '(begin (define a '(hello)) (define b '(world)) (define reset! (lambda () (set! a '()))) (reset!) (list a b)) '(() (world))) (test '(begin (define a '(hello)) (define b '(world)) (define reset! (lambda () (set! b '()))) (reset!) (list a b)) '((hello) ())) (test '(begin (define a '(hello)) (define b '(world)) (define reset! (lambda () (set! a '()) 'ok)) (list a b (reset!) a b)) '((hello) (world) ok () (world))) (test '(begin (define a '(hello)) (define b '(world)) (define reset! (lambda () (set! b '()) 'ok)) (reset!) (list a b)) '((hello)())) (test '(begin (define a '(hello)) (define b '(world)) (define reset! (lambda () (set! a '()) (set! b '()))) (reset!) (list a b)) '(()())) (let ([op (open-output-string)]) (parameterize ([current-simulated-output-port op]) (test '(letrec ([a (lambda (x) (display "a") (display x) (c (add1 x)))] [b (lambda (k) (display "b") (display k) (e (add1 k)))] [c (lambda (y) (display "c") (display y) (b (add1 y)))] [d (lambda (z) (display "d") (display z) z)] [e (lambda (x) (display "e") (display x) (d (add1 x)))]) (a 0)) 4)) (unless (string=? "a0c1b2e3d4" (get-output-string op)) (error 'letrec-failed))) (test '(letrec ([a (lambda () (b))] [b (lambda () (c))] [c (lambda () (d))] [d (lambda () (e))] [e (lambda () (f))] [f (lambda () (g))] [g (lambda () "gee!")]) (a)) "gee!" #:stack-limit 9 #:control-limit 2) (test '(letrec ([a (lambda () (b))] [b (lambda () (c))] [c (lambda () (d))] [d (lambda () (e))] [e (lambda () (f))] [f (lambda () (g))] [g (lambda () "gee!")] [h (lambda () "ho!")]) (a)) "gee!" #:stack-limit 12 #:control-limit 2) (test '(letrec ([a (lambda (lst) (b (cons "a" lst)))] [b (lambda (lst) (c (cons "b" lst)))] [c (lambda (lst) (d (cons "c" lst)))] [d (lambda (lst) (e (cons "d" lst)))] [e (lambda (lst) (f (cons "e" lst)))] [f (lambda (lst) (g (cons "f" lst)))] [g (lambda (lst) (cons "gee!" lst))]) (a '())) '("gee!" "f" "e" "d" "c" "b" "a") #:stack-limit 12 #:control-limit 2) (test '(letrec ([sum-iter (lambda (x acc) (if (= x 0) acc (let* ([y (sub1 x)] [z (+ x acc)]) (sum-iter y z))))]) (sum-iter 300 0)) 45150 #:stack-limit 10 #:control-limit 3) (test '(begin (define counter (let ([x 0]) (lambda () (set! x (add1 x)) x))) (list (counter) (counter) (counter))) '(1 2 3)) (test '(begin (define (make-gen gen) (let ([cont (box #f)]) (lambda () (call/cc (lambda (caller) (if (unbox cont) ((unbox cont) caller) (gen (lambda (v) (call/cc (lambda (gen-k) (begin (set-box! cont gen-k) (caller v)))))))))))) (define g1 (make-gen (lambda (return) (return "a") (return "b") (return "c")))) (list (g1))) (list "a") #:with-bootstrapping? #t) (test '(begin (define (f) (define cont #f) (define n 0) (call/cc (lambda (x) (set! cont x))) (set! n (add1 n)) (if (< n 10) (cont 'dontcare)) n) (f)) 10 #:with-bootstrapping? #t) ;; This should produce 1 because there's a continuation prompt around each evaluation, ;; and the call/cc cuts off at the prompt. (test '(begin (define cont #f) (define n 0) (call/cc (lambda (x) (set! cont x))) (set! n (add1 n)) (if (< n 10) (cont 'dontcare)) n) 1 #:with-bootstrapping? #t) (test '(begin (define (make-gen gen) (let ([cont (box #f)]) (lambda () (call/cc (lambda (caller) (if (unbox cont) ((unbox cont) caller) (gen (lambda (v) (call/cc (lambda (gen-k) (begin (set-box! cont gen-k) (caller v)))))))))))) (define g1 (make-gen (lambda (return) (return "a") (return "b") (return "c")))) (g1) (g1)) "b" #:with-bootstrapping? #t) (let ([op (open-output-string)]) (parameterize ([current-simulated-output-port op]) (test '(begin (define (make-gen gen) (let ([cont (box #f)]) (lambda () (call/cc (lambda (caller) (if (unbox cont) ((unbox cont) caller) (gen (lambda (v) (call/cc (lambda (gen-k) (begin (set-box! cont gen-k) (caller v)))))))))))) (define g1 (make-gen (lambda (return) (return "a") (return "b") (return "c")))) (displayln (g1)) (displayln (g1)) (displayln (g1))) (void) #:with-bootstrapping? #t)) (unless (string=? (get-output-string op) "a\nb\nc\n") (error 'failure))) (test '(begin (define K #f) (let ([x 3] [y 4] [z 5]) (+ x y z (call/cc (lambda (r) (set! K r) 0)))) (let* ([a 0] [b 1]) (+ 1024 (K 17)))) 29 #:with-bootstrapping? #t) #;(test (read (open-input-file "tests/conform/program0.sch")) (port->string (open-input-file "tests/conform/expected0.txt"))) ;(simulate (compile (parse '42) 'val 'next)) ;(compile (parse '(+ 3 4)) 'val 'next)