#lang s-exp "kernel.rkt" (require (for-syntax racket/base)) (provide first second third fourth fifth sixth seventh eighth ninth tenth last-pair last rest cons? empty empty? make-list drop take split-at drop-right take-right split-at-right append* flatten add-between ;;remove-duplicates filter-map count partition argmin argmax ;; convenience append-map filter-not ;;shuffle ) (define (first x) (if (and (pair? x) (list? x)) (car x) (raise-type-error 'first "non-empty list" x))) (define-syntax define-lgetter (syntax-rules () [(_ name npos) (define (name l0) (if (list? l0) (let loop ([l l0] [pos npos]) (if (pair? l) (if (eq? pos 1) (car l) (loop (cdr l) (sub1 pos))) (raise-type-error 'name (format "list with ~a or more items" npos) l0))) (raise-type-error 'name "list" l0)))])) (define-lgetter second 2) (define-lgetter third 3) (define-lgetter fourth 4) (define-lgetter fifth 5) (define-lgetter sixth 6) (define-lgetter seventh 7) (define-lgetter eighth 8) (define-lgetter ninth 9) (define-lgetter tenth 10) (define (last-pair l) (if (pair? l) (let loop ([l l] [x (cdr l)]) (if (pair? x) (loop x (cdr x)) l)) (raise-type-error 'last-pair "pair" l))) (define (last l) (if (and (pair? l) (list? l)) (let loop ([l l] [x (cdr l)]) (if (pair? x) (loop x (cdr x)) (car l))) (raise-type-error 'last "non-empty list" l))) (define (rest l) (if (and (pair? l) (list? l)) (cdr l) (raise-type-error 'rest "non-empty list" l))) (define cons? (lambda (l) (pair? l))) (define empty? (lambda (l) (null? l))) (define empty '()) (define (make-list n x) (unless (exact-nonnegative-integer? n) (raise-type-error 'make-list "non-negative exact integer" n)) (let loop ([n n] [r '()]) (if (zero? n) r (loop (sub1 n) (cons x r))))) ;; internal use below (define (drop* list n) ; no error checking, returns #f if index is too large (if (zero? n) list (and (pair? list) (drop* (cdr list) (sub1 n))))) (define (too-large who list n) (raise-mismatch-error who (format "index ~e too large for list~a: " n (if (list? list) "" " (not a proper list)")) list)) (define (take list0 n0) (unless (exact-nonnegative-integer? n0) (raise-type-error 'take "non-negative exact integer" 1 list0 n0)) (let loop ([list list0] [n n0]) (cond [(zero? n) '()] [(pair? list) (cons (car list) (loop (cdr list) (sub1 n)))] [else (too-large 'take list0 n0)]))) (define (split-at list0 n0) (unless (exact-nonnegative-integer? n0) (raise-type-error 'split-at "non-negative exact integer" 1 list0 n0)) (let loop ([list list0] [n n0] [pfx '()]) (cond [(zero? n) (values (reverse pfx) list)] [(pair? list) (loop (cdr list) (sub1 n) (cons (car list) pfx))] [else (too-large 'split-at list0 n0)]))) (define (drop list n) ;; could be defined as `list-tail', but this is better for errors anyway (unless (exact-nonnegative-integer? n) (raise-type-error 'drop "non-negative exact integer" 1 list n)) (or (drop* list n) (too-large 'drop list n))) ;; take/drop-right are originally from srfi-1, uses the same lead-pointer trick (define (take-right list n) (unless (exact-nonnegative-integer? n) (raise-type-error 'take-right "non-negative exact integer" 1 list n)) (let loop ([list list] [lead (or (drop* list n) (too-large 'take-right list n))]) ;; could throw an error for non-lists, but be more like `take' (if (pair? lead) (loop (cdr list) (cdr lead)) list))) (define (drop-right list n) (unless (exact-nonnegative-integer? n) (raise-type-error 'drop-right "non-negative exact integer" n)) (let loop ([list list] [lead (or (drop* list n) (too-large 'drop-right list n))]) ;; could throw an error for non-lists, but be more like `drop' (if (pair? lead) (cons (car list) (loop (cdr list) (cdr lead))) '()))) (define (split-at-right list n) (unless (exact-nonnegative-integer? n) (raise-type-error 'split-at-right "non-negative exact integer" n)) (let loop ([list list] [lead (or (drop* list n) (too-large 'split-at-right list n))] [pfx '()]) ;; could throw an error for non-lists, but be more like `split-at' (if (pair? lead) (loop (cdr list) (cdr lead) (cons (car list) pfx)) (values (reverse pfx) list)))) (define append* (case-lambda [(ls) (apply append ls)] ; optimize common case [(l1 l2) (apply append l1 l2)] [(l1 l2 l3) (apply append l1 l2 l3)] [(l1 l2 l3 l4) (apply append l1 l2 l3 l4)] [(l . lss) (apply apply append l lss)])) (define (flatten orig-sexp) (let loop ([sexp orig-sexp] [acc null]) (cond [(null? sexp) acc] [(pair? sexp) (loop (car sexp) (loop (cdr sexp) acc))] [else (cons sexp acc)]))) ;; General note: many non-tail recursive, which are just as fast in mzscheme (define (add-between l x) (cond [(not (list? l)) (raise-type-error 'add-between "list" 0 l x)] [(null? l) null] [(null? (cdr l)) l] [else (cons (car l) (let loop ([l (cdr l)]) (if (null? l) null (list* x (car l) (loop (cdr l))))))])) ;; This is nice for symmetry, but confusing to use, and we can get it using ;; something like (append* (add-between l ls)), or even `flatten' for an ;; arbitrary nesting. ;; (define (lists-join ls l) ;; (cond [(null? ls) ls] ;; [(null? l) ls] ; empty separator ;; [else (append (car ls) ;; (let loop ([ls (cdr ls)]) ;; (if (null? ls) ;; ls ;; (append l (car ls) (loop (cdr ls))))))])) #;(define (remove-duplicates l [=? equal?] #:key [key #f]) ;; `no-key' is used to optimize the case for long lists, it could be done for ;; shorter ones too, but that adds a ton of code to the result (about 2k). (define-syntax-rule (no-key x) x) (unless (list? l) (raise-type-error 'remove-duplicates "list" l)) (let* ([len (length l)] [h (cond [(<= len 1) #t] [(<= len 40) #f] [(eq? =? eq?) (make-hasheq)] [(eq? =? equal?) (make-hash)] [else #f])]) (case h [(#t) l] [(#f) ;; plain n^2 list traversal (optimized for common cases) for short lists ;; and for equalities other than `eq?' or `equal?' The length threshold ;; above (40) was determined by trying it out with lists of length n ;; holding (random n) numbers. (let ([key (or key (lambda (x) x))]) (let-syntax ([loop (syntax-rules () [(_ search) (let loop ([l l] [seen null]) (if (null? l) l (let* ([x (car l)] [k (key x)] [l (cdr l)]) (if (search k seen) (loop l seen) (cons x (loop l (cons k seen)))))))])]) (cond [(eq? =? equal?) (loop member)] [(eq? =? eq?) (loop memq)] [(eq? =? eqv?) (loop memv)] [else (loop (lambda (x seen) (ormap (lambda (y) (=? x y)) seen)))])))] [else ;; Use a hash for long lists with simple hash tables. (let-syntax ([loop (syntax-rules () [(_ getkey) (let loop ([l l]) (if (null? l) l (let* ([x (car l)] [k (getkey x)] [l (cdr l)]) (if (hash-ref h k #f) (loop l) (begin (hash-set! h k #t) (cons x (loop l)))))))])]) (if key (loop key) (loop no-key)))]))) (define (filter-map f l . ls) (unless (and (procedure? f) (procedure-arity-includes? f (add1 (length ls)))) (raise-type-error 'filter-map (format "procedure (arity ~a)" (add1 (length ls))) f)) (unless (and (list? l) (andmap list? ls)) (raise-type-error 'filter-map "proper list" (ormap (lambda (x) (and (not (list? x)) x)) (cons l ls)))) (if (pair? ls) (let ([len (length l)]) (if (andmap (lambda (l) (= len (length l))) ls) (let loop ([l l] [ls ls]) (if (null? l) null (let ([x (apply f (car l) (map car ls))]) (if x (cons x (loop (cdr l) (map cdr ls))) (loop (cdr