// ---------------------------------------------------------------------- // dyoo: the following code comes from the Google Closure Library. I've done // edits to flatten the namespace from goog.structs to just // AvlTree, commented out inorderTraverse and reverseOrderTraverse. // // ---------------------------------------------------------------------- // Original license follows: // ---------------------------------------------------------------------- // Copyright 2007 The Closure Library Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS-IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @fileoverview Datastructure: AvlTree. * * * This file provides the implementation of an AVL-Tree datastructure. The tree * maintains a set of unique values in a sorted order. The values can be * accessed efficiently in their sorted order since the tree enforces an O(logn) * maximum height. See http://en.wikipedia.org/wiki/Avl_tree for more detail. * * The big-O notation for all operations are below: *
 *   Method                 big-O
 * ----------------------------------------------------------------------------
 * - add                    O(logn)
 * - remove                 O(logn)
 * - clear                  O(1)
 * - contains               O(logn)
 * - getCount               O(1)
 * - getMinimum             O(1), or O(logn) when optional root is specified
 * - getMaximum             O(1), or O(logn) when optional root is specified
 * - getHeight              O(1)
 * - getValues              O(n)
 * - inOrderTraverse        O(logn + k), where k is number of traversed nodes
 * - reverseOrderTraverse   O(logn + k), where k is number of traversed nodes
 * 
*/ /** * Constructs an AVL-Tree, which uses the specified comparator to order its * values. The values can be accessed efficiently in their sorted order since * the tree enforces a O(logn) maximum height. * * @param {Function=} opt_comparator Function used to order the tree's nodes. * @constructor * @implements {Collection} */ var AvlTree = function(opt_comparator) { this.comparator_ = opt_comparator || AvlTree.DEFAULT_COMPARATOR_; }; /** * String comparison function used to compare values in the tree. This function * is used by default if no comparator is specified in the tree's constructor. * * @param {string} a The first string. * @param {string} b The second string. * @return {number} -1 if a < b, 1 if a > b, 0 if a = b. * @private */ AvlTree.DEFAULT_COMPARATOR_ = function(a, b) { if (String(a) < String(b)) { return -1; } else if (String(a) > String(b)) { return 1; } return 0; }; /** * Pointer to the root node of the tree. * * @type {AvlTree.Node} * @private */ AvlTree.prototype.root_ = null; /** * Comparison function used to compare values in the tree. This function should * take two values, a and b, and return x where: *
 *  x < 0 if a < b,
 *  x > 0 if a > b,
 *  x = 0 otherwise
 * 
* * @type {Function} * @private */ AvlTree.prototype.comparator_ = null; /** * Pointer to the node with the smallest value in the tree. * * @type {AvlTree.Node} * @private */ AvlTree.prototype.minNode_ = null; /** * Pointer to the node with the largest value in the tree. * * @type {AvlTree.Node} * @private */ AvlTree.prototype.maxNode_ = null; /** * Keeps track of the number of nodes in the tree. * * @type {number} * @private */ AvlTree.prototype.count_ = 0; /** * Inserts a node into the tree with the specified value if the tree does * not already contain a node with the specified value. If the value is * inserted, the tree is balanced to enforce the AVL-Tree height property. * * @param {*} value Value to insert into the tree. * @return {boolean} Whether value was inserted into the tree. */ AvlTree.prototype.add = function(value) { // If the tree is empty, create a root node with the specified value if (this.root_ == null) { this.root_ = new AvlTree.Node(value); this.minNode_ = this.root_; this.maxNode_ = this.root_; this.count_ = 1; return true; } // Assume a node is not added and change status when one is var retStatus = false; // Depth traverse the tree and insert the value if we reach a null node this.traverse_(function(node) { var retNode = null; if (this.comparator_(node.value, value) > 0) { retNode = node.left; if (node.left == null) { var newNode = new AvlTree.Node(value, node); node.left = newNode; if (node == this.minNode_) { this.minNode_ = newNode; } retStatus = true; // Value was added to tree this.balance_(node); // Maintain the AVL-tree balance } } else if (this.comparator_(node.value, value) < 0) { retNode = node.right; if (node.right == null) { var newNode = new AvlTree.Node(value, node); node.right = newNode; if (node == this.maxNode_) { this.maxNode_ = newNode; } retStatus = true; // Value was added to tree this.balance_(node); // Maintain the AVL-tree balance } } return retNode; // If null, we'll stop traversing the tree }); // If a node was added, increment count if (retStatus) { this.count_ += 1; } // Return true if a node was added, false otherwise return