#lang scribble/manual @(require planet/scribble planet/version planet/resolver scribble/eval scribble/bnf racket/sandbox racket/port racket/list (only-in racket/contract any/c) racket/runtime-path "scribble-helpers.rkt" "../js-assembler/get-js-vm-implemented-primitives.rkt") @(require racket/runtime-path) @(define-runtime-path git-head-path "../.git/refs/heads/master") @(require (for-label (this-package-in js)) (for-label (this-package-in lang/base)) (for-label (this-package-in resource) (for-label (this-package-in web-world)))) @inject-javascript-inline|{ var _gaq = _gaq || []; _gaq.push(['_setAccount', 'UA-24146890-1']); _gaq.push(['_trackPageview']); (function() { var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s); })(); }| @inject-javascript-src{http://hashcollision.org/whalesong/examples/runtime.js} @(define-runtime-path whalesong-path "..") @;; I may need an evaluator for some small examples. @(define my-evaluator (call-with-trusted-sandbox-configuration (lambda () (parameterize ([sandbox-output 'string] [sandbox-error-output 'string]) (make-evaluator 'racket))))) @title{Whalesong: a Racket to JavaScript compiler} @author+email["Danny Yoo" "dyoo@hashcollision.org"] @centered{@smaller{Source code can be found at: @url{https://github.com/dyoo/whalesong}. The latest version of this document lives in @url{http://hashcollision.org/whalesong}.}} @(if (file-exists? git-head-path) (let ([git-head (call-with-input-file git-head-path port->string)]) @centered{@smaller{Current commit head is @tt{@git-head}.}}) "") @;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; @section{Introduction} @;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Whalesong is a compiler from Racket to JavaScript; it takes Racket programs and translates them so that they can run stand-alone on a user's web browser. It should allow Racket programs to run with (hopefully!) little modification, and provide access through the foreign-function interface to native JavaScript APIs. The included runtime library supports the numeric tower, an image library, and a framework to program the web in functional event-driven style. The GitHub source repository to Whalesong can be found at @url{https://github.com/dyoo/whalesong}. Prerequisites: at least @link["http://racket-lang.org/"]{Racket 5.1.1}. If you wish to use the JavaScript compression option, you will need @link["http://www.java.com"]{Java 1.6} SDK. @; (This might be superfluous information, so commented out @; for the moment...) @;The majority of the project is written @;@link["http://docs.racket-lang.org/ts-guide/index.html"]{Typed @;Racket}, and Racket 5.1.1 and above provides the support necessary to @;compile Whalesong; otherwise, compilation may take an unusual amount @;of time. @subsection{Examples} Here are a collection of programs that use the @emph{web-world} library described later in this document: @itemize[ @item{@link["http://hashcollision.org/whalesong/examples/attr-animation/attr-animation.html"]{attr-animation.html} [@link["http://hashcollision.org/whalesong/examples/attr-animation/attr-animation.rkt"]{src}] Uses @racket[update-view-attr] and @racket[on-tick] to perform a simple color animation.} @item{@link["http://hashcollision.org/whalesong/examples/boid/boid.html"]{boid.html} [@link["http://hashcollision.org/whalesong/examples/boid/boid.rkt"]{src}] Uses @racket[update-view-css] and @racket[on-tick] to perform an animation of a flock of @link["http://en.wikipedia.org/wiki/Boids"]{boids}.} @item{@link["http://hashcollision.org/whalesong/examples/dwarves/dwarves.html"]{dwarves.html} [@link["http://hashcollision.org/whalesong/examples/dwarves/dwarves.rkt"]{src}] Uses @racket[view-show] and @racket[view-hide] to manipulate a view. Click on a dwarf to make them hide. } @item{@link["http://hashcollision.org/whalesong/examples/dwarves-with-remove/dwarves-with-remove.html"]{dwarves-with-remove.html} [@link["http://hashcollision.org/whalesong/examples/dwarves-with-remove/dwarves-with-remove.rkt"]{src}] Uses @racket[view-focus?] and @racket[view-remove] to see if a dwarf should be removed from the view. } @item{@link["http://hashcollision.org/whalesong/examples/field/field.html"]{field.html} [@link["http://hashcollision.org/whalesong/examples/field/field.rkt"]{src}] Uses @racket[view-bind] to read a text field, and @racket[update-view-text] to change the text content of an element. } @item{@link["http://hashcollision.org/whalesong/examples/phases/phases.html"]{phases.html} [@link["http://hashcollision.org/whalesong/examples/phases/phases.rkt"]{src}] Switches