whalesong/js-assembler/runtime-src/js-numbers.js

4122 lines
105 KiB
JavaScript

// Scheme numbers.
var __PLTNUMBERS_TOP__;
if (typeof(exports) !== 'undefined') {
__PLTNUMBERS_TOP__ = exports;
} else {
if (! this['jsnums']) {
this['jsnums'] = {};
}
__PLTNUMBERS_TOP__ = this['jsnums'];
}
//var jsnums = {};
// The numeric tower has the following levels:
// integers
// rationals
// floats
// complex numbers
//
// with the representations:
// integers: fixnum or BigInteger [level=0]
// rationals: Rational [level=1]
// floats: FloatPoint [level=2]
// complex numbers: Complex [level=3]
// We try to stick with the unboxed fixnum representation for
// integers, since that's what scheme programs commonly deal with, and
// we want that common type to be lightweight.
// A boxed-scheme-number is either BigInteger, Rational, FloatPoint, or Complex.
// An integer-scheme-number is either fixnum or BigInteger.
(function() {
// Abbreviation
var Numbers = __PLTNUMBERS_TOP__;
//var Numbers = jsnums;
// makeNumericBinop: (fixnum fixnum -> any) (scheme-number scheme-number -> any) -> (scheme-number scheme-number) X
// Creates a binary function that works either on fixnums or boxnums.
// Applies the appropriate binary function, ensuring that both scheme numbers are
// lifted to the same level.
var makeNumericBinop = function(onFixnums, onBoxednums, options) {
options = options || {};
return function(x, y) {
if (options.isXSpecialCase && options.isXSpecialCase(x))
return options.onXSpecialCase(x, y);
if (options.isYSpecialCase && options.isYSpecialCase(y))
return options.onYSpecialCase(x, y);
if (typeof(x) === 'number' &&
typeof(y) === 'number') {
return onFixnums(x, y);
}
if (typeof(x) === 'number') {
x = liftFixnumInteger(x, y);
}
if (typeof(y) === 'number') {
y = liftFixnumInteger(y, x);
}
if (x.level < y.level) x = x.liftTo(y);
if (y.level < x.level) y = y.liftTo(x);
return onBoxednums(x, y);
};
}
// fromFixnum: fixnum -> scheme-number
var fromFixnum = function(x) {
if (isNaN(x) || (! isFinite(x))) {
return FloatPoint.makeInstance(x);
}
var nf = Math.floor(x);
if (nf === x) {
if (isOverflow(nf)) {
return makeBignum(expandExponent(x+''));
} else {
return nf;
}
} else {
return FloatPoint.makeInstance(x);
}
};
var expandExponent = function(s) {
var match = s.match(scientificPattern), mantissaChunks, exponent;
if (match) {
mantissaChunks = match[1].match(/^([^.]*)(.*)$/);
exponent = Number(match[2]);
if (mantissaChunks[2].length === 0) {
return mantissaChunks[1] + zfill(exponent);
}
if (exponent >= mantissaChunks[2].length - 1) {
return (mantissaChunks[1] +
mantissaChunks[2].substring(1) +
zfill(exponent - (mantissaChunks[2].length - 1)));
} else {
return (mantissaChunks[1] +
mantissaChunks[2].substring(1, 1+exponent));
}
} else {
return s;
}
};
// zfill: integer -> string
// builds a string of "0"'s of length n.
var zfill = function(n) {
var buffer = [];
buffer.length = n;
for (var i = 0; i < n; i++) {
buffer[i] = '0';
}
return buffer.join('');
};
// liftFixnumInteger: fixnum-integer boxed-scheme-number -> boxed-scheme-number
// Lifts up fixnum integers to a boxed type.
var liftFixnumInteger = function(x, other) {
switch(other.level) {
case 0: // BigInteger
return makeBignum(x);
case 1: // Rational
return new Rational(x, 1);
case 2: // FloatPoint
return new FloatPoint(x);
case 3: // Complex
return new Complex(x, 0);
default:
throwRuntimeError("IMPOSSIBLE: cannot lift fixnum integer to " + other.toString(), x, other);
}
};
// throwRuntimeError: string (scheme-number | undefined) (scheme-number | undefined) -> void
// Throws a runtime error with the given message string.
var throwRuntimeError = function(msg, x, y) {
Numbers['onThrowRuntimeError'](msg, x, y);
};
// onThrowRuntimeError: string (scheme-number | undefined) (scheme-number | undefined) -> void
// By default, will throw a new Error with the given message.
