// Scheme numbers. var __PLTNUMBERS_TOP__; if (typeof(exports) !== 'undefined') { __PLTNUMBERS_TOP__ = exports; } else { if (! this['jsnums']) { this['jsnums'] = {}; } __PLTNUMBERS_TOP__ = this['jsnums']; } //var jsnums = {}; // The numeric tower has the following levels: // integers // rationals // floats // complex numbers // // with the representations: // integers: fixnum or BigInteger [level=0] // rationals: Rational [level=1] // floats: FloatPoint [level=2] // complex numbers: Complex [level=3] // We try to stick with the unboxed fixnum representation for // integers, since that's what scheme programs commonly deal with, and // we want that common type to be lightweight. // A boxed-scheme-number is either BigInteger, Rational, FloatPoint, or Complex. // An integer-scheme-number is either fixnum or BigInteger. (function() { // Abbreviation var Numbers = __PLTNUMBERS_TOP__; //var Numbers = jsnums; // makeNumericBinop: (fixnum fixnum -> any) (scheme-number scheme-number -> any) -> (scheme-number scheme-number) X // Creates a binary function that works either on fixnums or boxnums. // Applies the appropriate binary function, ensuring that both scheme numbers are // lifted to the same level. var makeNumericBinop = function(onFixnums, onBoxednums, options) { options = options || {}; return function(x, y) { if (options.isXSpecialCase && options.isXSpecialCase(x)) return options.onXSpecialCase(x, y); if (options.isYSpecialCase && options.isYSpecialCase(y)) return options.onYSpecialCase(x, y); if (typeof(x) === 'number' && typeof(y) === 'number') { return onFixnums(x, y); } if (typeof(x) === 'number') { x = liftFixnumInteger(x, y); } if (typeof(y) === 'number') { y = liftFixnumInteger(y, x); } if (x.level < y.level) x = x.liftTo(y); if (y.level < x.level) y = y.liftTo(x); return onBoxednums(x, y); }; } // fromFixnum: fixnum -> scheme-number var fromFixnum = function(x) { if (isNaN(x) || (! isFinite(x))) { return FloatPoint.makeInstance(x); } var nf = Math.floor(x); if (nf === x) { if (isOverflow(nf)) { return makeBignum(expandExponent(x+'')); } else { return nf; } } else { return FloatPoint.makeInstance(x); } }; var expandExponent = function(s) { var match = s.match(scientificPattern), mantissaChunks, exponent; if (match) { mantissaChunks = match[1].match(/^([^.]*)(.*)$/); exponent = Number(match[2]); if (mantissaChunks[2].length === 0) { return mantissaChunks[1] + zfill(exponent); } if (exponent >= mantissaChunks[2].length - 1) { return (mantissaChunks[1] + mantissaChunks[2].substring(1) + zfill(exponent - (mantissaChunks[2].length - 1))); } else { return (mantissaChunks[1] + mantissaChunks[2].substring(1, 1+exponent)); } } else { return s; } }; // zfill: integer -> string // builds a string of "0"'s of length n. var zfill = function(n) { var buffer = []; buffer.length = n; for (var i = 0; i < n; i++) { buffer[i] = '0'; } return buffer.join(''); }; // liftFixnumInteger: fixnum-integer boxed-scheme-number -> boxed-scheme-number // Lifts up fixnum integers to a boxed type. var liftFixnumInteger = function(x, other) { switch(other.level) { case 0: // BigInteger return makeBignum(x); case 1: // Rational return new Rational(x, 1); case 2: // FloatPoint return new FloatPoint(x); case 3: // Complex return new Complex(x, 0); default: throwRuntimeError("IMPOSSIBLE: cannot lift fixnum integer to " + other.toString(), x, other); } }; // throwRuntimeError: string (scheme-number | undefined) (scheme-number | undefined) -> void // Throws a runtime error with the given message string. var throwRuntimeError = function(msg, x, y) { Numbers['onThrowRuntimeError'](msg, x, y); }; // onThrowRuntimeError: string (scheme-number | undefined) (scheme-number | undefined) -> void // By default, will throw a new Error with the given message. // Override Numbers['onThrowRuntimeError'] if you need to do something special. var onThrowRuntimeError = function(msg, x, y) { throw new Error(msg); }; // isSchemeNumber: any -> boolean // Returns true if the thing is a scheme number. var isSchemeNumber = function(thing) { return (typeof(thing) === 'number' || (thing instanceof Rational || thing instanceof FloatPoint || thing instanceof Complex || thing instanceof BigInteger)); }; // isRational: scheme-number -> boolean var isRational = function(n) { return (typeof(n) === 'number' || (isSchemeNumber(n) && n.isRational())); }; // isReal: scheme-number -> boolean var isReal = function(n) { return (typeof(n) === 'number' || (isSchemeNumber(n) && n.isReal())); }; // isExact: scheme-number -> boolean var isExact = function(n) { return (typeof(n) === 'number' || (isSchemeNumber(n) && n.isExact())); }; // isExact: scheme-number -> boolean var isInexact = function(n) { if (typeof(n) === 'number') { return false; } else { return (isSchemeNumber(n) && n.isInexact()); } }; // isInteger: scheme-number -> boolean var isInteger = function(n) { return (typeof(n) === 'number' || (isSchemeNumber(n) && n.isInteger())); }; // isExactInteger: scheme-number -> boolean var isExactInteger = function(n) { return (typeof(n) === 'number' || (isSchemeNumber(n) && n.isInteger() && n.isExact())); } // toFixnum: scheme-number -> javascript-number var toFixnum = function(n) { if (typeof(n) === 'number') return n; return n.toFixnum(); }; // toExact: scheme-number -> scheme-number var toExact = function(n) { if (typeof(n) === 'number') return n; return n.toExact(); }; // toExact: scheme-number -> scheme-number var toInexact = function(n) { if (typeof(n) === 'number') return FloatPoint.makeInstance(n); return n.toInexact(); }; ////////////////////////////////////////////////////////////////////// // add: scheme-number scheme-number -> scheme-number var add = function(x, y) { var sum; if (typeof(x) === 'number' && typeof(y) === 'number') { sum = x + y; if (isOverflow(sum)) { return (makeBignum(x)).add(makeBignum(y)); } } if (x instanceof FloatPoint && y instanceof FloatPoint) { return x.add(y); } return addSlow(x, y); }; var addSlow = makeNumericBinop( function(x, y) { var sum = x + y; if (isOverflow(sum)) { return (makeBignum(x)).add(makeBignum(y)); } else { return sum; } }, function(x, y) { return x.add(y); }, {isXSpecialCase: function(x) { return isExactInteger(x) && _integerIsZero(x) }, onXSpecialCase: function(x, y) { return y; }, isYSpecialCase: function(y) { return isExactInteger(y) && _integerIsZero(y) }, onYSpecialCase: function(x, y) { return x; } }); // subtract: scheme-number scheme-number -> scheme-number var subtract = makeNumericBinop( function(x, y) { var diff = x - y; if (isOverflow(diff)) { return (makeBignum(x)).subtract(makeBignum(y)); } else { return diff; } }, function(x, y) { return x.subtract(y); }, {isXSpecialCase: function(x) { return isExactInteger(x) && _integerIsZero(x) }, onXSpecialCase: function(x, y) { return negate(y); }, isYSpecialCase: function(y) { return isExactInteger(y) && _integerIsZero(y) }, onYSpecialCase: function(x, y) { return x; } }); // mulitply: scheme-number scheme-number -> scheme-number var multiply = function(x, y) { var prod; if (typeof(x) === 'number' && typeof(y) === 'number') { prod = x * y; if (isOverflow(prod)) { return (makeBignum(x)).multiply(makeBignum(y)); } else { return prod; } } if (x instanceof FloatPoint && y instanceof FloatPoint) { return x.multiply(y); } return multiplySlow(x, y); }; var multiplySlow = makeNumericBinop( function(x, y) { var prod = x * y; if (isOverflow(prod)) { return (makeBignum(x)).multiply(makeBignum(y)); } else { return prod; } }, function(x, y) { return x.multiply(y); }, {isXSpecialCase: function(x) { return (isExactInteger(x) && (_integerIsZero(x) || _integerIsOne(x) || _integerIsNegativeOne(x))) }, onXSpecialCase: function(x, y) { if (_integerIsZero(x)) return 0; if (_integerIsOne(x)) return y; if (_integerIsNegativeOne(x)) return negate(y); }, isYSpecialCase: function(y) { return (isExactInteger(y) && (_integerIsZero(y) || _integerIsOne(y) || _integerIsNegativeOne(y)))}, onYSpecialCase: function(x, y) { if (_integerIsZero(y)) return 0; if (_integerIsOne(y)) return x; if (_integerIsNegativeOne(y)) return negate(x); } }); // divide: scheme-number scheme-number -> scheme-number var divide = makeNumericBinop( function(x, y) { if (_integerIsZero(y)) throwRuntimeError("/: division by zero", x, y); var div = x / y; if (isOverflow(div)) { return (makeBignum(x)).divide(makeBignum(y)); } else if (Math.floor(div) !== div) { return Rational.makeInstance(x, y); } else { return div; } }, function(x, y) { return x.divide(y); }, { isXSpecialCase: function(x) { return (eqv(x, 0)); }, onXSpecialCase: function(x, y) { if (eqv(y, 0)) { throwRuntimeError("/: division by zero", x, y); } return 0; }, isYSpecialCase: function(y) { return (eqv(y, 0)); }, onYSpecialCase: function(x, y) { throwRuntimeError("/: division by zero", x, y); } }); // equals: scheme-number scheme-number -> boolean var equals = makeNumericBinop( function(x, y) { return x === y; }, function(x, y) { return x.equals(y); }); // eqv: scheme-number scheme-number -> boolean var eqv = function(x, y) { if (x === y) return true; if (typeof(x) === 'number' && typeof(y) === 'number') return x === y; if (x === NEGATIVE_ZERO || y === NEGATIVE_ZERO) return x === y; if (x instanceof Complex || y instanceof Complex) { return (eqv(realPart(x), realPart(y)) && eqv(imaginaryPart(x), imaginaryPart(y))); } var ex = isExact(x), ey = isExact(y); return (((ex && ey) || (!ex && !ey)) && equals(x, y)); }; // approxEqual: scheme-number scheme-number scheme-number -> boolean var approxEquals = function(x, y, delta) { return lessThan(abs(subtract(x, y)), delta); }; // greaterThanOrEqual: scheme-number scheme-number -> boolean var greaterThanOrEqual = makeNumericBinop( function(x, y) { return x >= y; }, function(x, y) { if (!(isReal(x) && isReal(y))) throwRuntimeError( ">=: couldn't be applied to complex number", x, y); return x.greaterThanOrEqual(y); }); // lessThanOrEqual: scheme-number scheme-number -> boolean var lessThanOrEqual = makeNumericBinop( function(x, y){ return x <= y; }, function(x, y) { if (!(isReal(x) && isReal(y))) throwRuntimeError("<=: couldn't be applied to complex number", x, y); return x.lessThanOrEqual(y); }); // greaterThan: scheme-number scheme-number -> boolean var greaterThan = makeNumericBinop( function(x, y){ return x > y; }, function(x, y) { if (!(isReal(x) && isReal(y))) throwRuntimeError(">: couldn't be applied to complex number", x, y); return x.greaterThan(y); }); // lessThan: scheme-number scheme-number -> boolean var lessThan = makeNumericBinop( function(x, y){ return x < y; }, function(x, y) { if (!