out one view entirely in place of another. Different views can correspond to phases in a program. } @item{@link["http://hashcollision.org/whalesong/examples/tick-tock/tick-tock.html"]{tick-tock.html} [@link["http://hashcollision.org/whalesong/examples/tick-tock/tick-tock.rkt"]{src}] Uses @racket[on-tick] to show a timer counting up. } @item{@link["http://hashcollision.org/whalesong/examples/redirected/redirected.html"]{redirected.html} [@link["http://hashcollision.org/whalesong/examples/redirected/redirected.rkt"]{src}] Uses @racket[on-tick] to show a timer counting up, and also uses @racket[open-output-element] to pipe side-effecting @racket[printf]s to a hidden @tt{div}. } @item{@link["http://hashcollision.org/whalesong/examples/todo/todo.html"]{todo.html} [@link["http://hashcollision.org/whalesong/examples/todo/todo.rkt"]{src}] A simple TODO list manager. } @item{@link["http://hashcollision.org/whalesong/examples/where-am-i/where-am-i.html"]{where-am-i.html} [@link["http://hashcollision.org/whalesong/examples/where-am-i/where-am-i.rkt"]{src}] Uses @racket[on-location-change] and @racket[on-mock-location-change] to demonstrate location services. } ] I also gave a @link["http://hashcollision.org/whalesong/racketcon"]{presentation} of Whalesong at RacketCon 2011, including examples like: @itemize[ @item{@link["http://hashcollision.org/whalesong/racketcon/rain.html"]{rain.html} [@link["http://hashcollision.org/whalesong/racketcon/rain.rkt"]{src}] Uses the image libraries to show droplets of water falling down.} @item{@link["http://hashcollision.org/whalesong/racketcon/pacman.html"]{pacman.html} [@link["http://hashcollision.org/whalesong/racketcon/pacman.rkt"]{src}] Pacman.} ] @;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; @section{Getting started} @;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; @subsection{Installing Whalesong} At the time of this writing, although Whalesong has been deployed to @link["http://planet.racket-lang.org"]{PLaneT}, the version on PLaneT is probably a little out of date. If you want to use Whalesong off of PLaneT, run the following to create the @filepath{whalesong} launcher: @codeblock|{ #lang racket/base (require (planet dyoo/whalesong:1:3/make-launcher)) }| This will create a @filepath{whalesong} launcher in the current directory. @subsection{Installing Whalesong from github} Otherwise, you can download the sources from the github repository. Doing so requires doing a little bit of manual work. The steps are: @itemlist[ @item{Check Whalesong out of Github.} @item{Set up the PLaneT development link to your local Whalesong instance.} @item{Run @link["http://docs.racket-lang.org/raco/setup.html"]{@tt{raco setup}} over Whalesong to finish the installation}] We can check it out of the source repository in @link["https://github.com/"]{GitHub}; the repository can be checked out by using @tt{git clone}. At the command-line, clone the tree with: @verbatim|{ $ git clone git://github.com/dyoo/whalesong.git }| This should check the repository in the current directory. Next, let's set up a @link["http://docs.racket-lang.org/planet/Developing_Packages_for_PLaneT.html#(part._devlinks)"]{PLaneT development link}. Make sure you are in the parent directory that contains the @filepath{whalesong} repository, and then run this on your command line: @verbatim|{ $ planet link dyoo whalesong.plt 1 4 whalesong }| (You may need to adjust the @tt{1} and @tt{4} major/minor numbers a bit to be larger than the latest version that's on PLaneT at the time.) Let's make the @filepath{whalesong} launcher somewhere appropriate. Run Racket with the following @racket[require]: @racketblock[ (require (planet dyoo/whalesong/make-launcher)) ] This will create a @filepath{whalesong} executable in the current working directory. Finally, we need to set up Whalesong with @tt{raco setup}. Here's how to do this at the command line: @verbatim|{ $ raco setup -P dyoo whalesong.plt 1 4 }| This should compile Whalesong. Any time the source code in @filepath{whalesong} changes, we should repeat this @tt{raco setup} step again. At this point, you should be able to run the @filepath{whalesong} executable from the command line. @verbatim|{ $ ./whalesong Usage: whalesong [option ...] where any unambiguous prefix can be used for a subcommand The Whalesong command-line tool for compiling Racket to JavaScript For help on a particular subcommand, use 'whalesong --help' whalesong build build a standalone html and javascript package