retStatus; }; /** * Removes a node from the tree with the specified value if the tree contains a * node with this value. If a node is removed the tree is balanced to enforce * the AVL-Tree height property. The value of the removed node is returned. * * @param {*} value Value to find and remove from the tree. * @return {*} The value of the removed node or null if the value was not in * the tree. */ AvlTree.prototype.remove = function(value) { // Assume the value is not removed and set the value when it is removed var retValue = null; // Depth traverse the tree and remove the value if we find it this.traverse_(function(node) { var retNode = null; if (this.comparator_(node.value, value) > 0) { retNode = node.left; } else if (this.comparator_(node.value, value) < 0) { retNode = node.right; } else { retValue = node.value; this.removeNode_(node); } return retNode; // If null, we'll stop traversing the tree }); // If a node was removed, decrement count. if (retValue) { // Had traverse_() cleared the tree, set to 0. this.count_ = this.root_ ? this.count_ - 1 : 0; } // Return the value that was removed, null if the value was not in the tree return retValue; }; /** * Removes all nodes from the tree. */ AvlTree.prototype.clear = function() { this.root_ = null; this.minNode_ = null; this.maxNode_ = null; this.count_ = 0; }; /** * Returns true if the tree contains a node with the specified value, false * otherwise. * * @param {*} value Value to find in the tree. * @return {boolean} Whether the tree contains a node with the specified value. */ AvlTree.prototype.contains = function(value) { // Assume the value is not in the tree and set this value if it is found var isContained = false; // Depth traverse the tree and set isContained if we find the node this.traverse_(function(node) { var retNode = null; if (this.comparator_(node.value, value) > 0) { retNode = node.left; } else if (this.comparator_(node.value, value) < 0) { retNode = node.right; } else { isContained = true; } return retNode; // If null, we'll stop traversing the tree }); // Return true if the value is contained in the tree, false otherwise return isContained; }; /** * Returns the number of values stored in the tree. * * @return {number} The number of values stored in the tree. */ AvlTree.prototype.getCount = function() { return this.count_; }; /** * Returns the value u, such that u is contained in the tree and u < v, for all * values v in the tree where v != u. * * @return {*} The minimum value contained in the tree. */ AvlTree.prototype.getMinimum = function() { return this.getMinNode_().value; }; /** * Returns the value u, such that u is contained in the tree and u > v, for all * values v in the tree where v != u. * * @return {*} The maximum value contained in the tree. */ AvlTree.prototype.getMaximum = function() { return this.getMaxNode_().value; }; /** * Returns the height of the tree (the maximum depth). This height should * always be <= 1.4405*(Math.log(n+2)/Math.log(2))-1.3277, where n is the * number of nodes in the tree. * * @return {number} The height of the tree. */ AvlTree.prototype.getHeight = function() { return this.root_ ? this.root_.height : 0; }; /** * Inserts the values stored in the tree into a new Array and returns the Array. * * @return {Array} An array containing all of the trees values in sorted order. */ AvlTree.prototype.getValues = function() { var ret = []; this.inOrderTraverse(function(value) { ret.push(value); }); return ret; }; /** * Performs an in-order traversal of the tree and calls {@code func} with each * traversed node, optionally starting from the smallest node with a value >= to * the specified start value. The traversal ends after traversing the tree's * maximum node or when {@code func} returns a value that evaluates to true. * * @param {Function} func Function to call on each traversed node. * @param {Object=} opt_startValue If specified, traversal will begin on the * node with the smallest value >= opt_startValue. */ AvlTree.prototype.inOrderTraverse = function(func, opt_startValue) { // If our tree is empty, return immediately if (!this.root_) { return; } // Depth traverse the tree to find node to begin in-order traversal from var startNode; if (opt_startValue) { this.traverse_(function(node) { var retNode = null; if (this.comparator_(node.value, opt_startValue) > 0) { retNode = node.left; startNode = node; } else if (this.comparator_(node.value, opt_startValue) < 0) { retNode = node.right; } else { startNode = node; } return retNode; // If null, we'll stop traversing the tree }); } else { startNode = this.getMinNode_(); } // Traverse the tree and call func on each traversed node's value var node = startNode, prev = startNode.left ? startNode.left : startNode; while (node != null) { if (node.left != null && node.left != prev && node.right != prev) { node = node.left; } else { if (node.right != prev) { if (func(node.value)) { return; } } var temp = node; node = node.right != null && node.right != prev ? node.right : node.parent; prev = temp; } } }; // /** // * Performs a reverse-order traversal of the tree and calls {@code func} with // * each traversed node, optionally starting from the largest node with a value // * <= to the specified start value. The traversal ends after traversing the // * tree's minimum node or when func returns a value that evaluates to true. // * // * @param {Function} func Function to call on each traversed node. // * @param {Object=} opt_startValue If specified, traversal will begin on the // * node with the largest value <= opt_startValue. // */ // AvlTree.prototype.reverseOrderTraverse = // function(func, opt_startValue) { // // If our tree is empty, return immediately // if (!this.root_) { // return; // } // // Depth traverse the tree to find node to begin reverse-order traversal from // var startNode; // if (opt_startValue) { // this.traverse_(goog.bind(function(node) { // var retNode = null; // if (this.comparator_(node.value, opt_startValue) > 0) { // retNode = node.left; // } else if (this.comparator_(node.value, opt_startValue) < 0) { // retNode = node.right; // startNode = node; // } else { // startNode = node; // } // return retNode; // If null, we'll stop traversing the tree // }, this)); // } else { // startNode = this.getMaxNode_(); // } // // Traverse the tree and call func on each traversed node's value // var node = startNode, prev = startNode.right ? startNode.right : startNode; // while (node != null) { // if (node.right != null && node.right != prev && node.left != prev) { // node = node.right; // } else { // if (node.left != prev) { // if (func(node.value)) { // return; // } // } // var temp = node; // node = node.left != null && node.left != prev ? // node.left : // node.parent; // prev = temp; // } // } // }; /** * Performs a traversal defined by the supplied {@code traversalFunc}. The first * call to {@code traversalFunc} is passed the root or the optionally specified * startNode. After that, calls {@code traversalFunc} with the node returned * by the previous call to {@code traversalFunc} until {@code traversalFunc} * returns null or the optionally specified endNode. The first call to * traversalFunc is passed the root or the optionally specified startNode. * * @param {Function} traversalFunc Function used to traverse the tree. Takes a * node as a parameter and returns a node. * @param {AvlTree.Node=} opt_startNode The node at which the * traversal begins. * @param {AvlTree.Node=} opt_endNode The node at which the * traversal ends. * @private */ AvlTree.prototype.traverse_ = function(traversalFunc, opt_startNode, opt_endNode) { var node = opt_startNode ? opt_startNode : this.root_; var endNode = opt_endNode ? opt_endNode : null; while (node && node != endNode) { node = traversalFunc.call(this, node); } }; /** * Ensures that the specified node and all its ancestors are balanced. If they * are not, performs left and right tree rotations to achieve a balanced * tree. This method assumes that at most 2 rotations are necessary to balance * the tree (which is true for AVL-trees that are balanced after each node is * added or removed). * * @param {AvlTree.Node} node Node to begin balance from. * @private */ AvlTree.prototype.balance_ = function(node) { this.traverse_(function(node) { // Calculate the left and right node's heights var lh = node.left ? node.left.height : 0; var rh = node.right ? node.right.height : 0; // Rotate tree rooted at this node if it is not AVL-tree balanced if (lh - rh > 1) { if (node.left.right && (!node.left.left || node.left.left.height < node.left.right.height)) { this.leftRotate_(node.left); } this.rightRotate_(node); } else if (rh - lh > 1) { if (node.right.left && (!node.right.right || node.right.right.height < node.right.left.height)) { this.rightRotate_(node.right); } this.leftRotate_(node); } // Recalculate the left and right node's heights lh = node.left ? node.left.height : 0; rh = node.right ? node.right.height : 0; // Set this node's height node.height = Math.max(lh, rh) + 1; // Traverse up tree and balance parent return node.parent; }, node); }; /** * Performs a left tree rotation on the specified node. * * @param {AvlTree.Node} node Pivot node to rotate from. * @private */ AvlTree.prototype.leftRotate_ = function(node) { // Re-assign parent-child references for the parent of the node being removed if (node.isLeftChild()) { node.parent.left = node.right; node.right.parent = node.parent; } else if (node.isRightChild()) { node.parent.right = node.right; node.right.parent = node.parent; } else { this.root_ = node.right; this.root_.parent = null; } // Re-assign parent-child references for the child of the node being removed var temp = node.right; node.right = node.right.left; if (node.right != null) node.right.parent = node; temp.left = node; node.parent = temp; }; /** * Performs a right tree rotation on the specified node. * * @param {AvlTree.Node} node Pivot node to rotate from. * @private */ AvlTree.prototype.rightRotate_ = function(node) { // Re-assign parent-child