(isReal(x) && isReal(y))) throwRuntimeError("<: couldn't be applied to complex number", x, y); return x.lessThan(y); }); // expt: scheme-number scheme-number -> scheme-number var expt = (function() { var _expt = makeNumericBinop( function(x, y){ var pow = Math.pow(x, y); if (isOverflow(pow)) { return (makeBignum(x)).expt(makeBignum(y)); } else { return pow; } }, function(x, y) { if (equals(y, 0)) { return add(y, 1); } else { return x.expt(y); } }); return function(x, y) { if (equals(y, 0)) return add(y, 1); if (isReal(y) && lessThan(y, 0)) { return _expt(divide(1, x), negate(y)); } return _expt(x, y); }; })(); // exp: scheme-number -> scheme-number var exp = function(n) { if ( eqv(n, 0) ) { return 1; } if (typeof(n) === 'number') { return FloatPoint.makeInstance(Math.exp(n)); } return n.exp(); }; // modulo: scheme-number scheme-number -> scheme-number var modulo = function(m, n) { if (! isInteger(m)) { throwRuntimeError('modulo: the first argument ' + m + " is not an integer.", m, n); } if (! isInteger(n)) { throwRuntimeError('modulo: the second argument ' + n + " is not an integer.", m, n); } var result; if (typeof(m) === 'number') { result = m % n; if (n < 0) { if (result <= 0) return result; else return result + n; } else { if (result < 0) return result + n; else return result; } } result = _integerModulo(floor(m), floor(n)); // The sign of the result should match the sign of n. if (lessThan(n, 0)) { if (lessThanOrEqual(result, 0)) { return result; } return add(result, n); } else { if (lessThan(result, 0)) { return add(result, n); } return result; } }; // numerator: scheme-number -> scheme-number var numerator = function(n) { if (typeof(n) === 'number') return n; return n.numerator(); }; // denominator: scheme-number -> scheme-number var denominator = function(n) { if (typeof(n) === 'number') return 1; return n.denominator(); }; // sqrt: scheme-number -> scheme-number var sqrt = function(n) { if (typeof(n) === 'number') { if (n >= 0) { var result = Math.sqrt(n); if (Math.floor(result) === result) { return result; } else { return FloatPoint.makeInstance(result); } } else { return (Complex.makeInstance(0, sqrt(-n))); } } return n.sqrt(); }; // abs: scheme-number -> scheme-number var abs = function(n) { if (typeof(n) === 'number') { return Math.abs(n); } return n.abs(); }; // floor: scheme-number -> scheme-number var floor = function(n) { if (typeof(n) === 'number') return n; return n.floor(); }; // ceiling: scheme-number -> scheme-number var ceiling = function(n) { if (typeof(n) === 'number') return n; return n.ceiling(); }; // conjugate: scheme-number -> scheme-number var conjugate = function(n) { if (typeof(n) === 'number') return n; return n.conjugate(); }; // magnitude: scheme-number -> scheme-number var magnitude = function(n) { if (typeof(n) === 'number') return Math.abs(n); return n.magnitude(); }; // log: scheme-number -> scheme-number var log = function(n) { if ( eqv(n, 1) ) { return 0; } if (typeof(n) === 'number') { return FloatPoint.makeInstance(Math.log(n)); } return n.log(); }; // angle: scheme-number -> scheme-number var angle = function(n) { if (typeof(n) === 'number') { if (n > 0) return 0; else return FloatPoint.pi; } return n.angle(); }; // tan: scheme-number -> scheme-number var tan = function(n) { if (eqv(n, 0)) { return 0; } if (typeof(n) === 'number') { return FloatPoint.makeInstance(Math.tan(n)); } return n.tan(); }; // atan: scheme-number -> scheme-number var atan = function(n) { if (eqv(n, 0)) { return 0; } if (typeof(n) === 'number') { return FloatPoint.makeInstance(Math.atan(n)); } return n.atan(); }; // cos: scheme-number -> scheme-number var cos = function(n) { if (eqv(n, 0)) { return 1; } if (typeof(n) === 'number') { return FloatPoint.makeInstance(Math.cos(n)); } return n.cos(); }; // sin: scheme-number -> scheme-number var sin = function(n) { if (eqv(n, 0)) { return 0; } if (typeof(n) === 'number') { return FloatPoint.makeInstance(Math.sin(n)); } return n.sin(); }; // acos: scheme-number -> scheme-number var acos = function(n) { if (eqv(n, 1)) { return 0; } if (typeof(n) === 'number') { return FloatPoint.makeInstance(Math.acos(n)); } return n.acos(); }; // asin: scheme-number -> scheme-number var asin = function(n) { if (eqv(n, 0)) { return 0; } if (typeof(n) === 'number') { return FloatPoint.makeInstance(Math.asin(n)); } return n.asin(); }; // imaginaryPart: scheme-number -> scheme-number var imaginaryPart = function(n) { if (typeof(n) === 'number') { return 0; } return n.imaginaryPart(); }; // realPart: scheme-number -> scheme-number var realPart = function(n) { if (typeof(n) === 'number') { return n; } return n.realPart(); }; // round: scheme-number -> scheme-number var round = function(n) { if (typeof(n) === 'number') { return n; } return n.round(); }; // sqr: scheme-number -> scheme-number var sqr = function(x) { return multiply(x, x); }; // integerSqrt: scheme-number -> scheme-number var integerSqrt = function(x) { if (! isInteger(x)) { throwRuntimeError('integer-sqrt: the argument ' + x.toString() + " is not an integer.", x); } if (typeof (x) === 'number') { if(x < 0) { return Complex.makeInstance(0, Math.floor(Math.sqrt(-x))) } else { return Math.floor(Math.sqrt(x)); } } return x.integerSqrt(); }; // gcd: scheme-number [scheme-number ...] -> scheme-number var gcd = function(first, rest) { if (! isInteger(first)) { throwRuntimeError('gcd: the argument ' + first.toString() + " is not an integer.", first); } var a = abs(first), t, b; for(var i = 0; i < rest.length; i++) { b = abs(rest[i]); if (! isInteger(b)) { throwRuntimeError('gcd: the argument ' + b.toString() + " is not an integer.", b); } while (! _integerIsZero(b)) { t = a; a = b; b = _integerModulo(t, b); } } return a; }; // lcm: scheme-number [scheme-number ...] -> scheme-number var lcm = function(first, rest) { if (! isInteger(first)) { throwRuntimeError('lcm: the argument ' + first.toString() + " is not an integer.", first); } var result = abs(first); if (_integerIsZero(result)) { return 0; } for (var i = 0; i < rest.length; i++) { if (! isInteger(rest[i])) { throwRuntimeError('lcm: the argument ' + rest[i].toString() + " is not an integer.", rest[i]); } var divisor = _integerGcd(result, rest[i]); if (_integerIsZero(divisor)) { return 0; } result = divide(multiply(result, rest[i]), divisor); } return result; }; var quotient = function(x, y) { if (! isInteger(x)) { throwRuntimeError('quotient: the first argument ' + x.toString() + " is not an integer.", x); } if (! isInteger(y)) { throwRuntimeError('quotient: the second argument ' + y.toString() + " is not an integer.", y); } return _integerQuotient(x, y); }; var remainder = function(x, y) { if (! isInteger(x)) { throwRuntimeError('remainder: the first argument ' + x.toString() + " is not an integer.", x); } if (! isInteger(y)) { throwRuntimeError('remainder: the second argument ' + y.toString() + " is not an integer.", y); } return _integerRemainder(x, y); }; // Implementation of the hyperbolic functions // http://en.wikipedia.org/wiki/Hyperbolic_cosine var cosh = function(x) { if (eqv(x, 0)) { return FloatPoint.makeInstance(1.0); } return divide(add(exp(x), exp(negate(x))), 2); }; var sinh = function(x) { return divide(subtract(exp(x), exp(negate(x))), 2); }; var makeComplexPolar = function(r, theta) { // special case: if theta is zero, just return // the scalar. if (eqv(theta, 0)) { return r; } return Complex.makeInstance(multiply(r, cos(theta)), multiply(r, sin(theta))); }; ////////////////////////////////////////////////////////////////////// // Helpers // IsFinite: scheme-number -> boolean // Returns true if the scheme number is finite or not. var isSchemeNumberFinite = function(n) { if (typeof(n) === 'number') { return isFinite(n); } else { return n.isFinite(); } }; // isOverflow: javascript-number -> boolean // Returns true if we consider the number an overflow. var MIN_FIXNUM = -(9e15); var MAX_FIXNUM = (9e15); var isOverflow = function(n) { return (n < MIN_FIXNUM || MAX_FIXNUM < n); }; // negate: scheme-number -> scheme-number // multiplies a number times -1. var negate = function(n) { if (typeof(n) === 'number') { return -n; } return n.negate(); }; // halve: scheme-number -> scheme-number // Divide a number by 2. var halve = function(n) { return divide(n, 2); }; // timesI: scheme-number scheme-number // multiplies a number times i. var timesI = function(x) { return multiply(x, plusI); }; // fastExpt: computes n^k by squaring. // n^k = (n^2)^(k/2) // Assumes k is non-negative integer. var fastExpt = function(n, k) { var acc = 1; while (true) { if (_integerIsZero(k)) { return acc; } if (equals(modulo(k, 2), 0)) { n = multiply(n, n); k = divide(k, 2); } else { acc = multiply(acc, n); k = subtract(k, 1); } } }; ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// // Integer operations // Integers are either represented as fixnums or as BigIntegers. // makeIntegerBinop: (fixnum fixnum -> X) (BigInteger BigInteger -> X) -> X // Helper to collect the common logic for coersing integer fixnums or bignums to a // common type before doing an operation. var makeIntegerBinop = function(onFixnums, onBignums, options) { options = options || {}; return (function(m, n) { if (m instanceof Rational) { m = numerator(m); } else if (m instanceof Complex) { m = realPart(m); } if (n instanceof Rational) { n = numerator(n); }else if (n instanceof Complex) { n = realPart(n); } if (typeof(m) === 'number' && typeof(n) === 'number') { var result = onFixnums(m, n); if (! isOverflow(result) || (options.ignoreOverflow)) { return result; } } if (m instanceof FloatPoint || n instanceof FloatPoint) { if (options.doNotCoerseToFloating) { return onFixnums(toFixnum(m), toFixnum(n)); } else { return FloatPoint.makeInstance( onFixnums(toFixnum(m), toFixnum(n))); } } if (typeof(m) === 'number') { m = makeBignum(m); } if (typeof(n) === 'number') { n = makeBignum(n); } return onBignums(m, n); }); }; var makeIntegerUnOp = function(onFixnums, onBignums, options) { options = options || {}; return (function(m) { if (m instanceof Rational) { m = numerator(m); } else if (m instanceof Complex) { m = realPart(m); } if (typeof(m) === 'number') { var result = onFixnums(m); if (! isOverflow(result) || (options.ignoreOverflow)) { return result; } } if (m instanceof FloatPoint) { return onFixnums(toFixnum(m)); } if (typeof(m) === 'number') { m = makeBignum(m); } return onBignums(m); }); }; // _integerModulo: integer-scheme-number integer-scheme-number -> integer-scheme-number var _integerModulo = makeIntegerBinop( function(m, n) { return m % n; }, function(m, n) { return bnMod.call(m, n); }); // _integerGcd: integer-scheme-number integer-scheme-number -> integer-scheme-number var _integerGcd = makeIntegerBinop( function(a, b) { var t; while (b !