whalesong get-runtime print the runtime library to standard output whalesong get-javascript Gets just the JavaScript code and prints it to standard output }| and if this does appear, then Whalesong should be installed successfully. To repeat: whenever Whalesong's source code is updated from Github, please re-run the @tt{raco setup} step. Otherwise, Racket will try to recompile Whalesong on every single use, which can be very expensive. @subsection{Making @tt{.html} files with Whalesong} Let's try making a simple, standalone executable. At the moment, the program must be written in the base language of @racket[(planet dyoo/whalesong)]. This restriction unfortunately prevents arbitrary @racketmodname[racket/base] programs from compiling at the moment; the developers (namely, dyoo) will be working to remove this restriction as quickly as possible. Write a @filepath{hello.rkt} with the following content @filebox["hello.rkt"]{ @codeblock{ #lang planet dyoo/whalesong (display "hello world") (newline) }} This program is a regular Racket program, and can be executed normally, @verbatim|{ $ racket hello.rkt hello world $ }| However, it can also be packaged with @filepath{whalesong}. @verbatim|{ $ whalesong build hello.rkt Writing program # Writing html # $ ls -l hello.html -rw-r--r-- 1 dyoo dyoo 3817 2011-09-10 15:02 hello.html $ ls -l hello.js -rw-r--r-- 1 dyoo dyoo 2129028 2011-09-10 15:02 hello.js }| @margin-note{Visit @link["http://hashcollision.org/whalesong/examples/hello/hello.html"]{hello.html} to execute this program.} Running @tt{whalesong build} on a Racket program will produce a @filepath{.html} and @filepath{.js} file. If you open the @filepath{.html} in your favorite web browser, you should see a triumphant message show on screen. We can do something slightly more interesting. Let's write a Whalesong program that accesses the JavaScript DOM. Call this file @filepath{dom-play.rkt}. @margin-note{ Visit @link["http://hashcollision.org/whalesong/examples/dom-play/dom-play.html"]{dom-play.html} to execute this program.} @filebox["dom-play.rkt"]{ @codeblock|{ #lang planet dyoo/whalesong ;; Uses the JavaScript FFI, which provides bindings for: ;; $ and call (require (planet dyoo/whalesong/js)) ;; insert-break: -> void (define (insert-break) (call-method ($ "
") "appendTo" body) (void)) ;; write-message: any -> void (define (write-message msg) (void (call-method (call-method (call-method ($ "") "text" msg) "css" "white-space" "pre") "appendTo" body))) ;; Set the background green, and show some content ;; on the browser. (void (call-method body "css" "background-color" "lightgreen")) (void (call-method ($ "

Hello World

") "appendTo" body)) (write-message "Hello, this is a test!") (insert-break) (let loop ([i 0]) (cond [(= i 10) (void)] [else (write-message "iteration ") (write-message i) (insert-break) (loop (add1 i))])) }|} This program uses the @link["http:/jquery.com"]{JQuery} API provided by @racketmodname[(planet dyoo/whalesong/js)], as well as the native JavaScript FFI to produce output on the browser. If w run Whalesong on this program, and view the resulting @filepath{dom-play.html} in your web browser, we should see a pale, green page with some output. @;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; @subsection{Using Whalesong functions from JavaScript} @;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Whalesong also allows functions defined from Racket to be used from JavaScript. As an example, we can take the boring @emph{factorial} function and define it in a module called @filepath{fact.rkt}: @margin-note{ The files can also be downloaded here: @itemlist[@item{@link["http://hashcollision.org/whalesong/examples/fact/fact.rkt"]{fact.rkt}} @item{@link["http://hashcollision.org/whalesong/examples/fact/index.html"]{index.html}}] with generated JavaScript binaries here: @itemlist[ @item{@link["http://hashcollision.org/whalesong/examples/fact/fact.js"]{fact.js}} @item{@link["http://hashcollision.org/whalesong/examples/fact/runtime.js"]{runtime.js}} ] } @filebox["fact.rkt"]{ @codeblock|{ #lang planet dyoo/whalesong (provide fact) (define (fact x) (cond [(= x 0) 1] [else (* x (fact (sub1 x)))])) }|} Instead of creating a standalone @tt{.html}, we can use @tt{whalesong} to get us the module's code. From the command-line: @verbatim|{ $ whalesong get-javascript fact.rkt > fact.js $ ls -l fact.js -rw-r--r-- 1 dyoo dyoo 27421 2011-07-11 22:02 fact.js }| This file does require some runtime support not included in @filepath{fact.js}; let's generate the @tt{runtime.js} and save it as well. At the command-line: @verbatim|{ $ whalesong get-runtime > runtime.js $ ls -l runtime.js -rw-r--r-- 1 dyoo dyoo 544322 2011-07-11 22:12 runtime.js }| Now that we have these, let's write an @filepath{index.html} that uses the @racket[fact] function that we @racket[provide]ed from @filepath{fact.rkt}. @filebox["index.html"]{ @verbatim|{ The factorial of 10000 is being computed. }| } @margin-note{See: @link["http://hashcollision.org/whalesong/examples/fact/bad-index.html"]{bad-index.html}.