l) (map cdr ls)))))) (error 'filter-map "all lists must have same size"))) (let loop ([l l]) (if (null? l) null (let ([x (f (car l))]) (if x (cons x (loop (cdr l))) (loop (cdr l)))))))) ;; very similar to `filter-map', one more such function will justify some macro (define (count f l . ls) (unless (and (procedure? f) (procedure-arity-includes? f (add1 (length ls)))) (raise-type-error 'count (format "procedure (arity ~a)" (add1 (length ls))) f)) (unless (and (list? l) (andmap list? ls)) (raise-type-error 'count "proper list" (ormap (lambda (x) (and (not (list? x)) x)) (cons l ls)))) (if (pair? ls) (let ([len (length l)]) (if (andmap (lambda (l) (= len (length l))) ls) (let loop ([l l] [ls ls] [c 0]) (if (null? l) c (loop (cdr l) (map cdr ls) (if (apply f (car l) (map car ls)) (add1 c) c)))) (error 'count "all lists must have same size"))) (let loop ([l l] [c 0]) (if (null? l) c (loop (cdr l) (if (f (car l)) (add1 c) c)))))) ;; Originally from srfi-1 -- shares common tail with the input when possible ;; (define (partition f l) ;; (unless (and (procedure? f) (procedure-arity-includes? f 1)) ;; (raise-type-error 'partition "procedure (arity 1)" f)) ;; (unless (list? l) (raise-type-error 'partition "proper list" l)) ;; (let loop ([l l]) ;; (if (null? l) ;; (values null null) ;; (let* ([x (car l)] [x? (f x)]) ;; (let-values ([(in out) (loop (cdr l))]) ;; (if x? ;; (values (if (pair? out) (cons x in) l) out) ;; (values in (if (pair? in) (cons x out) l)))))))) ;; But that one is slower than this, probably due to value packaging (define (partition pred l) (unless (and (procedure? pred) (procedure-arity-includes? pred 1)) (raise-type-error 'partition "procedure (arity 1)" 0 pred l)) (unless (list? l) (raise-type-error 'partition "proper list" 1 pred l)) (let loop ([l l] [i '()] [o '()]) (if (null? l) (values (reverse i) (reverse o)) (let ([x (car l)] [l (cdr l)]) (if (pred x) (loop l (cons x i) o) (loop l i (cons x o))))))) (define append-map (case-lambda [(f l) (apply append (map f l))] [(f l1 l2) (apply append (map f l1 l2))] [(f l . ls) (apply append (apply map f l ls))])) ;; this is an exact copy of `filter' in scheme/private/list, with the ;; `if' branches swapped. (define (filter-not f list) (unless (and (procedure? f) (procedure-arity-includes? f 1)) (raise-type-error 'filter-not "procedure (arity 1)" 0 f list)) (unless (list? list) (raise-type-error 'filter-not "proper list" 1 f list)) ;; accumulating the result and reversing it is currently slightly ;; faster than a plain loop (let loop ([l list] [result null]) (if (null? l) (reverse result) (loop (cdr l) (if (f (car l)) result (cons (car l) result)))))) ;(define (shuffle l) ; (sort l < #:key (lambda (_) (random)) #:cache-keys? #t)) ;; mk-min : (number number -> boolean) symbol (X -> real) (listof X) -> X (define (mk-min cmp name f xs) (unless (and (procedure? f) (procedure-arity-includes? f 1)) (raise-type-error name "procedure (arity 1)" 0 f xs)) (unless (and (list? xs) (pair? xs)) (raise-type-error name "non-empty list" 1 f xs)) (let ([init-min-var (f (car xs))]) (unless (real? init-min-var) (raise-type-error name "procedure that returns real numbers" 0 f xs)) (let loop ([min (car xs)] [min-var init-min-var] [xs (cdr xs)]) (cond [(null? xs) min] [else (let ([new-min (f (car xs))]) (unless (real? new-min) (raise-type-error name "procedure that returns real numbers" 0 f xs)) (cond [(cmp new-min min-var) (loop (car xs) new-min (cdr xs))] [else (loop min min-var (cdr xs))]))])))) (define (argmin f xs) (mk-min < 'argmin f xs)) (define (argmax f xs) (mk-min > 'argmax f xs))