// Override Numbers['onThrowRuntimeError'] if you need to do something special.
var onThrowRuntimeError = function(msg, x, y) {
throw new Error(msg);
};
// isSchemeNumber: any -> boolean
// Returns true if the thing is a scheme number.
var isSchemeNumber = function(thing) {
return (typeof(thing) === 'number'
|| (thing instanceof Rational ||
thing instanceof FloatPoint ||
thing instanceof Complex ||
thing instanceof BigInteger));
};
// isRational: scheme-number -> boolean
var isRational = function(n) {
return (typeof(n) === 'number' ||
(isSchemeNumber(n) && n.isRational()));
};
// isReal: scheme-number -> boolean
var isReal = function(n) {
return (typeof(n) === 'number' ||
(isSchemeNumber(n) && n.isReal()));
};
// isExact: scheme-number -> boolean
var isExact = function(n) {
return (typeof(n) === 'number' ||
(isSchemeNumber(n) && n.isExact()));
};
// isExact: scheme-number -> boolean
var isInexact = function(n) {
if (typeof(n) === 'number') {
return false;
} else {
return (isSchemeNumber(n) && n.isInexact());
}
};
// isInteger: scheme-number -> boolean
var isInteger = function(n) {
return (typeof(n) === 'number' ||
(isSchemeNumber(n) && n.isInteger()));
};
// isExactInteger: scheme-number -> boolean
var isExactInteger = function(n) {
return (typeof(n) === 'number' ||
(isSchemeNumber(n) &&
n.isInteger() &&
n.isExact()));
}
// toFixnum: scheme-number -> javascript-number
var toFixnum = function(n) {
if (typeof(n) === 'number')
return n;
return n.toFixnum();
};
// toExact: scheme-number -> scheme-number
var toExact = function(n) {
if (typeof(n) === 'number')
return n;
return n.toExact();
};
// toExact: scheme-number -> scheme-number
var toInexact = function(n) {
if (typeof(n) === 'number')
return FloatPoint.makeInstance(n);
return n.toInexact();
};
//////////////////////////////////////////////////////////////////////
// add: scheme-number scheme-number -> scheme-number
var add = function(x, y) {
var sum;
if (typeof(x) === 'number' && typeof(y) === 'number') {
sum = x + y;
if (isOverflow(sum)) {
return (makeBignum(x)).add(makeBignum(y));
}
}
if (x instanceof FloatPoint && y instanceof FloatPoint) {
return x.add(y);
}
return addSlow(x, y);
};
var addSlow = makeNumericBinop(
function(x, y) {
var sum = x + y;
if (isOverflow(sum)) {
return (makeBignum(x)).add(makeBignum(y));
} else {
return sum;
}
},
function(x, y) {
return x.add(y);
},
{isXSpecialCase: function(x) {
return isExactInteger(x) && _integerIsZero(x) },
onXSpecialCase: function(x, y) { return y; },
isYSpecialCase: function(y) {
return isExactInteger(y) && _integerIsZero(y) },
onYSpecialCase: function(x, y) { return x; }
});
// subtract: scheme-number scheme-number -> scheme-number
var subtract = makeNumericBinop(
function(x, y) {
var diff = x - y;
if (isOverflow(diff)) {
return (makeBignum(x)).subtract(makeBignum(y));
} else {
return diff;
}
},
function(x, y) {
return x.subtract(y);
},
{isXSpecialCase: function(x) {
return isExactInteger(x) && _integerIsZero(x) },
onXSpecialCase: function(x, y) { return negate(y); },
isYSpecialCase: function(y) {
return isExactInteger(y) && _integerIsZero(y) },
onYSpecialCase: function(x, y) { return x; }
});
// mulitply: scheme-number scheme-number -> scheme-number
var multiply = function(x, y) {
var prod;
if (typeof(x) === 'number' && typeof(y) === 'number') {
prod = x * y;
if (isOverflow(prod)) {
return (makeBignum(x)).multiply(makeBignum(y));
} else {
return prod;
}
}
if (x instanceof FloatPoint && y instanceof FloatPoint) {
return x.multiply(y);
}
return multiplySlow(x, y);
};
var multiplySlow = makeNumericBinop(
function(x, y) {
var prod = x * y;
if (isOverflow(prod)) {
return (makeBignum(x)).multiply(makeBignum(y));
} else {
return prod;
}
},
function(x, y) {
return x.multiply(y);
},
{isXSpecialCase: function(x) {
return (isExactInteger(x) &&
(_integerIsZero(x) || _integerIsOne(x) || _integerIsNegativeOne(x))) },
onXSpecialCase: function(x, y) {
if (_integerIsZero(x))
return 0;
if (_integerIsOne(x))
return y;
if (_integerIsNegativeOne(x))
return negate(y);
},
isYSpecialCase: function(y) {
return (isExactInteger(y) &&