} Replacing the @racket[10000] with @racket["one-billion-dollars"] should reliably produce a proper error message. @section{Using @tt{whalesong}} Whalesong provides a command-line utility called @tt{whalesong} for translating Racket to JavaScript. It can be run in several modes: @itemize[ @item{To create HTML + js documents} @item{To output the compiled JavaScript as a single @filepath{.js} file} ] Using @tt{whalesong} to generate HTML+js documents is relatively straightforward with the @tt{build} command. To use it, pass the name of the file to it: @verbatim|{ $ whalesong build [name-of-racket-file] }| A @filepath{.html} and @filepath{.js} will be written to the current directory, as will any external resources that the program uses. The @tt{whalesong} commands support these command line options: @itemize[ @item{@verbatim{--compress-javascript} Use Google Closure's JavaScript compiler to significantly compress the JavaScript. Using this currently requires a Java 1.6 JDK.} @item{@verbatim{--verbose} Write verbose debugging information to standard error.} @item{@verbatim{--dest-dir} Write files to a separate directory, rather than the current directory.} @item{@verbatim{--split-modules} Write each dependent module as a separate file, rather than in one large @filepath{.js}. This may be necessary if your browser environment prohibits large @filepath{.js} files. The files will be numbered starting from @racket[1].} ] For more advanced users, @tt{whalesong} can be used to generate JavaScript in non-standalone mode. This gives the web developer more fine-grained control over how to control and deploy the outputted program. @subsection{@tt{build}} Given the name of a program, this builds @filepath{.html} and @filepath{.js} files into the current working directory. The @filepath{.html} and @filepath{.js} should be self-contained, with an exception: if the file uses any external @tech{resource}s by using @racket[define-resource], those resources are written into the current working directory, if they do not already exist there. @subsection{@tt{get-javascript}} Given the name of a program, writes the JavaScript to standard output, as well as its dependent modules. The outputted file is meant to be used as a @tt{SCRIPT} source. By default, the given program will be treated as a @emph{main} module. All main modules will be executed when the JavaScript function @tt{plt.runtime.invokeMains()} is called. @subsection{@tt{get-runtime}} Prints out the core runtime library that the files generated by get-javascript depend on. @section{Including external resources} @defmodule/this-package[resource] Programs may need to use external file @deftech{resource}s that aren't themselves Racket programs, but instead some other kind of data. Graphical programs will often use @filepath{.png}s, and web-related programs @filepath{.html}s, for example. Whalesong provides the @racketmodname/this-package[resource] library to refer and use these external resources. When Whalesong compiles a program into a package, these resources will be bundled alongside the JavaScript-compiled output. @defform[(define-resource id [path-string])]{ Defines a @tech{resource} with the given path name. For example, @codeblock|{ #lang planet dyoo/whalesong (require (planet dyoo/whalesong/resource)) (define-resource my-whale-image-resource "humpback.png") }| } As a convenience, you can also write @codeblock|{ #lang planet dyoo/whalesong (require (planet dyoo/whalesong/resource)) (define-resource humpback.png) }| which defines a variable named @racket[humpback.png] whose @tech{resource} is @filepath{humpback.png}. If the resource given has an extension one of the following: @itemize[ @item{@filepath{.png}} @item{@filepath{.gif}} @item{@filepath{.jpg}} @item{@filepath{.jpeg}}] then it can be treated as an image for which @racket[image?] will be true. If the resource has the extension @filepath{.html}, then it will be run through an HTML purifying process to make sure the HTML is well-formed. @defproc[(resource? [x any]) boolean]{ Returns @racket[#t] if @racket[x] is a @tech{resource}.