== 0) { t = a; a = b; b = t % b; } return a; }, function(m, n) { return bnGCD.call(m, n); }); // _integerIsZero: integer-scheme-number -> boolean // Returns true if the number is zero. var _integerIsZero = makeIntegerUnOp( function(n){ return n === 0; }, function(n) { return bnEquals.call(n, BigInteger.ZERO); } ); // _integerIsOne: integer-scheme-number -> boolean var _integerIsOne = makeIntegerUnOp( function(n) { return n === 1; }, function(n) { return bnEquals.call(n, BigInteger.ONE); }); // _integerIsNegativeOne: integer-scheme-number -> boolean var _integerIsNegativeOne = makeIntegerUnOp( function(n) { return n === -1; }, function(n) { return bnEquals.call(n, BigInteger.NEGATIVE_ONE); }); // _integerAdd: integer-scheme-number integer-scheme-number -> integer-scheme-number var _integerAdd = makeIntegerBinop( function(m, n) { return m + n; }, function(m, n) { return bnAdd.call(m, n); }); // _integerSubtract: integer-scheme-number integer-scheme-number -> integer-scheme-number var _integerSubtract = makeIntegerBinop( function(m, n) { return m - n; }, function(m, n) { return bnSubtract.call(m, n); }); // _integerMultiply: integer-scheme-number integer-scheme-number -> integer-scheme-number var _integerMultiply = makeIntegerBinop( function(m, n) { return m * n; }, function(m, n) { return bnMultiply.call(m, n); }); //_integerQuotient: integer-scheme-number integer-scheme-number -> integer-scheme-number var _integerQuotient = makeIntegerBinop( function(m, n) { return ((m - (m % n))/ n); }, function(m, n) { return bnDivide.call(m, n); }); var _integerRemainder = makeIntegerBinop( function(m, n) { return m % n; }, function(m, n) { return bnRemainder.call(m, n); }); // _integerDivideToFixnum: integer-scheme-number integer-scheme-number -> fixnum var _integerDivideToFixnum = makeIntegerBinop( function(m, n) { return m / n; }, function(m, n) { return toFixnum(m) / toFixnum(n); }, {ignoreOverflow: true, doNotCoerseToFloating: true}); // _integerEquals: integer-scheme-number integer-scheme-number -> boolean var _integerEquals = makeIntegerBinop( function(m, n) { return m === n; }, function(m, n) { return bnEquals.call(m, n); }, {doNotCoerseToFloating: true}); // _integerGreaterThan: integer-scheme-number integer-scheme-number -> boolean var _integerGreaterThan = makeIntegerBinop( function(m, n) { return m > n; }, function(m, n) { return bnCompareTo.call(m, n) > 0; }, {doNotCoerseToFloating: true}); // _integerLessThan: integer-scheme-number integer-scheme-number -> boolean var _integerLessThan = makeIntegerBinop( function(m, n) { return m < n; }, function(m, n) { return bnCompareTo.call(m, n) < 0; }, {doNotCoerseToFloating: true}); // _integerGreaterThanOrEqual: integer-scheme-number integer-scheme-number -> boolean var _integerGreaterThanOrEqual = makeIntegerBinop( function(m, n) { return m >= n; }, function(m, n) { return bnCompareTo.call(m, n) >= 0; }, {doNotCoerseToFloating: true}); // _integerLessThanOrEqual: integer-scheme-number integer-scheme-number -> boolean var _integerLessThanOrEqual = makeIntegerBinop( function(m, n) { return m <= n; }, function(m, n) { return bnCompareTo.call(m, n) <= 0; }, {doNotCoerseToFloating: true}); ////////////////////////////////////////////////////////////////////// // The boxed number types are expected to implement the following // interface. // // toString: -> string // level: number // liftTo: scheme-number -> scheme-number // isFinite: -> boolean // isInteger: -> boolean // Produce true if this number can be coersed into an integer. // isRational: -> boolean // Produce true if the number is rational. // isReal: -> boolean // Produce true if the number is real. // isExact: -> boolean // Produce true if the number is exact // toExact: -> scheme-number // Produce an exact number. // toFixnum: -> javascript-number // Produce a javascript number. // greaterThan: scheme-number -> boolean // Compare against instance of the same type. // greaterThanOrEqual: scheme-number -> boolean // Compare against instance of the same type. // lessThan: scheme-number -> boolean // Compare against instance of the same type. // lessThanOrEqual: scheme-number -> boolean // Compare against instance of the same type. // add: scheme-number -> scheme-number // Add with an instance of the same type. // subtract: scheme-number -> scheme-number // Subtract with an instance of the same type. // multiply: scheme-number -> scheme-number // Multiply with an instance of the same type. // divide: scheme-number -> scheme-number // Divide with an instance of the same type. // numerator: -> scheme-number // Return the numerator. // denominator: -> scheme-number // Return the denominator. // integerSqrt: -> scheme-number // Produce the integer square root. // sqrt: -> scheme-number // Produce the square root. // abs: -> scheme-number // Produce the absolute value. // floor: -> scheme-number // Produce the floor. // ceiling: -> scheme-number // Produce the ceiling. // conjugate: -> scheme-number // Produce the conjugate. // magnitude: -> scheme-number // Produce the magnitude. // log: -> scheme-number // Produce the log. // angle: -> scheme-number // Produce the angle. // atan: -> scheme-number // Produce the arc tangent. // cos: -> scheme-number // Produce the cosine. // sin: -> scheme-number // Produce the sine. // expt: scheme-number -> scheme-number // Produce the power to the input. // exp: -> scheme-number // Produce e raised to the given power. // acos: -> scheme-number // Produce the arc cosine. // asin: -> scheme-number // Produce the arc sine. // imaginaryPart: -> scheme-number // Produce the imaginary part // realPart: -> scheme-number // Produce the real part. // round: -> scheme-number // Round to the nearest integer. // equals: scheme-number -> boolean // Produce true if the given number of the same type is equal. ////////////////////////////////////////////////////////////////////// // Rationals var Rational = function(n, d) { this.n = n; this.d = d; }; Rational.prototype.toString = function() { if (_integerIsOne(this.d)) { return this.n.toString() + ""; } else { return this.n.toString() + "/" + this.d.toString(); } }; Rational.prototype.level = 1; Rational.prototype.liftTo = function(target) { if (target.level === 2) return new FloatPoint( _integerDivideToFixnum(this.n, this.d)); if (target.level === 3) return new Complex(this, 0); return throwRuntimeError("invalid level of Number", this, target); }; Rational.prototype.isFinite = function() { return true; }; Rational.prototype.equals = function(other) { return (other instanceof Rational && _integerEquals(this.n, other.n) && _integerEquals(this.d, other.d)); }; Rational.prototype.isInteger = function() { return _integerIsOne(this.d); }; Rational.prototype.isRational = function() { return true; }; Rational.prototype.isReal = function() { return true; }; Rational.prototype.add = function(other) { return Rational.makeInstance(_integerAdd(_integerMultiply(this.n, other.d), _integerMultiply(this.d, other.n)), _integerMultiply(this.d, other.d)); }; Rational.prototype.subtract = function(other) { return Rational.makeInstance(_integerSubtract(_integerMultiply(this.n, other.d), _integerMultiply(this.d, other.n)), _integerMultiply(this.d, other.d)); }; Rational.prototype.negate = function() { return Rational.makeInstance(-this.n, this.d) }; Rational.prototype.multiply = function(other) { return Rational.makeInstance(_integerMultiply(this.n, other.n), _integerMultiply(this.d, other.d)); }; Rational.prototype.divide = function(other) { if (_integerIsZero(this.d) || _integerIsZero(other.n)) { throwRuntimeError("/: division by zero", this, other); } return Rational.makeInstance(_integerMultiply(this.n, other.d), _integerMultiply(this.d, other.n)); }; Rational.prototype.toExact = function() { return this; }; Rational.prototype.toInexact = function() { return FloatPoint.makeInstance(this.toFixnum()); }; Rational.prototype.isExact = function() { return true; }; Rational.prototype.isInexact = function() { return false; }; Rational.prototype.toFixnum = function() { return _integerDivideToFixnum(this.n, this.d); }; Rational.prototype.numerator = function() { return this.n; }; Rational.prototype.denominator = function() { return this.d; }; Rational.prototype.greaterThan = function(other) { return _integerGreaterThan(_integerMultiply(this.n, other.d), _integerMultiply(this.d, other.n)); }; Rational.prototype.greaterThanOrEqual = function(other) { return _integerGreaterThanOrEqual(_integerMultiply(this.n, other.d), _integerMultiply(this.d, other.n)); }; Rational.prototype.lessThan = function(other) { return _integerLessThan(_integerMultiply(this.n, other.d), _integerMultiply(this.d, other.n)); }; Rational.prototype.lessThanOrEqual = function(other) { return _integerLessThanOrEqual(_integerMultiply(this.n, other.d), _integerMultiply(this.d, other.n)); }; Rational.prototype.integerSqrt = function() { var result = sqrt(this); if (isRational(result)) { return toExact(floor(result)); } else if (isReal(result)) { return toExact(floor(result)); } else { return Complex.makeInstance(toExact(floor(realPart(result))), toExact(floor(imaginaryPart(result)))); } }; Rational.prototype.sqrt = function() { if (_integerGreaterThanOrEqual(this.n, 0)) { var newN = sqrt(this.n); var newD = sqrt(this.d); if (equals(floor(newN), newN) && equals(floor(newD), newD)) { return Rational.makeInstance(newN, newD); } else { return FloatPoint.makeInstance(_integerDivideToFixnum(newN, newD)); } } else { var newN = sqrt(negate(this.n)); var newD = sqrt(this.d); if (equals(floor(newN), newN) && equals(floor(newD), newD)) { return Complex.makeInstance( 0, Rational.makeInstance(newN, newD)); } else { return Complex.makeInstance( 0, FloatPoint.makeInstance(_integerDivideToFixnum(newN, newD))); } } }; Rational.prototype.abs = function() { return Rational.makeInstance(abs(this.n), this.d); }; Rational.prototype.floor = function() { var quotient = _integerQuotient(this.n, this.d); if (_integerLessThan(this.n, 0)) { return subtract(quotient, 1); } else { return quotient; } }; Rational.prototype.ceiling = function() { var quotient = _integerQuotient(this.n, this.d); if (_integerLessThan(this.n, 0)) { return quotient; } else { return add(quotient, 1); } }; Rational.prototype.conjugate = function() { return this; }; Rational.prototype.magnitude = Rational.prototype.abs; Rational.prototype.log = function(){ return FloatPoint.makeInstance(Math.log(this.n / this.d)); }; Rational.prototype.angle = function(){ if (_integerIsZero(this.n)) return 0; if (_integerGreaterThan(this.n, 0)) return 0; else return FloatPoint.pi; }; Rational.prototype.tan = function(){ return FloatPoint.makeInstance(Math.tan(_integerDivideToFixnum(this.n, this.d))); }; Rational.prototype.atan = function(){ return FloatPoint.makeInstance(Math.atan(_integerDivideToFixnum(this.n, this.d))); }; Rational.prototype.cos = function(){ return FloatPoint.makeInstance(Math.cos(_integerDivideToFixnum(this.n, this.d))); }; Rational.prototype.sin = function(){ return FloatPoint.makeInstance(Math.sin(_integerDivideToFixnum(this.n, this.d))); }; Rational.prototype.expt = function(a){ if (isExactInteger(a) && greaterThanOrEqual(a, 0)) { return fastExpt(this, a); } return FloatPoint.makeInstance(Math.pow(_integerDivideToFixnum(this.n, this.d), _integerDivideToFixnum(a.n, a.d))); }; Rational.prototype.exp = function(){ return FloatPoint.makeInstance(Math.exp(_integerDivideToFixnum(this.n, this.d))); }; Rational.prototype.acos = function(){ return FloatPoint.makeInstance(Math.acos(_integerDivideToFixnum(this.n, this.d))); }; Rational.prototype.asin = function(){ return FloatPoint.makeInstance(Math.asin(_integerDivideToFixnum(this.n, this.d))); }; Rational.prototype.imaginaryPart = function(){ return 0; }; Rational.prototype.realPart = function(){ return this; }; Rational.prototype.round = function() { // FIXME: not correct when values are bignums if (equals(this.d, 2)) { // Round to even if it's a n/2 var v = _integerDivideToFixnum(this.n, this.d); var fl = Math.floor(v); var ce = Math.ceil(v); if (_integerIsZero(fl % 2)) { return fl; } else { return ce; } } else { return Math.round(this.n / this.d); } }; Rational.makeInstance = function(n, d) { if (n === undefined) throwRuntimeError("n undefined", n, d); if (d === undefined) { d = 1; } if (_integerLessThan(d, 0)) { n = negate(n); d = negate(d); } var divisor = _integerGcd(abs(n), abs(d)); n = _integerQuotient(n, divisor); d = _integerQuotient(d, divisor); // Optimization: if we can get around construction the rational // in favor of just returning n, do it: if (_integerIsOne(d) || _integerIsZero(n)) { return n; } return new Rational(n, d); }; // Floating Point numbers var FloatPoint = function(n) { this.n = n; }; FloatPoint = FloatPoint; var NaN = new FloatPoint(Number.NaN); var inf = new FloatPoint(Number.POSITIVE_INFINITY); var neginf = new FloatPoint(Number.NEGATIVE_INFINITY); // We use these two constants to represent the floating-point coersion // of bignums that can't be represented with fidelity. var TOO_POSITIVE_TO_REPRESENT = new FloatPoint(Number.POSITIVE_INFINITY); var TOO_NEGATIVE_TO_REPRESENT = new FloatPoint(Number.NEGATIVE_INFINITY); // Negative zero is a distinguished value representing -0.0. // There should only be one instance for -0.0. var NEGATIVE_ZERO = new FloatPoint(-0.0); var INEXACT_ZERO = new FloatPoint(0.0); FloatPoint.pi = new FloatPoint(Math.PI); FloatPoint.e = new FloatPoint(Math.E); FloatPoint.nan = NaN; FloatPoint.inf = inf; FloatPoint.neginf = neginf; FloatPoint.makeInstance = function(n) { if (isNaN(n)) { return FloatPoint.nan; } else if (n === Number.POSITIVE_INFINITY) { return FloatPoint.inf; } else if (n === Number.NEGATIVE_INFINITY) { return FloatPoint.neginf; } else if (n === 0) { if ((1/n) === -Infinity) { return NEGATIVE_ZERO; } else { return INEXACT_ZERO; } } return new FloatPoint(n); }; FloatPoint.prototype.isExact = function() { return false; }; FloatPoint.prototype.isInexact = function() { return true; }; FloatPoint.prototype.isFinite = function() { return (isFinite(this.n) || this === TOO_POSITIVE_TO_REPRESENT || this === TOO_NEGATIVE_TO_REPRESENT); }; FloatPoint.prototype.toExact = function() { // The precision of ieee is about 16 decimal digits, which we use here. if (! isFinite(this.n) || isNaN(this.n)) { throwRuntimeError("toExact: no exact representation for " + this, this); } var stringRep = this.n.toString(); var match = stringRep.match(/^(.*)\.(.*)$/); if (match) { var intPart = parseInt(match[1]); var fracPart = parseInt(match[2]); var tenToDecimalPlaces = Math.pow(10, match[2].length); return Rational.makeInstance(Math.round(this.n * tenToDecimalPlaces), tenToDecimalPlaces); } else { return this.n; } }; FloatPoint.prototype.toInexact = function() { return this; }; FloatPoint.prototype.isInexact = function() { return true; }; FloatPoint.prototype.level = 2; FloatPoint.prototype.liftTo = function(target) { if (target.level === 3) return new Complex(this, 0); return throwRuntimeError("invalid level of Number", this, target); }; FloatPoint.prototype.toString = function() { if (isNaN(this.n)) return "+nan.0"; if (this.n === Number.POSITIVE_INFINITY) return "+inf.0"; if (this.n === Number.NEGATIVE_INFINITY) return "-inf.0"; if (this === NEGATIVE_ZERO) return "-0.0"; var partialResult = this.n.toString(); if (! partialResult.match('\\.')) { return partialResult + ".0"; } else { return partialResult; } }; FloatPoint.prototype.equals = function(other, aUnionFind) { return ((other instanceof FloatPoint) && ((this.n === other.n))); }; FloatPoint.prototype.isRational = function() { return this.isFinite(); }; FloatPoint.prototype.isInteger = function() { return this.isFinite() && this.n === Math.floor(this.n); }; FloatPoint.prototype.isReal = function() { return true; }; // sign: Number -> {-1, 0, 1} var sign = function(n) { if (lessThan(n, 0)) { return -1; } else if (greaterThan(n, 0)) { return 1; } else if (n === NEGATIVE_ZERO) { return -1; } else { return 0; } }; FloatPoint.prototype.add = function(other) { if (this.isFinite() && other.isFinite()) { return FloatPoint.makeInstance(this.n + other.n); } else { if (isNaN(this.n) || isNaN(other.n)) { return NaN; } else if (this.isFinite() && ! other.isFinite()) { return other; } else if (!this.isFinite() && other.isFinite()) { return this; } else { return ((sign(this) * sign(other) === 1) ? this : NaN); }; } }; FloatPoint.prototype.subtract = function(other) { if (this.isFinite() && other.isFinite()) { return FloatPoint.makeInstance(this.n - other.n); } else if (isNaN(this.n) || isNaN(other.n)) { return NaN; } else if (! this.isFinite() && ! other.isFinite()) { if (sign(this) === sign(other)) { return NaN; } else { return this; } } else if (this.isFinite()) { return multiply(other, -1); } else { // other.isFinite() return this; } }; FloatPoint.prototype.negate = function() { return FloatPoint.makeInstance(-this.n); }; FloatPoint.prototype.multiply = function(other) { return FloatPoint.makeInstance(this.n * other.n); }; FloatPoint.prototype.divide = function(other) { return FloatPoint.makeInstance(this.n / other.n); }; FloatPoint.prototype.toFixnum = function() { return this.n; }; FloatPoint.prototype.numerator = function() { var stringRep = this.n.toString(); var match = stringRep.match(/^(.*)\.(.*)$/); if (match) { var afterDecimal = parseInt(match[2]); var factorToInt = Math.pow(10, match[2].length); var extraFactor = _integerGcd(factorToInt, afterDecimal); var multFactor = factorToInt / extraFactor; return FloatPoint.makeInstance( Math.round(this.n * multFactor) ); } else { return this; } }; FloatPoint.prototype.denominator = function() { var stringRep = this.n.toString(); var match = stringRep.match(/^(.*)\.(.*)$/); if (match) { var afterDecimal = parseInt(match[2]); var factorToInt = Math.pow(10, match[2].length); var extraFactor = _integerGcd(factorToInt, afterDecimal); return FloatPoint.makeInstance( Math.round(factorToInt/extraFactor) ); } else { return FloatPoint.makeInstance(1); } }; FloatPoint.prototype.floor = function() { return FloatPoint.makeInstance(Math.floor(this.n)); }; FloatPoint.prototype.ceiling = function() { return FloatPoint.makeInstance(Math.ceil(this.n)); }; FloatPoint.prototype.greaterThan = function(other) { return this.n > other.n; }; FloatPoint.prototype.greaterThanOrEqual = function(other) { return this.n >= other.n; }; FloatPoint.prototype.lessThan = function(other) { return this.n < other.n; }; FloatPoint.prototype.lessThanOrEqual = function(other) { return this.n <= other.n; }; FloatPoint.prototype.integerSqrt = function() { if (this === NEGATIVE_ZERO) { return this; } if (isInteger(this)) { if(this.n >= 0) { return FloatPoint.makeInstance(Math.floor(Math.sqrt(this.n))); } else { return Complex.makeInstance( INEXACT_ZERO, FloatPoint.makeInstance(Math.floor(Math.sqrt(-this.n)))); } } else { throwRuntimeError("integerSqrt: can only be applied to an integer", this); } }; FloatPoint.prototype.sqrt = function() { if (this.n < 0) { var result = Complex.makeInstance( 0, FloatPoint.makeInstance(Math.sqrt(-this.n))); return result; } else { return FloatPoint.makeInstance(Math.sqrt(this.n)); } }; FloatPoint.prototype.abs = function() { return FloatPoint.makeInstance(Math.abs(this.n)); }; FloatPoint.prototype.log = function(){ if (this.n < 0) return (new Complex(this, 0)).log(); else return FloatPoint.makeInstance(Math.log(this.n)); }; FloatPoint.prototype.angle = function(){ if (0 === this.n) return 0; if (this.n > 0) return 0; else return FloatPoint.pi; }; FloatPoint.prototype.tan = function(){ return FloatPoint.makeInstance(Math.tan(this.n)); }; FloatPoint.prototype.atan = function(){ return FloatPoint.makeInstance(Math.atan(this.n)); }; FloatPoint.prototype.cos = function(){ return FloatPoint.makeInstance(Math.cos(this.n)); }; FloatPoint.prototype.sin = function(){ return FloatPoint.makeInstance(Math.sin(this.n)); }; FloatPoint.prototype.expt = function(a){ if (this.n === 1) { if (a.isFinite()) { return this; } else if (isNaN(a.n)){ return this; } else { return this; } } else { return FloatPoint.makeInstance(Math.pow(this.n, a.n)); } }; FloatPoint.prototype.exp = function(){ return FloatPoint.makeInstance(Math.exp(this.n)); }; FloatPoint.prototype.acos = function(){ return FloatPoint.makeInstance(Math.acos(this.n)); }; FloatPoint.prototype.asin = function(){ return FloatPoint.makeInstance(Math.asin(this.n)); }; FloatPoint.prototype.imaginaryPart = function(){ return 0; }; FloatPoint.prototype.realPart = function(){ return this; }; FloatPoint.prototype.round = function(){ if (isFinite(this.n)) { if (this === NEGATIVE_ZERO) { return this; } if (Math.abs(Math.floor(this.n) - this.n) === 0.5) { if (Math.floor(this.n) % 2 === 0) return FloatPoint.makeInstance(Math.floor(this.n)); return FloatPoint.makeInstance(Math.ceil(this.n)); } else { return FloatPoint.makeInstance(Math.round(this.n)); } } else { return this; } }; FloatPoint.prototype.conjugate = function() { return this; }; FloatPoint.prototype.magnitude = FloatPoint.prototype.abs; ////////////////////////////////////////////////////////////////////// // Complex numbers ////////////////////////////////////////////////////////////////////// var Complex = function(r, i){ this.r = r; this.i = i; }; // Constructs a complex number from two basic number r and i. r and i can // either be plt.type.Rational or plt.type.FloatPoint. Complex.makeInstance = function(r, i){ if (i === undefined) { i = 0; } if (isExact(i) && isInteger(i) && _integerIsZero(i)) { return r; } if (isInexact(r) || isInexact(i)) { r = toInexact(r); i = toInexact(i); } return new Complex(r, i); }; Complex.prototype.toString = function() { var realPart = this.r.toString(), imagPart = this.i.toString(); if (imagPart[0] === '-' || imagPart[0] === '+') { return realPart + imagPart + 'i'; } else { return realPart + "+" + imagPart + 'i'; } }; Complex.prototype.isFinite = function() { return isSchemeNumberFinite(this.r) && isSchemeNumberFinite(this.i); }; Complex.prototype.isRational = function() { return isRational(this.r) && eqv(this.i, 0); }; Complex.prototype.isInteger = function() { return (isInteger(this.r) && eqv(this.i, 0)); }; Complex.prototype.toExact = function() { return Complex.makeInstance( toExact(this.r), toExact(this.i) ); }; Complex.prototype.toInexact = function() { return Complex.makeInstance(toInexact(this.r), toInexact(this.i)); }; Complex.prototype.isExact = function() { return isExact(this.r) && isExact(this.i); }; Complex.prototype.isInexact = function() { return isInexact(this.r) || isInexact(this.i); }; Complex.prototype.level = 3; Complex.prototype.liftTo = function(target){ throwRuntimeError("Don't know how to lift Complex number", this, target); }; Complex.prototype.equals = function(other) { var result = ((other instanceof Complex) && (equals(this.r, other.r)) && (equals(this.i, other.i))); return result; }; Complex.prototype.greaterThan = function(other) { if (! this.isReal() || ! other.isReal()) { throwRuntimeError(">: expects argument of type real number", this, other); } return greaterThan(this.r, other.r); }; Complex.prototype.greaterThanOrEqual = function(other) { if (! this.isReal() || ! other.isReal()) { throwRuntimeError(">=: expects argument of type real number", this, other); } return greaterThanOrEqual(this.r, other.r); }; Complex.prototype.lessThan = function(other) { if (! this.isReal() || ! other.isReal()) { throwRuntimeError("<: expects argument of type real number", this, other); } return lessThan(this.r, other.r); }; Complex.prototype.lessThanOrEqual = function(other) { if (! this.isReal() || ! other.isReal()) { throwRuntimeError("<=: expects argument of type real