(_integerIsZero(y) || _integerIsOne(y) || _integerIsNegativeOne(y)))},
onYSpecialCase: function(x, y) {
if (_integerIsZero(y))
return 0;
if (_integerIsOne(y))
return x;
if (_integerIsNegativeOne(y))
return negate(x);
}
});
// divide: scheme-number scheme-number -> scheme-number
var divide = makeNumericBinop(
function(x, y) {
if (_integerIsZero(y))
throwRuntimeError("/: division by zero", x, y);
var div = x / y;
if (isOverflow(div)) {
return (makeBignum(x)).divide(makeBignum(y));
} else if (Math.floor(div) !== div) {
return Rational.makeInstance(x, y);
} else {
return div;
}
},
function(x, y) {
return x.divide(y);
},
{ isXSpecialCase: function(x) {
return (eqv(x, 0));
},
onXSpecialCase: function(x, y) {
if (eqv(y, 0)) {
throwRuntimeError("/: division by zero", x, y);
}
return 0;
},
isYSpecialCase: function(y) {
return (eqv(y, 0)); },
onYSpecialCase: function(x, y) {
throwRuntimeError("/: division by zero", x, y);
}
});
// equals: scheme-number scheme-number -> boolean
var equals = makeNumericBinop(
function(x, y) {
return x === y;
},
function(x, y) {
return x.equals(y);
});
// eqv: scheme-number scheme-number -> boolean
var eqv = function(x, y) {
if (x === y)
return true;
if (typeof(x) === 'number' && typeof(y) === 'number')
return x === y;
if (x === NEGATIVE_ZERO || y === NEGATIVE_ZERO)
return x === y;
if (x instanceof Complex || y instanceof Complex) {
return (eqv(realPart(x), realPart(y)) &&
eqv(imaginaryPart(x), imaginaryPart(y)));
}
var ex = isExact(x), ey = isExact(y);
return (((ex && ey) || (!ex && !ey)) && equals(x, y));
};
// approxEqual: scheme-number scheme-number scheme-number -> boolean
var approxEquals = function(x, y, delta) {
return lessThan(abs(subtract(x, y)),
delta);
};
// greaterThanOrEqual: scheme-number scheme-number -> boolean
var greaterThanOrEqual = makeNumericBinop(
function(x, y) {
return x >= y;
},
function(x, y) {
if (!(isReal(x) && isReal(y)))
throwRuntimeError(
">=: couldn't be applied to complex number", x, y);
return x.greaterThanOrEqual(y);
});
// lessThanOrEqual: scheme-number scheme-number -> boolean
var lessThanOrEqual = makeNumericBinop(
function(x, y){
return x <= y;
},
function(x, y) {
if (!(isReal(x) && isReal(y)))
throwRuntimeError("<=: couldn't be applied to complex number", x, y);
return x.lessThanOrEqual(y);
});
// greaterThan: scheme-number scheme-number -> boolean
var greaterThan = makeNumericBinop(
function(x, y){
return x > y;
},
function(x, y) {
if (!(isReal(x) && isReal(y)))
throwRuntimeError(">: couldn't be applied to complex number", x, y);
return x.greaterThan(y);
});
// lessThan: scheme-number scheme-number -> boolean
var lessThan = makeNumericBinop(
function(x, y){
return x < y;
},
function(x, y) {
if (!(isReal(x) && isReal(y)))
throwRuntimeError("<: couldn't be applied to complex number", x, y);
return x.lessThan(y);
});
// expt: scheme-number scheme-number -> scheme-number
var expt = (function() {
var _expt = makeNumericBinop(
function(x, y){
var pow = Math.pow(x, y);
if (isOverflow(pow)) {
return (makeBignum(x)).expt(makeBignum(y));
} else {
return pow;
}
},
function(x, y) {
if (equals(y, 0)) {
return add(y, 1);
} else {
return x.expt(y);
}
});
return function(x, y) {
if (equals(y, 0))
return add(y, 1);
if (isReal(y) && lessThan(y, 0)) {
return _expt(divide(1, x), negate(y));
}
return _expt(x, y);
};
})();
// exp: scheme-number -> scheme-number
var exp = function(n) {
if ( eqv(n, 0) ) {
return 1;
}
if (typeof(n) === 'number') {
return FloatPoint.makeInstance(Math.exp(n));
}
return n.exp();
};
// modulo: scheme-number scheme-number -> scheme-number
var modulo = function(m, n) {
if (! isInteger(m)) {
throwRuntimeError('modulo: the first argument '
+ m + " is not an integer.", m, n);
}
if (! isInteger(n)) {
throwRuntimeError('modulo: the second argument '
+ n + " is not an integer.", m, n);
}
var result;
if (typeof(m) === 'number') {
result = m % n;
if (n < 0) {
if (result <= 0)
return result;
else
return result + n;
} else {
if (result < 0)
return result + n;
else
return result;
}
}
result = _integerModulo(floor(m), floor(n));
// The sign of the result should match the sign of n.