} @defproc[(resource->url [a-resource resource?]) string?]{ Given a @tech{resource}, gets a URL. For example, @codeblock|{ #lang planet dyoo/whalesong (require (planet dyoo/whalesong/resource) (planet dyoo/whalesong/image)) (define-resource my-whale-image-resource "humpback.png") (define WHALE-IMAGE (bitmap/url (resource->url my-whale-image-resource))) }| } @; Not done yet! @;@defproc[(resource->input-port [a-resource resource?]) string?]{ @;Given a resource, gets an input-port of its contents. @;} @;@defform[(define-remote-resource id url-string])]{ @;Given a url, creates a remote resource. At the time of Whalesong compilation, @;Whalesong will freeze a static copy of the file. @;} @section{The web-world API} @defmodule/this-package[web-world] The @tt{web-world} library allows you to write functional event-driven @link["http://world.cs.brown.edu"]{World} programs for the web; the user defines functional callbacks to handle events, and receive and consume a world argument. One difference introduced by the web is the web page itself: because the page itself is a source of state, it too will be passed to callbacks. This library presents a functional version of the DOM in the form of a @tech{view}. @margin-note{Visit @link["http://hashcollision.org/whalesong/examples/tick-tock/tick-tock.html"]{tick-tock.html} to execute this program.} Let's demonstrate this by creating a basic ticker that counts on the screen every second. The first thing we can do is mock up a web page with a user interface, like this. @filebox["index.html"]{ @verbatim|{ My simple program

The current counter is: fill-me-in

}| } We can even look at this in a standard web browser. Once we're happy with the statics of our program, we can inject dynamic behavior. Write a file called @filepath{tick-tock.rkt} with the following content. @filebox["tick-tock.rkt"]{ @codeblock|{ #lang planet dyoo/whalesong (require (planet dyoo/whalesong/web-world) (planet dyoo/whalesong/resource)) (define-resource index.html) ;; draw: world view -> view (define (draw world dom) (update-view-text (view-focus dom "counter") world)) ;; tick: world view -> world (define (tick world dom) (add1 world)) ;; stop?: world view -> boolean (define (stop? world dom) (> world 10)) (big-bang 0 (initial-view index.html) (to-draw draw) (on-tick tick 1) (stop-when stop?)) }| } Several things are happening here. @itemize[ @item{We @racket[require] a few libraries to get us some additional behavior; in particular, @racketmodname/this-package[web-world] to let us write event-driven web-based programs, and @racketmodname/this-package[resource] to give us access to external @tech{resource}s.} @item{We use @racket[define-resource] to refer to external files, like @filepath{index.html} that we'd like to include in our program.} @item{We use @racket[big-bang] to start up a computation that responses to events. In this example, that's clock ticks introduced by @racket[on-tick], though because we're on the web, we can bind to many other kinds of web events (by using @racket[view-bind]).} ] @subsection{@racket[big-bang] and its options} @declare-exporting/this-package[web-world] @defproc[(big-bang [w world] [h big-bang-handler] ...) world]{ Start a big bang computation. The @racket[big-bang] consumes an initial world, as well as several handlers to configure it, described next: } @defproc[(initial-view [x any]) big-bang-handler]{ Provide an initial view for the big-bang. Normally, @racket[x] will be a @tech{resource} to a web page. @codeblock|{ ... (define-resource page1.html) ... (big-bang ... (initial-view page1.html)) }| } @defproc[(stop-when [stop? ([w world] [dom view] -> boolean)]) big-bang-handler]{ Tells @racket[big-bang] when to stop. @codeblock|{ ... (define-struct world (given expected)) ... ;; stop?: world view -> boolean (define (stop? world dom) (string=? (world-given world) (world-expected world))) (big-bang ... (stop-when stop?)) }| } @defproc*[(((on-tick [tick-f ([w world] [v view] [e event]? -> world)] [delay real]) big-bang-handler) ((on-tick [tick-f ([w world] [v view] [e event]? -> world)]) big-bang-handler))]{ Tells @racket[big-bang] to update the world during clock ticks. By default, this will send a clock tick 28 times a second, but if given @racket[delay], it will use that instead. @codeblock|{ ... ;; tick: world dom -> world (define (tick world view) (add1 world)) (big-bang ... (on-tick tick 5)) ;; tick every five seconds }| } @defproc[(on-mock-location-change [location-f ([w world] [v view] [e event]? -> world)]) big-bang-handler]{ Tells @racket[big-bang] to update the world during simulated movement. During the extent of a big-bang, a form widget will appear in the @tt{document.body} to allow us to manually send location-changing events. The optional @tech{event} argument will contain numbers for @racket["latitude"] and @racket["longitude"]. @codeblock|{ ... ;; move: world view event -> world (define (move world dom event) (list (event-ref event "latitude") (event-ref event "longitude"))) ... (big-bang ... (on-mock-location-change move)) }| } @defproc[(on-location-change [location-f ([w world] [v view] [e event]? -> world)]) big-bang-handler]{ Tells @racket[big-bang] to update when the location changes, as received by the @link["http://dev.w3.org/geo/api/spec-source.html"]{Geolocation API}. The optional @tech{event} argument will contain numbers for @racket["latitude"] and @racket["longitude"]. @codeblock|{ ... ;; move: world view event -> world (define (move world dom event) (list (event-ref event "latitude") (event-ref event "longitude"))) ... (big-bang ... (on-location-change move)) }| } @defproc[(to-draw [draw-f ([w world] [v view] -> view)]) big-bang-handler]{ Tells @racket[big-bang] how to update the rendering of the world. The draw function will be called every time an event occurs. @codeblock|{ ... (define-struct world (name age)) ;; draw: world view -> view (define (draw world dom) (update-view-text (view-focus dom "name-span") (world-name world))) ... (big-bang ... (to-draw draw)) }| } @subsection{Views} @declare-exporting/this-package[web-world] A @deftech{view} is a functional representation of the browser DOM tree. A view is always focused on an element, and the functions in this subsection show how to traverse and manipulate the view. @defproc[(->view [x any]) view]{ Coerse a value into a view whose focus is on the topmost element. Common values for @racket[x] include @tech{resource}s. } @defproc[(view-focus? [v view] [id String]) boolean]{ Return true if the view can be focused using the given id. } @defproc[(view-focus [v view] [id String]) view]{ Focuses the view on an element, given the @racket[id]. The view will be searched starting from the toplevelmost node. } @defproc[(view-left? [v view]) boolean]{ See if the view can be moved to the previous sibling. } @defproc[(view-left [v view]) view]{ Move the focus to the previous sibling. } @defproc[(view-right? [v view]) boolean]{ See if the view can be moved to the next sibling. } @defproc[(view-right [v view]) view]{ Move the focus to the next sibling.} @defproc[(view-up? [v view]) boolean]{ See if the view can be moved to the parent. } @defproc[(view-up [v view]) view]{ Move the focus to the parent.} @defproc[(view-down? [v view]) boolean]{ See if the view can be moved to the first child. } @defproc[(view-down [v view]) view]{ Move the view to the first child.} @defproc[(view-forward? [v view]) boolean]{ See if the view can be moved forward.} @defproc[(view-forward [v view]) view]{ Move the view forward, assuming a pre-order traversal. } @defproc[(view-backward? [v view]) boolean]{ See if the view can be moved backward.} @defproc[(view-backward [v view]) view]{ Move the view backward, assuming a pre-order traversal. } @defproc[(view-text [v view]) string]{ Get the textual content at the focus. } @defproc[(update-view-text [v view] [s string]) view]{ Update the textual content at the focus.} @defproc[(view-bind [v view] [type string] [world-updater ([w world] [v view] [e event]? -> world)]) view]{ Attach a world-updating event to the focus. Attach a world-updating event to the focus. When the world-updater is called, the view will be focused on the element that triggered the event. Common event types include @racket["click"], @racket["mouseenter"], @racket["change"].} @defproc[(view-show [v view]) view]{ Show the element at the focus. } @defproc[(view-hide [v view]) view]{ Hide the element at the focus. } @defproc[(view-attr [v view] [name String]) view]{ Get the attribute @racket[name] at the focus. } @defproc[(update-view-attr [v view] [name String] [value String]) view]{ Update the attribute @racket[n] with the value @racket[v] at the focus. } @defproc[(view-css [v view] [name String]) view]{ Get the css value @racket[name] at the focus. } @defproc[(update-view-css [v view] [name String] [value String]) view]{ Update the css value @racket[n] with the value @racket[v] at the focus. } @defproc[(view-id [v view]) world]{ Get the unique identifier of the node at the focus. } @defproc[(view-form-value [v view]) view]{ Get the form value of the node at the focus.