#lang scribble/manual @(require planet/scribble planet/version planet/resolver scribble/eval scribble/bnf racket/sandbox racket/port racket/list (only-in racket/contract any/c) racket/runtime-path "scribble-helpers.rkt" "../js-assembler/get-js-vm-implemented-primitives.rkt") @(require racket/runtime-path) @(define-runtime-path git-head-path "../.git/refs/heads/master") @(require (for-label (this-package-in js)) (for-label (this-package-in lang/base)) (for-label (this-package-in resource) (for-label (this-package-in web-world)))) @inject-javascript-inline|{ var _gaq = _gaq || []; _gaq.push(['_setAccount', 'UA-24146890-1']); _gaq.push(['_trackPageview']); (function() { var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s); })(); }| @inject-javascript-src{http://hashcollision.org/whalesong/examples/runtime.js} @(define-runtime-path whalesong-path "..") @;; I may need an evaluator for some small examples. @(define my-evaluator (call-with-trusted-sandbox-configuration (lambda () (parameterize ([sandbox-output 'string] [sandbox-error-output 'string]) (make-evaluator 'racket))))) @title{Whalesong Internals} @author+email["Danny Yoo" "dyoo@hashcollision.org"] @section{Installing Whalesong from github} Although Whalesong has been deployed to @link["http://planet.racket-lang.org"]{PLaneT}, you can download the sources from the github repository and run from there instead. Doing so requires doing a little bit of manual work. The steps are: @itemlist[ @item{Check Whalesong out of Github.} @item{Set up the PLaneT development link to your local Whalesong instance.} @item{Run @link["http://docs.racket-lang.org/raco/setup.html"]{@tt{raco setup}} over Whalesong to finish the installation}] We can check it out of the source repository in @link["https://github.com/"]{GitHub}; the repository can be checked out by using @tt{git clone}. At the command-line, clone the tree with: @verbatim|{ $ git clone git://github.com/dyoo/whalesong.git }| This should check the repository in the current directory. Next, let's set up a @link["http://docs.racket-lang.org/planet/Developing_Packages_for_PLaneT.html#(part._devlinks)"]{PLaneT development link}. Make sure you are in the parent directory that contains the @filepath{whalesong} repository, and then run this on your command line: @verbatim|{ $ planet link dyoo whalesong.plt 1 5 whalesong }| (You may need to adjust the @tt{1} and @tt{5} major/minor numbers a bit to be larger than the latest version that's on PLaneT at the time.) Let's make the @filepath{whalesong} launcher somewhere appropriate. Run Racket with the following @racket[require]: @racketblock[ (require (planet dyoo/whalesong/make-launcher)) ] This will create a @filepath{whalesong} executable in the current working directory. Finally, we need to set up Whalesong with @tt{raco setup}. Here's how to do this at the command line: @verbatim|{ $ raco setup -P dyoo whalesong.plt 1 5 }| This should compile Whalesong. Any time the source code in @filepath{whalesong} changes, we should repeat this @tt{raco setup} step again. @;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; @section{Internals} @;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Please skip this section if you're a regular user: this is really notes internal to Whalesong development, and is not relevant to most people. These are notes that describe the internal details of the implementation, including the type map from Racket values to JavaScript values. It should also describe how to write FFI bindings, eventually. @subsection{Architecture} The basic idea is to reuse most of the Racket compiler infrastructure. We use the underlying Racket compiler to produce bytecode from Racket source; it also performs macro expansion and module-level optimizations for us. We parse that bytecode using the @racketmodname[compiler/zo-parse] collection to get an AST, compile that to an intermediate language, and finally assemble JavaScript. @verbatim|{ AST IL parse-bytecode.rkt -----> compiler.rkt ----> assembler.rkt }| The IL is intended to be translated straightforwardly. We currently have an assembler to JavaScript @filepath{js-assembler/assemble.rkt}, as well as a simulator in @filepath{simulator/simulator.rkt}. The simulator allows us to test the compiler in a controlled environment. @subsection{parser/parse-bytecode.rkt} (We try to insulate against changes in the bytecode structure by using the version-case library