if (lessThan(n, 0)) {
if (lessThanOrEqual(result, 0)) {
return result;
}
return add(result, n);
} else {
if (lessThan(result, 0)) {
return add(result, n);
}
return result;
}
};
// numerator: scheme-number -> scheme-number
var numerator = function(n) {
if (typeof(n) === 'number')
return n;
return n.numerator();
};
// denominator: scheme-number -> scheme-number
var denominator = function(n) {
if (typeof(n) === 'number')
return 1;
return n.denominator();
};
// sqrt: scheme-number -> scheme-number
var sqrt = function(n) {
if (typeof(n) === 'number') {
if (n >= 0) {
var result = Math.sqrt(n);
if (Math.floor(result) === result) {
return result;
} else {
return FloatPoint.makeInstance(result);
}
} else {
return (Complex.makeInstance(0, sqrt(-n)));
}
}
return n.sqrt();
};
// abs: scheme-number -> scheme-number
var abs = function(n) {
if (typeof(n) === 'number') {
return Math.abs(n);
}
return n.abs();
};
// floor: scheme-number -> scheme-number
var floor = function(n) {
if (typeof(n) === 'number')
return n;
return n.floor();
};
// ceiling: scheme-number -> scheme-number
var ceiling = function(n) {
if (typeof(n) === 'number')
return n;
return n.ceiling();
};
// conjugate: scheme-number -> scheme-number
var conjugate = function(n) {
if (typeof(n) === 'number')
return n;
return n.conjugate();
};
// magnitude: scheme-number -> scheme-number
var magnitude = function(n) {
if (typeof(n) === 'number')
return Math.abs(n);
return n.magnitude();
};
// log: scheme-number -> scheme-number
var log = function(n) {
if ( eqv(n, 1) ) {
return 0;
}
if (typeof(n) === 'number') {
return FloatPoint.makeInstance(Math.log(n));
}
return n.log();
};
// angle: scheme-number -> scheme-number
var angle = function(n) {
if (typeof(n) === 'number') {
if (n > 0)
return 0;
else
return FloatPoint.pi;
}
return n.angle();
};
// tan: scheme-number -> scheme-number
var tan = function(n) {
if (eqv(n, 0)) { return 0; }
if (typeof(n) === 'number') {
return FloatPoint.makeInstance(Math.tan(n));
}
return n.tan();
};
// atan: scheme-number -> scheme-number
var atan = function(n) {
if (eqv(n, 0)) { return 0; }
if (typeof(n) === 'number') {
return FloatPoint.makeInstance(Math.atan(n));
}
return n.atan();
};
// cos: scheme-number -> scheme-number
var cos = function(n) {
if (eqv(n, 0)) { return 1; }
if (typeof(n) === 'number') {
return FloatPoint.makeInstance(Math.cos(n));
}
return n.cos();
};
// sin: scheme-number -> scheme-number
var sin = function(n) {
if (eqv(n, 0)) { return 0; }
if (typeof(n) === 'number') {
return FloatPoint.makeInstance(Math.sin(n));
}
return n.sin();
};
// acos: scheme-number -> scheme-number
var acos = function(n) {
if (eqv(n, 1)) { return 0; }
if (typeof(n) === 'number') {
return FloatPoint.makeInstance(Math.acos(n));
}
return n.acos();
};
// asin: scheme-number -> scheme-number
var asin = function(n) {
if (eqv(n, 0)) { return 0; }
if (typeof(n) === 'number') {
return FloatPoint.makeInstance(Math.asin(n));
}
return n.asin();
};
// imaginaryPart: scheme-number -> scheme-number
var imaginaryPart = function(n) {
if (typeof(n) === 'number') {
return 0;
}
return n.imaginaryPart();
};
// realPart: scheme-number -> scheme-number
var realPart = function(n) {
if (typeof(n) === 'number') {
return n;
}
return n.realPart();
};
// round: scheme-number -> scheme-number
var round = function(n) {
if (typeof(n) === 'number') {
return n;
}
return n.round();
};
// sqr: scheme-number -> scheme-number
var sqr = function(x) {
return multiply(x, x);
};
// integerSqrt: scheme-number -> scheme-number
var integerSqrt = function(x) {
if (! isInteger(x)) {
throwRuntimeError('integer-sqrt: the argument ' + x.toString() +
" is not an integer.", x);
}
if (typeof (x) === 'number') {
if(x < 0) {
return Complex.makeInstance(0,