} @defproc[(update-view-form-value [v view] [value String]) view]{ Update the form value of the node at the focus.} Dom nodes can be created by using @racket[xexp->dom], which converts a @tech{xexp} to a node, and attached to the view by using @racket[view-append-child], @racket[view-insert-left], and @racket[view-insert-right]. @defproc[(view-append-child [v view] [d dom]) view]{ Add the dom node @racket[d] as the last child of the focused node. Focus moves to the inserted node.} @defproc[(view-insert-left [v view] [d dom]) view]{ Add the dom node @racket[d] as the previous sibling of the focused node. Focus moves to the inserted node.} @defproc[(view-insert-right [v view] [d dom]) view]{ Add the dom node @racket[d] as the next sibling of the focused node. Focus moves to the inserted node.} @defproc[(view-remove [v view]) view]{ Remove the dom node at the focus from the view @racket[v]. Focus tries to move to the right, if there's a next sibling. If that fails, focus then moves to the left, if there's a previous sibling. If that fails too, then focus moves to the parent.} @subsection{Events} @declare-exporting/this-package[web-world] An @deftech{event} is a structure that holds name-value pairs. Whenever an event occurs in web-world, it may include some auxiliary information about the event. As a concrete example, location events from @racket[on-location-change] and @racket[on-mock-location-change] can send latitude and longitude values, as long as the world callback can accept the event as an argument. @defstruct[event ([kvpairs (listof (list symbol (or/c string number)))])]{} @defproc[(event-ref [evt event?] [name (or/c symbol string)]) value]{ Get an value from the event, given its @racket[name]. } @defproc[(event-keys [evt event?]) (listof symbol)]{ Get an list of the event's keys. } @subsection{Dynamic DOM generation with xexps} @declare-exporting/this-package[web-world] We often need to dynamically inject new dom nodes into an existing view. As an example where the UI is entirely in code: @codeblock|{ #lang planet dyoo/whalesong (require (planet dyoo/whalesong/web-world)) ;; tick: world view -> world (define (tick world view) (add1 world)) ;; draw: world view -> view (define (draw world view) (view-append-child view (xexp->dom `(p "hello, can you see this? " ,(number->string world))))) (big-bang 0 (initial-view (xexp->dom '(html (head) (body)))) (on-tick tick 1) (to-draw draw)) }| Normally, we'll want to do as much of the statics as possible with @filepath{.html} resources, but when nothing else will do, we can generate DOM nodes programmatically. We can create new DOMs from an @tech{xexp}, which is a s-expression representation for a DOM node. Here are examples of expressions that evaluate to xexps: @racketblock["hello world"] @racketblock['(p "hello, this" "is an item")] @racketblock[ (local [(define name "josh")] `(p "hello" (i ,name)))] @racketblock[ '(div (\@ (id "my-div-0")) (span "This is a span in a div"))] @racketblock[ `(div (\@ ,(fresh-id)) (span "This is another span in a div whose id is dynamically generated"))] More formally, a @deftech{xexp} is: @(let ([open @litchar{(}] [close @litchar{)}] [at @litchar[(symbol->string '\@)]]) @BNF[(list @nonterm{xexp} @nonterm{string} @nonterm{symbol} @BNF-seq[open @nonterm{id} @kleenestar[@nonterm{xexp}] close] @BNF-seq[open @nonterm{id} open at @kleenestar[@nonterm{key-value}] close @kleenestar[@nonterm{xexp}] close]) (list @nonterm{key-value} @BNF-seq[open @nonterm{symbol} @nonterm{string} close]) ]) To check to see if something is a xexp, use @racket[xexp?]: @defproc[(xexp? [x any]) boolean]{ Return true if @racket[x] is a xexp. } @defproc[(xexp->dom [an-xexp xexp]) dom]{ Return a dom from the xexp. } When creating xexps, we may need to create unique ids for the nodes. The web-world library provides a @racket[fresh-id] form to create these. @defproc[(fresh-id) string]{ Return a string that can be used as a DOM node id. } We may also want to take a view and turn it back into an @tech{xexp}. @defproc[(view->xexp [a-view view]) xexp]{ Coerses a view into a @tech{xexp}. } @subsection{Tips and tricks: Hiding standard output or directing it to an element} @declare-exporting/this-package[web-world] For a web-world program, output is normally done by using @racket[to-draw]. However, side effecting functions, such as @racket[printf] or @racket[display], are still available, and will append to @tt{document.body}. We may want to disable such printing or redirect it to a particular element on the page. For such purposes, use a combination of @racket[current-output-port] and @racket[open-output-element] to redirect the output of these side effect functions to somewhere else. For example: @codeblock|{ ... ;; Redirect standard output to a div called "stdout-div". (current-output-port (open-output-element "stdout-div")) ... (big-bang ... (on-tick (lambda (world dom) (printf "Tick!