number", this, other); } return lessThanOrEqual(this.r, other.r); }; Complex.prototype.abs = function(){ if (!equals(this.i, 0).valueOf()) throwRuntimeError("abs: expects argument of type real number", this); return abs(this.r); }; Complex.prototype.toFixnum = function(){ if (!equals(this.i, 0).valueOf()) throwRuntimeError("toFixnum: expects argument of type real number", this); return toFixnum(this.r); }; Complex.prototype.numerator = function() { if (!this.isReal()) throwRuntimeError("numerator: can only be applied to real number", this); return numerator(this.n); }; Complex.prototype.denominator = function() { if (!this.isReal()) throwRuntimeError("floor: can only be applied to real number", this); return denominator(this.n); }; Complex.prototype.add = function(other){ return Complex.makeInstance( add(this.r, other.r), add(this.i, other.i)); }; Complex.prototype.subtract = function(other){ return Complex.makeInstance( subtract(this.r, other.r), subtract(this.i, other.i)); }; Complex.prototype.negate = function() { return Complex.makeInstance(negate(this.r), negate(this.i)); }; Complex.prototype.multiply = function(other){ // If the other value is real, just do primitive division if (other.isReal()) { return Complex.makeInstance( multiply(this.r, other.r), multiply(this.i, other.r)); } var r = subtract( multiply(this.r, other.r), multiply(this.i, other.i)); var i = add( multiply(this.r, other.i), multiply(this.i, other.r)); return Complex.makeInstance(r, i); }; Complex.prototype.divide = function(other){ var a, b, c, d, r, x, y; // If the other value is real, just do primitive division if (other.isReal()) { return Complex.makeInstance( divide(this.r, other.r), divide(this.i, other.r)); } if (this.isInexact() || other.isInexact()) { // http://portal.acm.org/citation.cfm?id=1039814 // We currently use Smith's method, though we should // probably switch over to Priest's method. a = this.r; b = this.i; c = other.r; d = other.i; if (lessThanOrEqual(abs(d), abs(c))) { r = divide(d, c); x = divide(add(a, multiply(b, r)), add(c, multiply(d, r))); y = divide(subtract(b, multiply(a, r)), add(c, multiply(d, r))); } else { r = divide(c, d); x = divide(add(multiply(a, r), b), add(multiply(c, r), d)); y = divide(subtract(multiply(b, r), a), add(multiply(c, r), d)); } return Complex.makeInstance(x, y); } else { var con = conjugate(other); var up = multiply(this, con); // Down is guaranteed to be real by this point. var down = realPart(multiply(other, con)); var result = Complex.makeInstance( divide(realPart(up), down), divide(imaginaryPart(up), down)); return result; } }; Complex.prototype.conjugate = function(){ var result = Complex.makeInstance( this.r, subtract(0, this.i)); return result; }; Complex.prototype.magnitude = function(){ var sum = add( multiply(this.r, this.r), multiply(this.i, this.i)); return sqrt(sum); }; Complex.prototype.isReal = function(){ return eqv(this.i, 0); }; Complex.prototype.integerSqrt = function() { if (isInteger(this)) { return integerSqrt(this.r); } else { throwRuntimeError("integerSqrt: can only be applied to an integer", this); } }; Complex.prototype.sqrt = function(){ if (this.isReal()) return sqrt(this.r); // http://en.wikipedia.org/wiki/Square_root#Square_roots_of_negative_and_complex_numbers var r_plus_x = add(this.magnitude(), this.r); var r = sqrt(halve(r_plus_x)); var i = divide(this.i, sqrt(multiply(r_plus_x, 2))); return Complex.makeInstance(r, i); }; Complex.prototype.log = function(){ var m = this.magnitude(); var theta = this.angle(); var result = add( log(m), timesI(theta)); return result; }; Complex.prototype.angle = function(){ if (this.isReal()) { return angle(this.r); } if (equals(0, this.r)) { var tmp = halve(FloatPoint.pi); return greaterThan(this.i, 0) ? tmp : negate(tmp); } else { var tmp = atan(divide(abs(this.i), abs(this.r))); if (greaterThan(this.r, 0)) { return greaterThan(this.i, 0) ? tmp : negate(tmp); } else { return greaterThan(this.i, 0) ? subtract(FloatPoint.pi, tmp) : subtract(tmp, FloatPoint.pi); } } }; var plusI = Complex.makeInstance(0, 1); var minusI = Complex.makeInstance(0, -1); Complex.prototype.tan = function() { return divide(this.sin(), this.cos()); }; Complex.prototype.atan = function(){ if (equals(this, plusI) || equals(this, minusI)) { return neginf; } return multiply( plusI, multiply( FloatPoint.makeInstance(0.5), log(divide( add(plusI, this), add( plusI, subtract(0, this)))))); }; Complex.prototype.cos = function(){ if (this.isReal()) return cos(this.r); var iz = timesI(this); var iz_negate = negate(iz); return halve(add(exp(iz), exp(iz_negate))); }; Complex.prototype.sin = function(){ if (this.isReal()) return sin(this.r); var iz = timesI(this); var iz_negate = negate(iz); var z2 = Complex.makeInstance(0, 2); var exp_negate = subtract(exp(iz), exp(iz_negate)); var result = divide(exp_negate, z2); return result; }; Complex.prototype.expt = function(y){ if (isExactInteger(y) && greaterThanOrEqual(y, 0)) { return fastExpt(this, y); } var expo = multiply(y, this.log()); return exp(expo); }; Complex.prototype.exp = function(){ var r = exp(this.r); var cos_a = cos(this.i); var sin_a = sin(this.i); return multiply( r, add(cos_a, timesI(sin_a))); }; Complex.prototype.acos = function(){ if (this.isReal()) return acos(this.r); var pi_half = halve(FloatPoint.pi); var iz = timesI(this); var root = sqrt(subtract(1, sqr(this))); var l = timesI(log(add(iz, root))); return add(pi_half, l); }; Complex.prototype.asin = function(){ if (this.isReal()) return asin(this.r); var oneNegateThisSq = subtract(1, sqr(this)); var sqrtOneNegateThisSq = sqrt(oneNegateThisSq); return multiply(2, atan(divide(this, add(1, sqrtOneNegateThisSq)))); }; Complex.prototype.ceiling = function(){ if (!this.isReal()) throwRuntimeError("ceiling: can only be applied to real number", this); return ceiling(this.r); }; Complex.prototype.floor = function(){ if (!this.isReal()) throwRuntimeError("floor: can only be applied to real number", this); return floor(this.r); }; Complex.prototype.imaginaryPart = function(){ return this.i; }; Complex.prototype.realPart = function(){ return this.r; }; Complex.prototype.round = function(){ if (!this.isReal()) throwRuntimeError("round: can only be applied to real number", this); return round(this.r); }; var rationalRegexp = new RegExp("^([+-]?\\d+)/(\\d+)$"); var complexRegexp = new RegExp("^([+-]?[\\d\\w/\\.]*)([+-])([\\d\\w/\\.]*)i$"); var digitRegexp = new RegExp("^[+-]?\\d+$"); var flonumRegexp = new RegExp("^([+-]?\\d*)\\.(\\d*)$"); var scientificPattern = new RegExp("^([+-]?\\d*\\.?\\d*)[Ee](\\+?\\d+)$"); // fromString: string -> (scheme-number | false) var fromString = function(x) { var aMatch = x.match(rationalRegexp); if (aMatch) { return Rational.makeInstance(fromString(aMatch[1]), fromString(aMatch[2])); } var cMatch = x.match(complexRegexp); if (cMatch) { return Complex.makeInstance(fromString(cMatch[1] || "0"), fromString(cMatch[2] + (cMatch[3] || "1"))); } // Floating point tests if (x === '+nan.0' || x === '-nan.0') return FloatPoint.nan; if (x === '+inf.0') return FloatPoint.inf; if (x === '-inf.0') return FloatPoint.neginf; if (x === "-0.0") { return NEGATIVE_ZERO; } if (x.match(flonumRegexp) || x.match(scientificPattern)) { return FloatPoint.makeInstance(Number(x)); } // Finally, integer tests. if (x.match(digitRegexp)) { var n = Number(x); if (isOverflow(n)) { return makeBignum(x); } else { return n; } } else { return false; } }; ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// // The code below comes from Tom Wu's BigInteger implementation: // Copyright (c) 2005 Tom Wu // All Rights Reserved. // See "LICENSE" for details. // Basic JavaScript BN library - subset useful for RSA encryption. // Bits per digit var dbits; // JavaScript engine analysis var canary = 0xdeadbeefcafe; var j_lm = ((canary&0xffffff)==0xefcafe); // (public) Constructor function BigInteger(a,b,c) { if(a != null) if("number" == typeof a) this.fromNumber(a,b,c); else if(b == null && "string" != typeof a) this.fromString(a,256); else this.fromString(a,b); } // return new, unset BigInteger function nbi() { return new BigInteger(null); } // am: Compute w_j += (x*this_i), propagate carries, // c is initial carry, returns final carry. // c < 3*dvalue, x < 2*dvalue, this_i < dvalue // We need to select the fastest one that works in this environment. // am1: use a single mult and divide to get the high bits, // max digit bits should be 26 because // max internal value = 2*dvalue^2-2*dvalue (< 2^53) function am1(i,x,w,j,c,n) { while(--n >= 0) { var v = x*this[i++]+w[j]+c; c = Math.floor(v/0x4000000); w[j++] = v&0x3ffffff; } return c; } // am2 avoids a big mult-and-extract completely. // Max digit bits should be <= 30 because we do bitwise ops // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) function am2(i,x,w,j,c,n) { var xl = x&0x7fff, xh = x>>15; while(--n >= 0) { var l = this[i]&0x7fff; var h = this[i++]>>15; var m = xh*l+h*xl; l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); w[j++] = l&0x3fffffff; } return c; } // Alternately, set max digit bits to 28 since some // browsers slow down when dealing with 32-bit numbers. function am3(i,x,w,j,c,n) { var xl = x&0x3fff, xh = x>>14; while(--n >= 0) { var l = this[i]&0x3fff; var h = this[i++]>>14; var m = xh*l+h*xl; l = xl*l+((m&0x3fff)<<14)+w[j]+c; c = (l>>28)+(m>>14)+xh*h; w[j++] = l&0xfffffff; } return c; } if(j_lm && (typeof(navigator) !== 'undefined' && navigator.appName == "Microsoft Internet Explorer")) { BigInteger.prototype.am = am2; dbits = 30; } else if(j_lm && (typeof(navigator) !== 'undefined' && navigator.appName != "Netscape")) { BigInteger.prototype.am = am1; dbits = 26; } else { // Mozilla/Netscape seems to prefer am3 BigInteger.prototype.am = am3; dbits = 28; } BigInteger.prototype.DB = dbits; BigInteger.prototype.DM = ((1<= 0; --i) r[i] = this[i]; r.t = this.t; r.s = this.s; } // (protected) set from integer value x, -DV <= x < DV function bnpFromInt(x) { this.t = 1; this.s = (x<0)?