Math.floor(Math.sqrt(-x)))
} else {
return Math.floor(Math.sqrt(x));
}
}
return x.integerSqrt();
};
// gcd: scheme-number [scheme-number ...] -> scheme-number
var gcd = function(first, rest) {
if (! isInteger(first)) {
throwRuntimeError('gcd: the argument ' + first.toString() +
" is not an integer.", first);
}
var a = abs(first), t, b;
for(var i = 0; i < rest.length; i++) {
b = abs(rest[i]);
if (! isInteger(b)) {
throwRuntimeError('gcd: the argument ' + b.toString() +
" is not an integer.", b);
}
while (! _integerIsZero(b)) {
t = a;
a = b;
b = _integerModulo(t, b);
}
}
return a;
};
// lcm: scheme-number [scheme-number ...] -> scheme-number
var lcm = function(first, rest) {
if (! isInteger(first)) {
throwRuntimeError('lcm: the argument ' + first.toString() +
" is not an integer.", first);
}
var result = abs(first);
if (_integerIsZero(result)) { return 0; }
for (var i = 0; i < rest.length; i++) {
if (! isInteger(rest[i])) {
throwRuntimeError('lcm: the argument ' + rest[i].toString() +
" is not an integer.", rest[i]);
}
var divisor = _integerGcd(result, rest[i]);
if (_integerIsZero(divisor)) {
return 0;
}
result = divide(multiply(result, rest[i]), divisor);
}
return result;
};
var quotient = function(x, y) {
if (! isInteger(x)) {
throwRuntimeError('quotient: the first argument ' + x.toString() +
" is not an integer.", x);
}
if (! isInteger(y)) {
throwRuntimeError('quotient: the second argument ' + y.toString() +
" is not an integer.", y);
}
return _integerQuotient(x, y);
};
var remainder = function(x, y) {
if (! isInteger(x)) {
throwRuntimeError('remainder: the first argument ' + x.toString() +
" is not an integer.", x);
}
if (! isInteger(y)) {
throwRuntimeError('remainder: the second argument ' + y.toString() +
" is not an integer.", y);
}
return _integerRemainder(x, y);
};
// Implementation of the hyperbolic functions
// http://en.wikipedia.org/wiki/Hyperbolic_cosine
var cosh = function(x) {
if (eqv(x, 0)) {
return FloatPoint.makeInstance(1.0);
}
return divide(add(exp(x), exp(negate(x))),
2);
};
var sinh = function(x) {
return divide(subtract(exp(x), exp(negate(x))),
2);
};
var makeComplexPolar = function(r, theta) {
// special case: if theta is zero, just return
// the scalar.
if (eqv(theta, 0)) {
return r;
}
return Complex.makeInstance(multiply(r, cos(theta)),
multiply(r, sin(theta)));
};
//////////////////////////////////////////////////////////////////////
// Helpers
// IsFinite: scheme-number -> boolean
// Returns true if the scheme number is finite or not.
var isSchemeNumberFinite = function(n) {
if (typeof(n) === 'number') {
return isFinite(n);
} else {
return n.isFinite();
}
};
// isOverflow: javascript-number -> boolean
// Returns true if we consider the number an overflow.
var MIN_FIXNUM = -(9e15);
var MAX_FIXNUM = (9e15);
var isOverflow = function(n) {
return (n < MIN_FIXNUM || MAX_FIXNUM < n);
};
// negate: scheme-number -> scheme-number
// multiplies a number times -1.
var negate = function(n) {
if (typeof(n) === 'number') {
return -n;
}
return n.negate();
};
// halve: scheme-number -> scheme-number
// Divide a number by 2.
var halve = function(n) {
return divide(n, 2);
};
// timesI: scheme-number scheme-number
// multiplies a number times i.
var timesI = function(x) {
return multiply(x, plusI);
};
// fastExpt: computes n^k by squaring.
// n^k = (n^2)^(k/2)
// Assumes k is non-negative integer.
var fastExpt = function(n, k) {
var acc = 1;
while (true) {
if (_integerIsZero(k)) {
return acc;
}
if (equals(modulo(k, 2), 0)) {
n = multiply(n, n);
k = divide(k, 2);
} else {
acc = multiply(acc, n);
k = subtract(k, 1);
}
}
};
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
// Integer operations
// Integers are either represented as fixnums or as BigIntegers.