to choose a bytecode parser based on the Racket version number. Add more content here as necessary...) @subsection{compiler/compiler.rkt} This translates the AST to the intermediate language. The compiler has its origins in the register compiler in @link[ "http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-35.html#%_sec_5.5" ]{Structure and Interpretation of Computer Programs} with some significant modifications. Since this is a stack machine, we don't need any of the register-saving infrastructure in the original compiler. We also need to support slightly different linkage structures, since we want to support multiple value contexts. We're trying to generate code that works effectively on a machine like the one described in @url{http://plt.eecs.northwestern.edu/racket-machine/}. The intermediate language is defined in @filepath{il-structs.rkt}, and a simulator for the IL in @filepath{simulator/simulator.rkt}. See @filepath{tests/test-simulator.rkt} to see the simulator in action, and @filepath{tests/test-compiler.rkt} to see how the output of the compiler can be fed into the simulator. The assumed machine is a stack machine with the following atomic registers: @itemlist[ @item{val: value} @item{proc: procedure} @item{argcount: number of arguments} ] and two stack registers: @itemlist[ @item{env: environment stack} @item{control: control stack} ] @subsection{js-assembler/assemble.rkt} The intent is to potentially support different back end generators for the IL. @filepath{js-assembler/assemble.rkt} provides a backend for JavaScript. The JavaScript assembler plays a few tricks to make things like tail calls work: @itemlist[ @item{Each basic block is translated to a function taking a MACHINE argument.} @item{ Every GOTO becomes a function call.} @item{ The head of each basic-blocked function checks to see if we should trampoline (@url{http://en.wikipedia.org/wiki/Trampoline_(computers)})} @item{We support a limited form of computed jump by assigning an attribute to the function corresponding to a return point. See the code related to the LinkedLabel structure for details.} ] Otherwise, the assembler is fairly straightforward. It depends on library functions defined in @filepath{runtime-src/runtime.js}. As soon as the compiler stabilizes, we will be pulling in the runtime library in Moby Scheme into this project. We are right in the middle of doing this, so expect a lot of flux here. The assembled output distinguishes between Primitives and Closures. Primitives are only allowed to return single values back, and are not allowed to do any higher-order procedure calls. Closures, on the other hand, have full access to the machine, but they are responsible for calling the continuation and popping off their arguments when they're finished. @;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; @subsection{Values} @;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; All values should support the following functions @itemlist[ @item{plt.runtime.toDomNode(x, mode): produces a dom representation. mode can be either 'write', 'display', or 'print'} @item{plt.runtime.equals(x, y): tests if two values are equal to each other} ] @subsubsection{Numbers} Numbers are represented with the @link["https://github.com/dyoo/js-numbers"]{js-numbers} JavaScript library. We re-exports it as a @tt{plt.baselib.numbers} namespace which provides the numeric tower API. Example uses of the @tt{plt.baselib.numbers} library include: @itemlist[ @item{Creating integers: @verbatim{42} @verbatim{16}} @item{Creating big integers: @verbatim{plt.baselib.numbers.makeBignum("29837419826")}} @item{Creating floats: @verbatim{plt.baselib.numbers.makeFloat(3.1415)}} @item{Predicate for numbers: @verbatim{plt.baselib.numbers.isSchemeNumber(42)}} @item{Adding two numbers together: @verbatim{plt.baselib.numbers.add(42, plt.baselib.numbers.makeFloat(3.1415))}} @item{Converting a plt.baselib.numbers number back into native JavaScript floats: @verbatim{plt.baselib.numbers.toFixnum(...)