-1:0; if(x > 0) this[0] = x; else if(x < -1) this[0] = x+DV; else this.t = 0; } // return bigint initialized to value function nbv(i) { var r = nbi(); r.fromInt(i); return r; } // (protected) set from string and radix function bnpFromString(s,b) { var k; if(b == 16) k = 4; else if(b == 8) k = 3; else if(b == 256) k = 8; // byte array else if(b == 2) k = 1; else if(b == 32) k = 5; else if(b == 4) k = 2; else { this.fromRadix(s,b); return; } this.t = 0; this.s = 0; var i = s.length, mi = false, sh = 0; while(--i >= 0) { var x = (k==8)?s[i]&0xff:intAt(s,i); if(x < 0) { if(s.charAt(i) == "-") mi = true; continue; } mi = false; if(sh == 0) this[this.t++] = x; else if(sh+k > this.DB) { this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<>(this.DB-sh)); } else this[this.t-1] |= x<= this.DB) sh -= this.DB; } if(k == 8 && (s[0]&0x80) != 0) { this.s = -1; if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)< 0 && this[this.t-1] == c) --this.t; } // (public) return string representation in given radix function bnToString(b) { if(this.s < 0) return "-"+this.negate().toString(b); var k; if(b == 16) k = 4; else if(b == 8) k = 3; else if(b == 2) k = 1; else if(b == 32) k = 5; else if(b == 4) k = 2; else return this.toRadix(b); var km = (1< 0) { if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r.push(int2char(d)); } while(i >= 0) { if(p < k) { d = (this[i]&((1<>(p+=this.DB-k); } else { d = (this[i]>>(p-=k))&km; if(p <= 0) { p += this.DB; --i; } } if(d > 0) m = true; if(m) r.push(int2char(d)); } } return m?r.join(""):"0"; } // (public) -this function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } // (public) |this| function bnAbs() { return (this.s<0)?this.negate():this; } // (public) return + if this > a, - if this < a, 0 if equal function bnCompareTo(a) { var r = this.s-a.s; if(r != 0) return r; var i = this.t; if ( this.s < 0 ) { r = a.t - i; } else { r = i - a.t; } if(r != 0) return r; while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; return 0; } // returns bit length of the integer x function nbits(x) { var r = 1, t; if((t=x>>>16) != 0) { x = t; r += 16; } if((t=x>>8) != 0) { x = t; r += 8; } if((t=x>>4) != 0) { x = t; r += 4; } if((t=x>>2) != 0) { x = t; r += 2; } if((t=x>>1) != 0) { x = t; r += 1; } return r; } // (public) return the number of bits in "this" function bnBitLength() { if(this.t <= 0) return 0; return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM)); } // (protected) r = this << n*DB function bnpDLShiftTo(n,r) { var i; for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; for(i = n-1; i >= 0; --i) r[i] = 0; r.t = this.t+n; r.s = this.s; } // (protected) r = this >> n*DB function bnpDRShiftTo(n,r) { for(var i = n; i < this.t; ++i) r[i-n] = this[i]; r.t = Math.max(this.t-n,0); r.s = this.s; } // (protected) r = this << n function bnpLShiftTo(n,r) { var bs = n%this.DB; var cbs = this.DB-bs; var bm = (1<= 0; --i) { r[i+ds+1] = (this[i]>>cbs)|c; c = (this[i]&bm)<= 0; --i) r[i] = 0; r[ds] = c; r.t = this.t+ds+1; r.s = this.s; r.clamp(); } // (protected) r = this >> n function bnpRShiftTo(n,r) { r.s = this.s; var ds = Math.floor(n/this.DB); if(ds >= this.t) { r.t = 0; return; } var bs = n%this.DB; var cbs = this.DB-bs; var bm = (1<>bs; for(var i = ds+1; i < this.t; ++i) { r[i-ds-1] |= (this[i]&bm)<>bs; } if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<>= this.DB; } if(a.t < this.t) { c -= a.s; while(i < this.t) { c += this[i]; r[i++] = c&this.DM; c >>= this.DB; } c += this.s; } else { c += this.s; while(i < a.t) { c -= a[i]; r[i++] = c&this.DM; c >>= this.DB; } c -= a.s; } r.s = (c<0)?-1:0; if(c < -1) r[i++] = this.DV+c; else if(c > 0) r[i++] = c; r.t = i; r.clamp(); } // (protected) r = this * a, r != this,a (HAC 14.12) // "this" should be the larger one if appropriate. function bnpMultiplyTo(a,r) { var x = this.abs(), y = a.abs(); var i = x.t; r.t = i+y.t; while(--i >= 0) r[i] = 0; for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); r.s = 0; r.clamp(); if(this.s != a.s) BigInteger.ZERO.subTo(r,r); } // (protected) r = this^2, r != this (HAC 14.16) function bnpSquareTo(r) { var x = this.abs(); var i = r.t = 2*x.t; while(--i >= 0) r[i] = 0; for(i = 0; i < x.t-1; ++i) { var c = x.am(i,x[i],r,2*i,0,1); if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { r[i+x.t] -= x.DV; r[i+x.t+1] = 1; } } if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); r.s = 0; r.clamp(); } // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) // r != q, this != m. q or r may be null. function bnpDivRemTo(m,q,r) { var pm = m.abs(); if(pm.t <= 0) return; var pt = this.abs(); if(pt.t < pm.t) { if(q != null) q.fromInt(0); if(r != null) this.copyTo(r); return; } if(r == null) r = nbi(); var y = nbi(), ts = this.s, ms = m.s; var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } else { pm.copyTo(y); pt.copyTo(r); } var ys = y.t; var y0 = y[ys-1]; if(y0 == 0) return; var yt = y0*(1<1)?y[ys-2]>>this.F2:0); var d1 = this.FV/yt, d2 = (1<= 0) { r[r.t++] = 1; r.subTo(t,r); } BigInteger.ONE.dlShiftTo(ys,t); t.subTo(y,y); // "negative" y so we can replace sub with am later while(y.t < ys) y[y.t++] = 0; while(--j >= 0) { // Estimate quotient digit var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out y.dlShiftTo(j,t); r.subTo(t,r); while(r[i] < --qd) r.subTo(t,r); } } if(q != null) { r.drShiftTo(ys,q); if(ts != ms) BigInteger.ZERO.subTo(q,q); } r.t = ys; r.clamp(); if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder if(ts < 0) BigInteger.ZERO.subTo(r,r); } // (public) this mod a function bnMod(a) { var r = nbi(); this.abs().divRemTo(a,null,r); if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); return r; } // Modular reduction using "classic" algorithm function Classic(m) { this.m = m; } function cConvert(x) { if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); else return x; } function cRevert(x) { return x; } function cReduce(x) { x.divRemTo(this.m,null,x); } function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } Classic.prototype.convert = cConvert; Classic.prototype.revert = cRevert; Classic.prototype.reduce = cReduce; Classic.prototype.mulTo = cMulTo; Classic.prototype.sqrTo = cSqrTo; // (protected) return "-1/this % 2^DB"; useful for Mont. reduction // justification: // xy == 1 (mod m) // xy = 1+km // xy(2-xy) = (1+km)(1-km) // x[y(2-xy)] = 1-k^2m^2 // x[y(2-xy)] == 1 (mod m^2) // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. // JS multiply "overflows" differently from C/C++, so care is needed here. function bnpInvDigit() { if(this.t < 1) return 0; var x = this[0]; if((x&1) == 0) return 0; var y = x&3; // y == 1/x mod 2^2 y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 // last step - calculate inverse mod DV directly; // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits // we really want the negative inverse, and -DV < y < DV return (y>0)?this.DV-y:-y; } // Montgomery reduction function Montgomery(m) { this.m = m; this.mp = m.invDigit(); this.mpl = this.mp&0x7fff; this.mph = this.mp>>15; this.um = (1<<(m.DB-15))-1; this.mt2 = 2*m.t; } // xR mod m function montConvert(x) { var r = nbi(); x.abs().dlShiftTo(this.m.t,r); r.divRemTo(this.m,null,r); if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); return r; } // x/R mod m function montRevert(x) { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } // x = x/R mod m (HAC 14.32) function montReduce(x) { while(x.t <= this.mt2) // pad x so am has enough room later x[x.t++] = 0; for(var i = 0; i < this.m.t; ++i) { // faster way of calculating u0 = x[i]*mp mod DV var j = x[i]&0x7fff; var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; // use am to combine the multiply-shift-add into one call j = i+this.m.t; x[j] += this.m.am(0,u0,x,i,0,this.m.t); // propagate carry while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } } x.clamp(); x.drShiftTo(this.m.t,x); if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); } // r = "x^2/R mod m"; x != r function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } // r = "xy/R mod m"; x,y != r function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } Montgomery.prototype.convert = montConvert; Montgomery.prototype.revert = montRevert; Montgomery.prototype.reduce = montReduce; Montgomery.prototype.mulTo = montMulTo; Montgomery.prototype.sqrTo = montSqrTo; // (protected) true iff this is even function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) function bnpExp(e,z) { if(e > 0xffffffff || e < 1) return BigInteger.ONE; var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; g.copyTo(r); while(--i >= 0) { z.sqrTo(r,r2); if((e&(1< 0) z.mulTo(r2,g,r); else { var t = r; r = r2; r2 = t; } } return z.revert(r); } // (public) this^e % m, 0 <= e < 2^32 function bnModPowInt(e,m) { var z; if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); return this.exp(e,z); } // protected BigInteger.prototype.copyTo = bnpCopyTo; BigInteger.prototype.fromInt = bnpFromInt; BigInteger.prototype.fromString = bnpFromString; BigInteger.prototype.clamp = bnpClamp; BigInteger.prototype.dlShiftTo = bnpDLShiftTo; BigInteger.prototype.drShiftTo = bnpDRShiftTo; BigInteger.prototype.lShiftTo = bnpLShiftTo; BigInteger.prototype.rShiftTo = bnpRShiftTo; BigInteger.prototype.subTo = bnpSubTo; BigInteger.prototype.multiplyTo = bnpMultiplyTo; BigInteger.prototype.squareTo = bnpSquareTo; BigInteger.prototype.divRemTo = bnpDivRemTo; BigInteger.prototype.invDigit = bnpInvDigit; BigInteger.prototype.isEven = bnpIsEven; BigInteger.prototype.exp = bnpExp; // public BigInteger.prototype.toString = bnToString; BigInteger.prototype.negate = bnNegate; BigInteger.prototype.abs = bnAbs; BigInteger.prototype.compareTo = bnCompareTo; BigInteger.prototype.bitLength = bnBitLength; BigInteger.prototype.mod = bnMod; BigInteger.prototype.modPowInt = bnModPowInt; // "constants" BigInteger.ZERO = nbv(0); BigInteger.ONE = nbv(1); // Copyright (c) 2005-2009 Tom Wu // All Rights Reserved. // See "LICENSE" for details. // Extended JavaScript BN functions, required for RSA private ops. // Version 1.1: new BigInteger("0", 10) returns "proper" zero // (public) function bnClone() { var r = nbi(); this.copyTo(r); return r; } // (public) return value as integer function bnIntValue() { if(this.s < 0) { if(this.t == 1) return this[0]-this.DV; else if(this.t == 0) return -1; } else if(this.t == 1) return this[0]; else if(this.t == 0) return 0; // assumes 16 < DB < 32 return ((this[1]&((1<<(32-this.DB))-1))<>24; } // (public) return value as short (assumes DB>=16) function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; } // (protected) return x s.t. r^x < DV function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); } // (public) 0 if this == 0, 1 if this > 0 function bnSigNum() { if(this.s < 0) return -1; else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; else return 1; } // (protected) convert to radix string function bnpToRadix(b) { if(b == null) b = 10; if(this.signum() == 0 || b < 2 || b > 36) return "0"; var cs = this.chunkSize(b); var a = Math.pow(b,cs); var d = nbv(a), y = nbi(), z = nbi(), r = ""; this.divRemTo(d,y,z); while(y.signum() > 0) { r = (a+z.intValue()).toString(b).substr(1) + r; y.divRemTo(d,y,z); } return z.intValue().toString(b) + r; } // (protected) convert from radix string function bnpFromRadix(s,b) { this.fromInt(0); if(b == null) b = 10; var cs = this.chunkSize(b); var d = Math.pow(b,cs), mi = false, j = 0, w = 0; for(var i = 0; i < s.length; ++i) { var x = intAt(s,i); if(x < 0) { if(s.charAt(i) == "-" && this.signum() == 0) mi = true; continue; } w = b*w+x; if(++j >= cs) { this.dMultiply(d); this.dAddOffset(w,0); j = 0; w = 0; } } if(j > 0) { this.dMultiply(Math.pow(b,j)); this.dAddOffset(w,0); } if(mi) BigInteger.ZERO.subTo(this,this); } // (protected) alternate constructor function bnpFromNumber(a,b,c) { if("number" == typeof b) { // new BigInteger(int,int,RNG) if(a < 2) this.fromInt(1); else { this.fromNumber(a,c); if(!this.testBit(a-1)) // force MSB set this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); if(this.isEven()) this.dAddOffset(1,0); // force odd while(!this.isProbablePrime(b)) { this.dAddOffset(2,0); if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); } } } else { // new BigInteger(int,RNG) var x = [], t = a&7; x.length = (a>>3)+1; b.nextBytes(x); if(t > 0) x[0] &= ((1< 0) { if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p) r[k++] = d|(this.s<<(this.DB-p)); while(i >= 0) { if(p < 8) { d = (this[i]&((1<>(p+=this.DB-8); } else { d = (this[i]>>(p-=8))&0xff; if(p <= 