// makeIntegerBinop: (fixnum fixnum -> X) (BigInteger BigInteger -> X) -> X
// Helper to collect the common logic for coersing integer fixnums or bignums to a
// common type before doing an operation.
var makeIntegerBinop = function(onFixnums, onBignums, options) {
options = options || {};
return (function(m, n) {
if (m instanceof Rational) {
m = numerator(m);
} else if (m instanceof Complex) {
m = realPart(m);
}
if (n instanceof Rational) {
n = numerator(n);
}else if (n instanceof Complex) {
n = realPart(n);
}
if (typeof(m) === 'number' && typeof(n) === 'number') {
var result = onFixnums(m, n);
if (! isOverflow(result) ||
(options.ignoreOverflow)) {
return result;
}
}
if (m instanceof FloatPoint || n instanceof FloatPoint) {
if (options.doNotCoerseToFloating) {
return onFixnums(toFixnum(m), toFixnum(n));
}
else {
return FloatPoint.makeInstance(
onFixnums(toFixnum(m), toFixnum(n)));
}
}
if (typeof(m) === 'number') {
m = makeBignum(m);
}
if (typeof(n) === 'number') {
n = makeBignum(n);
}
return onBignums(m, n);
});
};
var makeIntegerUnOp = function(onFixnums, onBignums, options) {
options = options || {};
return (function(m) {
if (m instanceof Rational) {
m = numerator(m);
} else if (m instanceof Complex) {
m = realPart(m);
}
if (typeof(m) === 'number') {
var result = onFixnums(m);
if (! isOverflow(result) ||
(options.ignoreOverflow)) {
return result;
}
}
if (m instanceof FloatPoint) {
return onFixnums(toFixnum(m));
}
if (typeof(m) === 'number') {
m = makeBignum(m);
}
return onBignums(m);
});
};
// _integerModulo: integer-scheme-number integer-scheme-number -> integer-scheme-number
var _integerModulo = makeIntegerBinop(
function(m, n) {
return m % n;
},
function(m, n) {
return bnMod.call(m, n);
});
// _integerGcd: integer-scheme-number integer-scheme-number -> integer-scheme-number
var _integerGcd = makeIntegerBinop(
function(a, b) {
var t;
while (b !== 0) {
t = a;
a = b;
b = t % b;
}
return a;
},
function(m, n) {
return bnGCD.call(m, n);
});
// _integerIsZero: integer-scheme-number -> boolean
// Returns true if the number is zero.
var _integerIsZero = makeIntegerUnOp(
function(n){
return n === 0;
},
function(n) {
return bnEquals.call(n, BigInteger.ZERO);
}
);
// _integerIsOne: integer-scheme-number -> boolean
var _integerIsOne = makeIntegerUnOp(
function(n) {
return n === 1;
},
function(n) {
return bnEquals.call(n, BigInteger.ONE);
});
// _integerIsNegativeOne: integer-scheme-number -> boolean
var _integerIsNegativeOne = makeIntegerUnOp(
function(n) {
return n === -1;
},
function(n) {
return bnEquals.call(n, BigInteger.NEGATIVE_ONE);
});
// _integerAdd: integer-scheme-number integer-scheme-number -> integer-scheme-number
var _integerAdd = makeIntegerBinop(
function(m, n) {
return m + n;
},
function(m, n) {
return bnAdd.call(m, n);
});
// _integerSubtract: integer-scheme-number integer-scheme-number -> integer-scheme-number
var _integerSubtract = makeIntegerBinop(
function(m, n) {
return m - n;
},
function(m, n) {
return bnSubtract.call(m, n);
});
// _integerMultiply: integer-scheme-number integer-scheme-number -> integer-scheme-number
var _integerMultiply = makeIntegerBinop(
function(m, n) {
return m * n;
},
function(m, n) {
return bnMultiply.call(m, n);
});
//_integerQuotient: integer-scheme-number integer-scheme-number -> integer-scheme-number
var _integerQuotient = makeIntegerBinop(
function(m, n) {
return ((m - (m % n))/ n);
},
function(m, n) {
return bnDivide.call(m, n);
});
var _integerRemainder = makeIntegerBinop(
function(m, n) {
return m % n;
},
function(m, n) {
return bnRemainder.call(m, n);
});
// _integerDivideToFixnum: integer-scheme-number integer-scheme-number -> fixnum
var _integerDivideToFixnum = makeIntegerBinop(
function(m, n) {
return m / n;
},
function(m, n) {
return toFixnum(m) / toFixnum(n);
},
{ignoreOverflow: true,
doNotCoerseToFloating: true});
// _integerEquals: integer-scheme-number integer-scheme-number -> boolean
var _integerEquals = makeIntegerBinop(
function(m, n) {
return m === n;
},
function(m, n) {
return bnEquals.call(m, n);
},
{doNotCoerseToFloating: true});
// _integerGreaterThan: integer-scheme-number integer-scheme-number -> boolean
var _integerGreaterThan = makeIntegerBinop(
function(m, n) {
return m > n;
},
function(m, n) {
return bnCompareTo.call(m, n) > 0;
},
{doNotCoerseToFloating: true});
// _integerLessThan: integer-scheme-number integer-scheme-number -> boolean
var _integerLessThan = makeIntegerBinop(
function(m, n) {
return m < n;
},
function(m, n) {
return bnCompareTo.call(m, n) < 0;
},
{doNotCoerseToFloating: true});
// _integerGreaterThanOrEqual: integer-scheme-number integer-scheme-number -> boolean
var _integerGreaterThanOrEqual = makeIntegerBinop(
function(m, n) {
return m >= n;
},
function(m, n) {
return bnCompareTo.call(m, n) >= 0;
},
{doNotCoerseToFloating: true});
// _integerLessThanOrEqual: integer-scheme-number integer-scheme-number -> boolean
var _integerLessThanOrEqual = makeIntegerBinop(
function(m, n) {
return m <= n;
},
function(m, n) {
return bnCompareTo.call(m, n) <= 0;
},
{doNotCoerseToFloating: true});
//////////////////////////////////////////////////////////////////////
// The boxed number types are expected to implement the following
// interface.