\n") (add1 world))) ...) }| All subsequent I/O side effects after the call to @racket[current-output-port] will be written out to the @tt{stdout-div}, which can be easily styled with @tt{display: none} to hide it from normal browser display. @defproc[(open-output-element [id string]) output-port]{ Opens an output port that will be directed to write to the DOM element whose id is @racket[id]. Note: writing to this port shouldn't fail, even if the id does not currently exist on the page. } @section{The JavaScript Foreign Function Interface} @defmodule/this-package[js]{ This needs to describe what hooks we've got from the JavaScript side of things. In particular, we need to talk about the plt namespace constructed by the runtime, and the major, external bindings, like @tt{plt.runtime.invokeMains}. The contracts here are not quite right either. I want to use JQuery as the type in several of the bindings here, but don't quite know how to teach Scribble about them yet. @defproc[(alert [msg string?]) void]{ Displays an alert. Currently implemented using JavaScript's @litchar{alert} function.} @defthing[body any/c]{ A JQuery-wrapped value representing the body of the DOM. } @defproc[(call-method [object any/c] [method-name string?] [arg any/c] ...) any/c]{ Calls the method of the given object, assuming @racket[object] is a JavaScript value that supports that method call. The raw return value is passed back. For example, @racketblock[(call-method body "css" "background-color")] should return the css color of the body. } @defproc[($ [locator any/c]) any/c]{ Uses JQuery to construct or collect a set of DOM elements, as described in the @link["http://api.jquery.com/jQuery/"]{JQuery documentation}. For example, @racketblock[(call-method ($ "

Hello World

") "appendTo" body)] will construct a @tt{h1} header, and append it to the document body. } @defproc[(in-javascript-context?) boolean]{Returns true if the running context supports JavaScript-specific functions.} @defproc[(viewport-width) number?]{ Can only be called in a JavaScript context. Returns the width of the viewport. } @defproc[(viewport-height) number?]{ Can only be called in a JavaScript context. Returns the height of the viewport. } } @;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; @section{Simple world programming} @;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Whalesong provides a library to support writing functional I/O programs (@link["http://www.ccs.neu.edu/scheme/pubs/icfp09-fffk.pdf"]{A Functional I/O System}). Here's an example of such a world program: @inject-empty-span-with-id{simple-world-program} [FIXME: embed a world program here.] @;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; @section{Acknowledgements} @;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; @;; shriram, kathi, emmanuel, everyone who helped with moby and wescheme @;; @;; also need to list out all the external libraries we're using @;; and the license. Whalesong uses code and utilities from the following external projects: @itemlist[ @item{jshashtable (@url{http://www.timdown.co.uk/jshashtable/})} @item{js-numbers (@url{http://github.com/dyoo/js-numbers/})} @item{JSON (@url{http://www.json.org/js.html})} @item{jquery (@url{http://jquery.com/})} @item{Google Closure Compiler (@url{http://code.google.com/p/closure-compiler/}}} @item{excanvas (@url{http://excanvas.sourceforge.net/})} @item{canvas-text (@url{http://code.google.com/p/canvas-text/source/browse/trunk})} ] The following folks have helped tremendously in the implementation of Whalesong by implementing libraries, giving guidence, reporting bugs, and suggesting improvements. @;;;; @; in alphabetical order @;;;; @(apply itemlist (map item (sort (list "Ethan Cecchetti" "Scott Newman" "Zhe Zhang" "Jens Axel Søgaard" "Jay McCarthy" "Sam Tobin-Hochstadt" "Doug Orleans" "Richard Cleis" "Asumu Takikawa" "Eric Hanchrow" "Greg Hendershott" "Shriram Krishnamurthi" "Emmanuel Schanzer" "Robby Findler" "Gregor Kiczales" "Cristina Teodoropol" "Matthew Flatt" ) string