0) { p += this.DB; --i; } } if((d&0x80) != 0) d |= -256; if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; if(k > 0 || d != this.s) r[k++] = d; } } return r; } function bnEquals(a) { return(this.compareTo(a)==0); } function bnMin(a) { return(this.compareTo(a)<0)?this:a; } function bnMax(a) { return(this.compareTo(a)>0)?this:a; } // (protected) r = this op a (bitwise) function bnpBitwiseTo(a,op,r) { var i, f, m = Math.min(a.t,this.t); for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]); if(a.t < this.t) { f = a.s&this.DM; for(i = m; i < this.t; ++i) r[i] = op(this[i],f); r.t = this.t; } else { f = this.s&this.DM; for(i = m; i < a.t; ++i) r[i] = op(f,a[i]); r.t = a.t; } r.s = op(this.s,a.s); r.clamp(); } // (public) this & a function op_and(x,y) { return x&y; } function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } // (public) this | a function op_or(x,y) { return x|y; } function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } // (public) this ^ a function op_xor(x,y) { return x^y; } function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } // (public) this & ~a function op_andnot(x,y) { return x&~y; } function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } // (public) ~this function bnNot() { var r = nbi(); for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i]; r.t = this.t; r.s = ~this.s; return r; } // (public) this << n function bnShiftLeft(n) { var r = nbi(); if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); return r; } // (public) this >> n function bnShiftRight(n) { var r = nbi(); if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); return r; } // return index of lowest 1-bit in x, x < 2^31 function lbit(x) { if(x == 0) return -1; var r = 0; if((x&0xffff) == 0) { x >>= 16; r += 16; } if((x&0xff) == 0) { x >>= 8; r += 8; } if((x&0xf) == 0) { x >>= 4; r += 4; } if((x&3) == 0) { x >>= 2; r += 2; } if((x&1) == 0) ++r; return r; } // (public) returns index of lowest 1-bit (or -1 if none) function bnGetLowestSetBit() { for(var i = 0; i < this.t; ++i) if(this[i] != 0) return i*this.DB+lbit(this[i]); if(this.s < 0) return this.t*this.DB; return -1; } // return number of 1 bits in x function cbit(x) { var r = 0; while(x != 0) { x &= x-1; ++r; } return r; } // (public) return number of set bits function bnBitCount() { var r = 0, x = this.s&this.DM; for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x); return r; } // (public) true iff nth bit is set function bnTestBit(n) { var j = Math.floor(n/this.DB); if(j >= this.t) return(this.s!=0); return((this[j]&(1<<(n%this.DB)))!=0); } // (protected) this op (1<>= this.DB; } if(a.t < this.t) { c += a.s; while(i < this.t) { c += this[i]; r[i++] = c&this.DM; c >>= this.DB; } c += this.s; } else { c += this.s; while(i < a.t) { c += a[i]; r[i++] = c&this.DM; c >>= this.DB; } c += a.s; } r.s = (c<0)?-1:0; if(c > 0) r[i++] = c; else if(c < -1) r[i++] = this.DV+c; r.t = i; r.clamp(); } // (public) this + a function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } // (public) this - a function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } // (public) this * a function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } // (public) this / a function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } // (public) this % a function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } // (public) [this/a,this%a] function bnDivideAndRemainder(a) { var q = nbi(), r = nbi(); this.divRemTo(a,q,r); return [q,r]; } // (protected) this *= n, this >= 0, 1 < n < DV function bnpDMultiply(n) { this[this.t] = this.am(0,n-1,this,0,0,this.t); ++this.t; this.clamp(); } // (protected) this += n << w words, this >= 0 function bnpDAddOffset(n,w) { if(n == 0) return; while(this.t <= w) this[this.t++] = 0; this[w] += n; while(this[w] >= this.DV) { this[w] -= this.DV; if(++w >= this.t) this[this.t++] = 0; ++this[w]; } } // A "null" reducer function NullExp() {} function nNop(x) { return x; } function nMulTo(x,y,r) { x.multiplyTo(y,r); } function nSqrTo(x,r) { x.squareTo(r); } NullExp.prototype.convert = nNop; NullExp.prototype.revert = nNop; NullExp.prototype.mulTo = nMulTo; NullExp.prototype.sqrTo = nSqrTo; // (public) this^e function bnPow(e) { return this.exp(e,new NullExp()); } // (protected) r = lower n words of "this * a", a.t <= n // "this" should be the larger one if appropriate. function bnpMultiplyLowerTo(a,n,r) { var i = Math.min(this.t+a.t,n); r.s = 0; // assumes a,this >= 0 r.t = i; while(i > 0) r[--i] = 0; var j; for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t); for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i); r.clamp(); } // (protected) r = "this * a" without lower n words, n > 0 // "this" should be the larger one if appropriate. function bnpMultiplyUpperTo(a,n,r) { --n; var i = r.t = this.t+a.t-n; r.s = 0; // assumes a,this >= 0 while(--i >= 0) r[i] = 0; for(i = Math.max(n-this.t,0); i < a.t; ++i) r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n); r.clamp(); r.drShiftTo(1,r); } // Barrett modular reduction function Barrett(m) { // setup Barrett this.r2 = nbi(); this.q3 = nbi(); BigInteger.ONE.dlShiftTo(2*m.t,this.r2); this.mu = this.r2.divide(m); this.m = m; } function barrettConvert(x) { if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); else if(x.compareTo(this.m) < 0) return x; else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } } function barrettRevert(x) { return x; } // x = x mod m (HAC 14.42) function barrettReduce(x) { x.drShiftTo(this.m.t-1,this.r2); if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); x.subTo(this.r2,x); while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); } // r = x^2 mod m; x != r function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } // r = x*y mod m; x,y != r function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } Barrett.prototype.convert = barrettConvert; Barrett.prototype.revert = barrettRevert; Barrett.prototype.reduce = barrettReduce; Barrett.prototype.mulTo = barrettMulTo; Barrett.prototype.sqrTo = barrettSqrTo; // (public) this^e % m (HAC 14.85) function bnModPow(e,m) { var i = e.bitLength(), k, r = nbv(1), z; if(i <= 0) return r; else if(i < 18) k = 1; else if(i < 48) k = 3; else if(i < 144) k = 4; else if(i < 768) k = 5; else k = 6; if(i < 8) z = new Classic(m); else if(m.isEven()) z = new Barrett(m); else z = new Montgomery(m); // precomputation var g = [], n = 3, k1 = k-1, km = (1< 1) { var g2 = nbi(); z.sqrTo(g[1],g2); while(n <= km) { g[n] = nbi(); z.mulTo(g2,g[n-2],g[n]); n += 2; } } var j = e.t-1, w, is1 = true, r2 = nbi(), t; i = nbits(e[j])-1; while(j >= 0) { if(i >= k1) w = (e[j]>>(i-k1))&km; else { w = (e[j]&((1<<(i+1))-1))<<(k1-i); if(j > 0) w |= e[j-1]>>(this.DB+i-k1); } n = k; while((w&1) == 0) { w >>= 1; --n; } if((i -= n) < 0) { i += this.DB; --j; } if(is1) { // ret == 1, don't bother squaring or multiplying it g[w].copyTo(r); is1 = false; } else { while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } z.mulTo(r2,g[w],r); } while(j >= 0 && (e[j]&(1< 0) { x.rShiftTo(g,x); y.rShiftTo(g,y); } while(x.signum() > 0) { if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); if(x.compareTo(y) >= 0) { x.subTo(y,x); x.rShiftTo(1,x); } else { y.subTo(x,y); y.rShiftTo(1,y); } } if(g > 0) y.lShiftTo(g,y); return y; } // (protected) this % n, n < 2^26 function bnpModInt(n) { if(n <= 0) return 0; var d = this.DV%n, r = (this.s<0)?n-1:0; if(this.t > 0) if(d == 0) r = this[0]%n; else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n; return r; } // (public) 1/this % m (HAC 14.61) function bnModInverse(m) { var ac = m.isEven(); if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; var u = m.clone(), v = this.clone(); var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); while(u.signum() != 0) { while(u.isEven()) { u.rShiftTo(1,u); if(ac) { if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } a.rShiftTo(1,a); } else if(!b.isEven()) b.subTo(m,b); b.rShiftTo(1,b); } while(v.isEven()) { v.rShiftTo(1,v); if(ac) { if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } c.rShiftTo(1,c); } else if(!d.isEven()) d.subTo(m,d); d.rShiftTo(1,d); } if(u.compareTo(v) >= 0) { u.subTo(v,u); if(ac) a.subTo(c,a); b.subTo(d,b); } else { v.subTo(u,v); if(ac) c.subTo(a,c); d.subTo(b,d); } } if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; if(d.compareTo(m) >= 0) return d.subtract(m); if(d.signum() < 0) d.addTo(m,d); else return d; if(d.signum() < 0) return d.add(m); else return d; } var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509]; var lplim = (1<<26)/lowprimes[lowprimes.length-1]; // (public) test primality with certainty >= 1-.5^t function bnIsProbablePrime(t) { var i, x = this.abs(); if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) { for(i = 0; i < lowprimes.length; ++i) if(x[0] == lowprimes[i]) return true; return false; } if(x.isEven()) return false; i = 1; while(i < lowprimes.length) { var m = lowprimes[i], j = i+1; while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; m = x.modInt(m); while(i < j) if(m%lowprimes[i++] == 0) return false; } return x.millerRabin(t); } // (protected) true if probably prime (HAC 4.24, Miller-Rabin) function bnpMillerRabin(t) { var n1 = this.subtract(BigInteger.ONE); var k = n1.getLowestSetBit(); if(k <= 0) return false; var r = n1.shiftRight(k); t = (t+1)>>1; if(t > lowprimes.length) t = lowprimes.length; var a = nbi(); for(var i = 0; i < t; ++i) { a.fromInt(lowprimes[i]); var y = a.modPow(r,this); if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { var j = 1; while(j++ < k && y.compareTo(n1) != 0) { y = y.modPowInt(2,this); if(y.compareTo(BigInteger.ONE) == 0) return false; } if(y.compareTo(n1) != 0) return false; } } return true; } // protected BigInteger.prototype.chunkSize = bnpChunkSize; BigInteger.prototype.toRadix = bnpToRadix; BigInteger.prototype.fromRadix = bnpFromRadix; BigInteger.prototype.fromNumber = bnpFromNumber; BigInteger.prototype.bitwiseTo = bnpBitwiseTo; BigInteger.prototype.changeBit = bnpChangeBit; BigInteger.prototype.addTo = bnpAddTo; BigInteger.prototype.dMultiply = bnpDMultiply; BigInteger.prototype.dAddOffset = bnpDAddOffset; BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; BigInteger.prototype.modInt = bnpModInt; BigInteger.prototype.millerRabin = bnpMillerRabin; // public BigInteger.prototype.clone = bnClone; BigInteger.prototype.intValue = bnIntValue; BigInteger.prototype.byteValue = bnByteValue; BigInteger.prototype.shortValue = bnShortValue; BigInteger.prototype.signum = bnSigNum; BigInteger.prototype.toByteArray = bnToByteArray; BigInteger.prototype.equals = bnEquals; BigInteger.prototype.min = bnMin; BigInteger.prototype.max = bnMax; BigInteger.prototype.and = bnAnd; BigInteger.prototype.or = bnOr; BigInteger.prototype.xor = bnXor; BigInteger.prototype.andNot = bnAndNot; BigInteger.prototype.not = bnNot; BigInteger.prototype.shiftLeft = bnShiftLeft; BigInteger.prototype.shiftRight = bnShiftRight; BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; BigInteger.prototype.bitCount = bnBitCount; BigInteger.prototype.testBit = bnTestBit; BigInteger.prototype.setBit = bnSetBit; BigInteger.prototype.clearBit = bnClearBit; BigInteger.prototype.flipBit = bnFlipBit; BigInteger.prototype.add = bnAdd; BigInteger.prototype.subtract = bnSubtract; BigInteger.prototype.multiply = bnMultiply; BigInteger.prototype.divide = bnDivide; BigInteger.prototype.remainder = bnRemainder; BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; BigInteger.prototype.modPow = bnModPow; BigInteger.prototype.modInverse = bnModInverse; BigInteger.prototype.pow = bnPow; BigInteger.prototype.gcd = bnGCD; BigInteger.prototype.isProbablePrime = bnIsProbablePrime; // BigInteger interfaces not implemented in jsbn: // BigInteger(int signum, byte[] magnitude) // double doubleValue() // float floatValue() // int hashCode() // long longValue() // static BigInteger valueOf(long val) ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// // END OF copy-and-paste of jsbn. BigInteger.NEGATIVE_ONE = BigInteger.ONE.negate(); // Other methods we need to add for compatibilty with js-numbers numeric tower. // add is implemented above. // subtract is implemented above. // multiply is implemented above. // equals is implemented above. // abs is implemented above. // negate is defined above. // makeBignum: string -> BigInteger var makeBignum = function(s) { if (typeof(s) === 'number') { s = s + ''; } s = expandExponent(s); return new BigInteger(s, 10); }; var zerostring = function(n) { var buf = []; for (var i = 0; i < n; i++) { buf.push('0'); } return buf.join(''); }; BigInteger.prototype.level = 0; BigInteger.prototype.liftTo = function(target) { if (target.level === 1) { return new Rational(this, 1); } if (target.level === 2) { var fixrep = this.toFixnum(); if (fixrep === Number.POSITIVE_INFINITY) return TOO_POSITIVE_TO_REPRESENT; if (fixrep === Number.NEGATIVE_INFINITY) return TOO_NEGATIVE_TO_REPRESENT; return new FloatPoint(fixrep); } if (target.level === 3) { return new Complex(this, 0); } return throwRuntimeError("invalid level for BigInteger lift", this, target); }; BigInteger.prototype.isFinite = function() { return true; }; BigInteger.prototype.isInteger = function() { return true; }; BigInteger.prototype.isRational = function() { return true; }; BigInteger.prototype.isReal = function() { return true; }; BigInteger.prototype.isExact = function() { return true; }; BigInteger.prototype.isInexact = function() { return false; }; BigInteger.prototype.toExact = function() { return this; }; BigInteger.prototype.toInexact = function() { return FloatPoint.makeInstance(this.toFixnum()); }; BigInteger.prototype.toFixnum = function() { var result = 0, str = this.toString(), i; if (str[0] === '-') { for (i=1; i < str.length; i++) { result = result * 10 + Number(str[i]); } return -result; } else { for (i=0; i < str.length; i++) { result = result * 10 + Number(str[i]); } return result; } }; BigInteger.prototype.greaterThan = function(other) { return this.compareTo(other) > 0; }; BigInteger.prototype.greaterThanOrEqual = function(other) { return this.compareTo(other) >= 0; }; BigInteger.prototype.lessThan = function(other) { return this.compareTo(other) < 0; }; BigInteger.prototype.lessThanOrEqual = function(other) { return this.compareTo(other) <= 0; }; // divide: scheme-number -> scheme-number // WARNING NOTE: we override the old version of divide. BigInteger.prototype.divide = function(other) { var quotientAndRemainder = bnDivideAndRemainder.call(this, other); if (quotientAndRemainder[1].compareTo(BigInteger.ZERO) === 0) { return quotientAndRemainder[0]; } else { var result = add(quotientAndRemainder[0], Rational.makeInstance(quotientAndRemainder[1], other)); return result; } }; BigInteger.prototype.numerator = function() { return this; }; BigInteger.prototype.denominator = function() { return 1; }; (function() { // Classic implementation of Newton-Ralphson square-root search, // adapted for integer-sqrt. // http://en.wikipedia.org/wiki/Newton's_method#Square_root_of_a_number var searchIter = function(n, guess) { while(!(lessThanOrEqual(sqr(guess),n) && lessThan(n,sqr(add(guess, 1))))) { guess = floor(divide(add(guess, floor(divide(n, guess))), 2)); } return guess; }; // integerSqrt: -> scheme-number BigInteger.prototype.integerSqrt = function() { var n; if(sign(this) >= 0) { return searchIter(this, this); } else { n = this.negate(); return Complex.makeInstance(0, searchIter(n, n)); } }; })(); (function() { // Get an approximation using integerSqrt, and then start another // Newton-Ralphson search if necessary. BigInteger.prototype.sqrt = function() { var approx = this.integerSqrt(), fix; if (eqv(sqr(approx), this)) { return approx; } fix = toFixnum(this); if (isFinite(fix)) { if (fix >= 0) { return FloatPoint.makeInstance(Math.sqrt(fix)); } else { return Complex.makeInstance( 0, FloatPoint.makeInstance(Math.sqrt(-fix))); } } else { return approx; } }; })(); // sqrt: -> scheme-number // http://en.wikipedia.org/wiki/Newton's_method#Square_root_of_a_number // Produce the square root. // floor: -> scheme-number // Produce the floor. BigInteger.prototype.floor = function() { return this; } // ceiling: -> scheme-number // Produce the ceiling. BigInteger.prototype.ceiling = function() { return this; } // conjugate: -> scheme-number // Produce the conjugate. // magnitude: -> scheme-number // Produce the magnitude. // log: -> scheme-number // Produce the log. // angle: -> scheme-number // Produce the angle. // atan: -> scheme-number // Produce the arc tangent. // cos: -> scheme-number // Produce the cosine. // sin: -> scheme-number // Produce the sine. // expt: scheme-number -> scheme-number // Produce the power to the input. BigInteger.prototype.expt = function(n) { return bnPow.call(this, n); }; // exp: -> scheme-number // Produce e raised to the given power. // acos: -> scheme-number // Produce the arc cosine. // asin: -> scheme-number // Produce the arc sine. BigInteger.prototype.imaginaryPart = function() { return 0; } BigInteger.prototype.realPart = function() { return this; } // round: -> scheme-number // Round to the nearest integer. ////////////////////////////////////////////////////////////////////// // toRepeatingDecimal: jsnum jsnum {limit: number}? -> [string, string, string] // // Given the numerator and denominator parts of a rational, // produces the repeating-decimal representation, where the first // part are the digits before the decimal, the second are the // non-repeating digits after the decimal, and the third are the // remaining repeating decimals. // // An optional limit on the decimal expansion can be provided, in which // case the search cuts off if we go past the limit. // If this happens, the third argument returned becomes '...' to indicate // that the search was prematurely cut off. var toRepeatingDecimal = (function() { var getResidue = function(r, d, limit) { var digits = []; var seenRemainders = {}; seenRemainders[r] = true; while(true) { if (limit-- <= 0) { return [digits.join(''), '...'] } var nextDigit = quotient( multiply(r, 10), d); var nextRemainder = remainder( multiply(r, 10), d); digits.push(nextDigit.toString()); if (seenRemainders[nextRemainder]) { r = nextRemainder; break; } else { seenRemainders[nextRemainder] = true; r = nextRemainder; } } var firstRepeatingRemainder = r; var repeatingDigits = []; while (true) { var nextDigit = quotient(multiply(r, 10), d); var nextRemainder = remainder( multiply(r, 10), d); repeatingDigits.push(nextDigit.toString()); if (equals(nextRemainder, firstRepeatingRemainder)) { break; } else { r = nextRemainder; } }; var digitString = digits.join(''); var repeatingDigitString = repeatingDigits.join(''); while (digitString.length >= repeatingDigitString.length && (digitString.substring( digitString.length - repeatingDigitString.length) === repeatingDigitString)) { digitString = digitString.substring( 0, digitString.length - repeatingDigitString.length); } return [digitString, repeatingDigitString]; }; return function(n, d, options) { // default limit on decimal expansion; can be overridden var limit = 512; if (options && typeof(options.limit) !== 'undefined') { limit = options.limit; } if (! isInteger(n)) { throwRuntimeError('toRepeatingDecimal: n ' + n.toString() + " is not an integer."); } if (! isInteger(d)) { throwRuntimeError('toRepeatingDecimal: d ' + d.toString() + " is not an integer."); } if (equals(d, 0)) { throwRuntimeError('toRepeatingDecimal: d equals 0'); } if (lessThan(d, 0)) { throwRuntimeError('toRepeatingDecimal: d < 0'); } var sign = (lessThan(n, 0) ? "-" : ""); n = abs(n); var beforeDecimalPoint = sign + quotient(n, d); var afterDecimals = getResidue(remainder(n, d), d, limit); return [beforeDecimalPoint].concat(afterDecimals); }; })(); ////////////////////////////////////////////////////////////////////// // External interface of js-numbers: Numbers['fromFixnum'] = fromFixnum; Numbers['fromString'] = fromString; Numbers['makeBignum'] = makeBignum; Numbers['makeRational'] = Rational.makeInstance; Numbers['makeFloat'] = FloatPoint.makeInstance; Numbers['makeComplex'] = Complex.makeInstance; Numbers['makeComplexPolar'] = makeComplexPolar; Numbers['pi'] = FloatPoint.pi; Numbers['e'] = FloatPoint.e; Numbers['nan'] = FloatPoint.nan; Numbers['negative_inf'] = FloatPoint.neginf; Numbers['inf'] = FloatPoint.inf; Numbers['negative_one'] = -1; // Rational.NEGATIVE_ONE; Numbers['zero'] = 0; // Rational.ZERO; Numbers['one'] = 1; // Rational.ONE; Numbers['i'] = plusI; Numbers['negative_i'] = minusI; Numbers['negative_zero'] = NEGATIVE_ZERO; Numbers['onThrowRuntimeError'] = onThrowRuntimeError; Numbers['isSchemeNumber'] = isSchemeNumber; Numbers['isRational'] = isRational; Numbers['isReal'] = isReal; Numbers['isExact'] = isExact; Numbers['isInexact'] = isInexact; Numbers['isInteger'] = isInteger; Numbers['toFixnum'] = toFixnum; Numbers['toExact'] = toExact; Numbers['toInexact'] = toInexact; Numbers['add'] = add; Numbers['subtract'] = subtract; Numbers['multiply'] = multiply; Numbers['divide'] = divide; Numbers['equals'] = equals; Numbers['eqv'] = eqv; Numbers['approxEquals'] = approxEquals; Numbers['greaterThanOrEqual'] = greaterThanOrEqual; Numbers['lessThanOrEqual'] = lessThanOrEqual; Numbers['greaterThan'] = greaterThan; Numbers['lessThan'] = lessThan; Numbers['expt'] = expt; Numbers['exp'] = exp; Numbers['modulo'] = modulo; Numbers['numerator'] = numerator; Numbers['denominator'] = denominator; Numbers['integerSqrt'] = integerSqrt; Numbers['sqrt'] = sqrt; Numbers['abs'] = abs; Numbers['quotient'] = quotient; Numbers['remainder'] = remainder; Numbers['floor'] = floor; Numbers['ceiling'] = ceiling; Numbers['conjugate'] = conjugate; Numbers['magnitude'] = magnitude; Numbers['log'] = log; Numbers['angle'] = angle; Numbers['tan'] = tan; Numbers['atan'] = atan; Numbers['cos'] = cos; Numbers['sin'] = sin; Numbers['tan'] = tan; Numbers['acos'] = acos; Numbers['asin'] = asin; Numbers['cosh'] = cosh; Numbers['sinh'] = sinh; Numbers['imaginaryPart'] = imaginaryPart; Numbers['realPart'] = realPart; Numbers['round'] = round; Numbers['sqr'] = sqr; Numbers['gcd'] = gcd; Numbers['lcm'] = lcm; Numbers['toRepeatingDecimal'] = toRepeatingDecimal; // The following exposes the class representations for easier // integration with other projects. Numbers['BigInteger'] = BigInteger; Numbers['Rational'] = Rational; Numbers['FloatPoint'] = FloatPoint; Numbers['Complex'] = Complex; Numbers['MIN_FIXNUM'] = MIN_FIXNUM; Numbers['MAX_FIXNUM'] = MAX_FIXNUM; })();