//
// toString: -> string
// level: number
// liftTo: scheme-number -> scheme-number
// isFinite: -> boolean
// isInteger: -> boolean
// Produce true if this number can be coersed into an integer.
// isRational: -> boolean
// Produce true if the number is rational.
// isReal: -> boolean
// Produce true if the number is real.
// isExact: -> boolean
// Produce true if the number is exact
// toExact: -> scheme-number
// Produce an exact number.
// toFixnum: -> javascript-number
// Produce a javascript number.
// greaterThan: scheme-number -> boolean
// Compare against instance of the same type.
// greaterThanOrEqual: scheme-number -> boolean
// Compare against instance of the same type.
// lessThan: scheme-number -> boolean
// Compare against instance of the same type.
// lessThanOrEqual: scheme-number -> boolean
// Compare against instance of the same type.
// add: scheme-number -> scheme-number
// Add with an instance of the same type.
// subtract: scheme-number -> scheme-number
// Subtract with an instance of the same type.
// multiply: scheme-number -> scheme-number
// Multiply with an instance of the same type.
// divide: scheme-number -> scheme-number
// Divide with an instance of the same type.
// numerator: -> scheme-number
// Return the numerator.
// denominator: -> scheme-number
// Return the denominator.
// integerSqrt: -> scheme-number
// Produce the integer square root.
// sqrt: -> scheme-number
// Produce the square root.
// abs: -> scheme-number
// Produce the absolute value.
// floor: -> scheme-number
// Produce the floor.
// ceiling: -> scheme-number
// Produce the ceiling.
// conjugate: -> scheme-number
// Produce the conjugate.
// magnitude: -> scheme-number
// Produce the magnitude.
// log: -> scheme-number
// Produce the log.
// angle: -> scheme-number
// Produce the angle.
// atan: -> scheme-number
// Produce the arc tangent.
// cos: -> scheme-number
// Produce the cosine.
// sin: -> scheme-number
// Produce the sine.
// expt: scheme-number -> scheme-number
// Produce the power to the input.
// exp: -> scheme-number
// Produce e raised to the given power.
// acos: -> scheme-number
// Produce the arc cosine.
// asin: -> scheme-number
// Produce the arc sine.
// imaginaryPart: -> scheme-number
// Produce the imaginary part
// realPart: -> scheme-number
// Produce the real part.
// round: -> scheme-number
// Round to the nearest integer.
// equals: scheme-number -> boolean
// Produce true if the given number of the same type is equal.