}} ] Do all arithmetic using the functions in the @tt{plt.baselib.numbers} namespace. One thing to also remember to do is apply @tt{plt.baselib.numbers.toFixnum} to any native JavaScript function that expects numbers. @subsubsection{Pairs, @tt{NULL}, and lists} Pairs can be constructed with @tt{plt.runtime.makePair(f, r)}. A pair is an object with @tt{first} and @tt{rest} attributes. They can be tested with @tt{plt.runtime.isPair()}; The empty list value, @tt{plt.runtime.NULL}, is a single, distinguished value, so compare it with @tt{===}. Lists can be constructed with @tt{plt.runtime.makeList}, which can take in multiple arguments. For example, @verbatim|{ var aList = plt.runtime.makeList(3, 4, 5); }| constructs a list of three numbers. The predicate @tt{plt.runtime.isList(x)} takes an argument x and reports if the value is chain of pairs, terminates by NULL. At the time of this writing, it does NOT check for cycles. @subsection{Vectors} Vectors can be constructed with @tt{plt.runtime.makeVector(x ...)}, which takes in any number of arguments. They can be tested with @tt{plt.runtime.isVector}, and support the following methods and attributes: @itemlist[ @item{ref(n): get the nth element} @item{set(n, v): set the nth element with value v} @item{length: the length of the vector }] @subsection{Strings} Immutable strings are represented as regular JavaScript strings. Mutable strings haven't been mapped yet. @subsection{VOID} The distinguished void value is @tt{plt.runtime.VOID}; functions implemented in JavaScript that don't have a useful return value should return @tt{plt.runtime.VOID}. @subsection{Undefined} The undefined value is JavaScript's @tt{undefined}. @subsection{EOF} The eof object is @tt{plt.runtime.EOF} @subsubsection{Boxes} Boxes can be constructed with @tt{plt.runtime.makeBox(x)}. They can be tested with @tt{plt.runtime.isBox()}, and they support two methods: @verbatim|{ box.get(): returns the value in the box box.set(v): replaces the value in the box with v }| @subsubsection{Structures} structure types can be made with plt.runtime.makeStructureType. For example, @verbatim|{ var Color = plt.runtime.makeStructureType( 'color', // name false, // parent structure type 3, // required number of arguments 0, // number of automatically-filled fields false, // OPTIONAL: the auto-v value false // OPTIONAL: a guard procedure ); }| @tt{makeStructuretype} is meant to mimic the @racket[make-struct-type] function in Racket. It produces a structure type value with the following methods: @itemlist[ @item{@tt{constructor}: create an instance of a structure type. For example, @verbatim|{ var aColor = Color.constructor(3, 4, 5); }| creates an instance of the Color structure type. } @item{@tt{predicate}: test if a value is of the given structure type. For example, @verbatim|{ Color.predicate(aColor) --> true Color.predicate("red") --> false }| } @item{@tt{accessor}: access a field of a structure. For example, @verbatim|{ var colorRed = function(x) { return Color.accessor(x, 0); }; var colorGreen = function(x) { return Color.accessor(x, 1); }; var colorBlue = function(x) { return Color.accessor(x, 2); }; }| } @item{@tt{mutator}: mutate a field of a structure. For example, @verbatim|{ var setColorRed = function(x, v) { return Color.mutator(x, 0, v); }; }| } ] In addition, it has a @tt{type} whose @tt{prototype} can be changed in order to add methods to an instance of a structure type. For example, @verbatim|{ Color.type.prototype.toString = function() { return "rgb(" + colorRed(this) + ", " + colorGreen(this) + ", " + colorBlue(this) + ")"; }; }| should add a toString method for instances of the @tt{Color} structure. @;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; @subsection{Tests} @;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; The test suite in @filepath{tests/test-all.rkt} runs the test suite. You'll need to run this on a system with a web browser, as the suite will evaluate JavaScript and make sure it is producing values. A bridge module in @filepath{tests/browser-evaluate.rkt} brings up a temporary web server that allows us to pass values between Racket and the JavaScript evaluator on the browser for testing output. @;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; @subsection{What's in @tt{js-vm} that's missing from Whalesong?