references for the parent of the node being removed if (node.isLeftChild()) { node.parent.left = node.left; node.left.parent = node.parent; } else if (node.isRightChild()) { node.parent.right = node.left; node.left.parent = node.parent; } else { this.root_ = node.left; this.root_.parent = null; } // Re-assign parent-child references for the child of the node being removed var temp = node.left; node.left = node.left.right; if (node.left != null) node.left.parent = node; temp.right = node; node.parent = temp; }; /** * Removes the specified node from the tree and ensures the tree still * maintains the AVL-tree balance. * * @param {AvlTree.Node} node The node to be removed. * @private */ AvlTree.prototype.removeNode_ = function(node) { // Perform normal binary tree node removal, but balance the tree, starting // from where we removed the node if (node.left != null || node.right != null) { var b = null; // Node to begin balance from var r; // Node to replace the node being removed if (node.left != null) { r = this.getMaxNode_(node.left); if (r != node.left) { r.parent.right = r.left; if (r.left) r.left.parent = r.parent; r.left = node.left; r.left.parent = r; b = r.parent; } r.parent = node.parent; r.right = node.right; if (r.right) r.right.parent = r; if (node == this.maxNode_) this.maxNode_ = r; } else { r = this.getMinNode_(node.right); if (r != node.right) { r.parent.left = r.right; if (r.right) r.right.parent = r.parent; r.right = node.right; r.right.parent = r; b = r.parent; } r.parent = node.parent; r.left = node.left; if (r.left) r.left.parent = r; if (node == this.minNode_) this.minNode_ = r; } // Update the parent of the node being removed to point to its replace if (node.isLeftChild()) { node.parent.left = r; } else if (node.isRightChild()) { node.parent.right = r; } else { this.root_ = r; } // Balance the tree this.balance_(b ? b : r); } else { // If the node is a leaf, remove it and balance starting from its parent if (node.isLeftChild()) { this.special = 1; node.parent.left = null; if (node == this.minNode_) this.minNode_ = node.parent; this.balance_(node.parent); } else if (node.isRightChild()) { node.parent.right = null; if (node == this.maxNode_) this.maxNode_ = node.parent; this.balance_(node.parent); } else { this.clear(); } } }; /** * Returns the node with the smallest value in tree, optionally rooted at * {@code opt_rootNode}. * * @param {AvlTree.Node=} opt_rootNode Optional root node. * @return {AvlTree.Node} The node with the smallest value in * the tree. * @private */ AvlTree.prototype.getMinNode_ = function(opt_rootNode) { if (!opt_rootNode) { return this.minNode_; } var minNode = opt_rootNode; this.traverse_(function(node) { var retNode = null; if (node.left) { minNode = node.left; retNode = node.left; } return retNode; // If null, we'll stop traversing the tree }, opt_rootNode); return minNode; }; /** * Returns the node with the largest value in tree, optionally rooted at * opt_rootNode. * * @param {AvlTree.Node=} opt_rootNode Optional root node. * @return {AvlTree.Node} The node with the largest value in * the tree. * @private */ AvlTree.prototype.getMaxNode_ = function(opt_rootNode) { if (!opt_rootNode) { return this.maxNode_; } var maxNode = opt_rootNode; this.traverse_(function(node) { var retNode = null; if (node.right) { maxNode = node.right; retNode = node.right; } return retNode; // If null, we'll stop traversing the tree }, opt_rootNode); return maxNode; }; /** * Constructs an AVL-Tree node with the specified value. If no parent is * specified, the node's parent is assumed to be null. The node's height * defaults to 1 and its children default to null. * * @param {*} value Value to store in the node. * @param {AvlTree.Node=} opt_parent Optional parent node. * @constructor */ AvlTree.Node = function(value, opt_parent) { /** * The value stored by the node. * * @type {*} */ this.value = value; /** * The node's parent. Null if the node is the root. * * @type {AvlTree.Node} */ this.parent = opt_parent ? opt_parent : null; }; /** * The node's left child. Null if the node does not have a left child. * * @type {AvlTree.Node?} */ AvlTree.Node.prototype.left = null; /** * The node's right child. Null if the node does not have a right child. * * @type {AvlTree.Node?} */ AvlTree.Node.prototype.right = null; /** * The height of the tree rooted at this node. * * @type {number} */ AvlTree.Node.prototype.height = 1; /** * Returns true iff the specified node has a parent and is the right child of * its parent. * * @return {boolean} Whether the specified node has a parent and is the right * child of its parent. */ AvlTree.Node.prototype.isRightChild = function() { return !!this.parent && this.parent.right == this; }; /** * Returns true iff the specified node has a parent and is the left child of * its parent. * * @return {boolean} Whether the specified node has a parent and is the left * child of its parent. */ AvlTree.Node.prototype.isLeftChild = function() { return !!this.parent && this.parent.left == this; };