} @;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (This section should describe what needs to get done next.) The only types that are mapped so far are @itemlist[ @item{immutable strings} @item{numbers} @item{pairs} @item{null} @item{void} @item{vectors} ] We need to bring around the following types previously defined in @tt{js-vm}: (This list will shrink as I get to the work!) @itemlist[ @item{immutable vectors} @item{regexp} @item{byteRegexp} @item{character} @item{placeholder} @item{path} @item{bytes} @item{immutable bytes} @item{keywords} @item{hash} @item{hasheq} @item{struct types} @item{exceptions} @item{thread cells} @item{big bang info} @item{worldConfig} @item{effectType} @item{renderEffectType} @item{readerGraph} ] @(define missing-primitives (let ([in-whalesong-ht (make-hash)]) (for ([name whalesong-primitive-names]) (hash-set! in-whalesong-ht name #t)) (filter (lambda (name) (not (hash-has-key? in-whalesong-ht name))) js-vm-primitive-names)))) What are the list of primitives in @filepath{js-vm-primitives.js} that we haven't yet exposed in whalesong? We're missing @(number->string (length missing-primitives)): @(apply itemlist (map (lambda (name) (item (symbol->string name))) missing-primitives)) (I should catalog the bug list in GitHub, as well as the feature list, so I have a better idea of what's needed to complete the project.) (We also need a list of the primitives missing that prevent us from running @racketmodname[racket/base]; it's actually a short list that I'll be attacking once things stabilize.) @section{The Whalesong language} @defmodule/this-package[lang/base] This needs to at least show all the bindings available from the base language. @defthing[true boolean]{The boolean value @racket[#t].} @defthing[false boolean]{The boolean value @racket[#f].} @defthing[pi number]{The math constant @racket[pi].} @defthing[e number]{The math constant @racket[pi].} @defthing[null null]{The empty list value @racket[null].} @defproc[(boolean? [v any/c]) boolean?]{Returns true if v is @racket[#t] or @racket[#f]} @defform[(let/cc id body ...)]{} @defform[(null? ...)]{} @defform[(not ...)]{} @defform[(eq? ...)]{} @defform[(equal? ...)]{} @defform[(void ...)]{} @defform[(quote ...)]{} @defform[(quasiquote ...)]{} @subsection{IO} @defform[(current-output-port ...)]{} @defform[(current-print ...)]{} @defform[(write ...)]{} @defform[(write-byte ...)]{} @defform[(display ...)]{} @defform[(newline ...)]{} @defform[(format ...)]{} @defform[(printf ...)]{} @defform[(fprintf ...)]{} @defform[(displayln ...)]{} @subsection{Numeric operations} @defform[(number? ...)]{} @defform[(+ ...)]{} @defform[(- ...)]{} @defform[(* ...)]{} @defform[(/ ...)]{} @defform[(= ...)]{} @defform[(add1 ...)]{} @defform[(sub1 ...)]{} @defform[(< ...)]{} @defform[(<= ...)]{} @defform[(> ...)]{} @defform[(>= ...)]{} @defform[(abs ...)]{} @defform[(quotient ...)]{} @defform[(remainder ...)]{} @defform[(modulo ...)]{} @defform[(gcd ...)]{} @defform[(lcm ...)]{} @defform[(floor ...)]{} @defform[(ceiling ...)]{} @defform[(round ...)]{} @defform[(truncate ...)]{} @defform[(numerator ...)]{} @defform[(denominator ...)]{} @defform[(expt ...)]{} @defform[(exp ...)]{} @defform[(log ...)]{} @defform[(sin ...)]{} @defform[(sinh ...)]{} @defform[(cos ...)]{} @defform[(cosh ...)]{} @defform[(tan ...)]{} @defform[(asin ...)]{} @defform[(acos ...)]{} @defform[(atan ...)]{} @defform[(sqr ...)]{} @defform[(sqrt ...)]{} @defform[(integer-sqrt ...)]{} @defform[(sgn ...)]{} @defform[(make-rectangular ...)]{} @defform[(make-polar ...)]{} @defform[(real-part ...)]{} @defform[(imag-part ...)]{} @defform[(angle ...)]{} @defform[(magnitude ...)]{} @defform[(conjugate ...)]{} @defform[(string->number ...)]{} @defform[(number->string ...)]{} @defform[(random ...)]{} @defform[(exact? ...)]{} @defform[(integer? ...)]{} @defform[(zero? ...)]{} @subsection{String operations} @defform[(string? s)]{} @defform[(string ...)]{} @defform[(string=? ...)]{} @defform[(string->symbol ...)]{} @defform[(string-length ...)] {} @defform[(string-ref ...)] {} @defform[(string-append ...)] {} @defform[(string->list ...)] {} @defform[(list->string ...)] {} @subsection{Character operations} @defform[(char? ch)]{} @defform[(char=? ...)]{} @subsection{Symbol operations} @defform[(symbol? ...)]{} @defform[(symbol->string? ...)]{} @subsection{List operations} @defform[(pair? ...)]{} @defform[(cons ...)]{} @defform[(car ...)]{} @defform[(cdr ...)]{} @defform[(list ...)]{} @defform[(length ...)]{} @defform[(append ...)]{} @defform[(reverse ...)]{} @defform[(map ...)]{} @defform[(for-each ...)]{} @defform[(member ...)]{} @defform[(list-ref ...)]{} @defform[(memq ...)]{} @defform[(assq ...)]{} @subsection{Vector operations} @defform[(vector? ...)]{} @defform[(make-vector ...)]{} @defform[(vector ...)]{} @defform[(vector-length ...)]{} @defform[(vector-ref ...)]{} @defform[(vector-set! ...)]{} @defform[(vector->list ...)]{} @defform[(list->vector ...)]{}