//////////////////////////////////////////////////////////////////////
// Rationals
var Rational = function(n, d) {
this.n = n;
this.d = d;
};
Rational.prototype.toString = function() {
if (_integerIsOne(this.d)) {
return this.n.toString() + "";
} else {
return this.n.toString() + "/" + this.d.toString();
}
};
Rational.prototype.level = 1;
Rational.prototype.liftTo = function(target) {
if (target.level === 2)
return new FloatPoint(
_integerDivideToFixnum(this.n, this.d));
if (target.level === 3)
return new Complex(this, 0);
return throwRuntimeError("invalid level of Number", this, target);
};
Rational.prototype.isFinite = function() {
return true;
};
Rational.prototype.equals = function(other) {
return (other instanceof Rational &&
_integerEquals(this.n, other.n) &&
_integerEquals(this.d, other.d));
};
Rational.prototype.isInteger = function() {
return _integerIsOne(this.d);
};
Rational.prototype.isRational = function() {
return true;
};
Rational.prototype.isReal = function() {
return true;
};
Rational.prototype.add = function(other) {
return Rational.makeInstance(_integerAdd(_integerMultiply(this.n, other.d),
_integerMultiply(this.d, other.n)),
_integerMultiply(this.d, other.d));
};
Rational.prototype.subtract = function(other) {
return Rational.makeInstance(_integerSubtract(_integerMultiply(this.n, other.d),
_integerMultiply(this.d, other.n)),
_integerMultiply(this.d, other.d));
};
Rational.prototype.negate = function() {
return Rational.makeInstance(-this.n, this.d)
};
Rational.prototype.multiply = function(other) {
return Rational.makeInstance(_integerMultiply(this.n, other.n),
_integerMultiply(this.d, other.d));
};
Rational.prototype.divide = function(other) {
if (_integerIsZero(this.d) || _integerIsZero(other.n)) {
throwRuntimeError("/: division by zero", this, other);
}
return Rational.makeInstance(_integerMultiply(this.n, other.d),
_integerMultiply(this.d, other.n));
};
Rational.prototype.toExact = function() {
return this;
};
Rational.prototype.toInexact = function() {
return FloatPoint.makeInstance(this.toFixnum());
};
Rational.prototype.isExact = function() {
return true;
};
Rational.prototype.isInexact = function() {
return false;
};
Rational.prototype.toFixnum = function() {
return _integerDivideToFixnum(this.n, this.d);
};
Rational.prototype.numerator = function() {
return this.n;
};
Rational.prototype.denominator = function() {
return this.d;
};
Rational.prototype.greaterThan = function(other) {
return _integerGreaterThan(_integerMultiply(this.n, other.d),
_integerMultiply(this.d, other.n));
};
Rational.prototype.greaterThanOrEqual = function(other) {
return _integerGreaterThanOrEqual(_integerMultiply(this.n, other.d),
_integerMultiply(this.d, other.n));
};
Rational.prototype.lessThan = function(other) {
return _integerLessThan(_integerMultiply(this.n, other.d),
_integerMultiply(this.d, other.n));
};
Rational.prototype.lessThanOrEqual = function(other) {
return _integerLessThanOrEqual(_integerMultiply(this.n, other.d),
_integerMultiply(this.d, other.n));
};
Rational.prototype.integerSqrt = function() {
var result = sqrt(this);
if (isRational(result)) {
return toExact(floor(result));
} else if (isReal(result)) {
return toExact(floor(result));
} else {
return Complex.makeInstance(toExact(floor(realPart(result))),
toExact(floor(imaginaryPart(result))));
}
};
Rational.prototype.sqrt = function() {
if (_integerGreaterThanOrEqual(this.n, 0)) {
var newN = sqrt(this.n);
var newD = sqrt(this.d);
if (equals(floor(newN), newN) &&
equals(floor(newD), newD)) {
return Rational.makeInstance(newN, newD);
} else {
return FloatPoint.makeInstance(_integerDivideToFixnum(newN, newD));
}
} else {
var newN = sqrt(negate(this.n));
var newD = sqrt(this.d);
if (equals(floor(newN), newN) &&
equals(floor(newD), newD)) {
return Complex.makeInstance(
0,
Rational.makeInstance(newN, newD));
} else {
return Complex.makeInstance(
0,
FloatPoint.makeInstance(_integerDivideToFixnum(newN, newD)));
}
}
};
Rational.prototype.abs = function() {
return Rational.makeInstance(abs(this.n),
this.d);
};
Rational.prototype.floor = function() {
var quotient = _integerQuotient(this.n, this.d);
if (_integerLessThan(this.n, 0)) {
return subtract(quotient, 1);
} else {
return quotient;
}
};
Rational.prototype.ceiling = function() {
var quotient = _integerQuotient(this.n, this.d);
if (_integerLessThan(this.n, 0)) {
return quotient;
} else {
return add(quotient, 1);
}
};
Rational.prototype.conjugate = function() {
return this;
};
Rational.prototype.magnitude = Rational.prototype.abs;
Rational.prototype.log = function(){
return FloatPoint.makeInstance(Math.log(this.n / this.d));
};
Rational.prototype.angle = function(){
if (_integerIsZero(this.n))
return 0;
if (_integerGreaterThan(this.n, 0))
return 0;
else
return FloatPoint.pi;
};
Rational.prototype.tan = function(){
return FloatPoint.makeInstance(Math.tan(_integerDivideToFixnum(this.n, this.d)));
};
Rational.prototype.atan = function(){
return FloatPoint.makeInstance(Math.atan(_integerDivideToFixnum(this.n, this.d)));
};
Rational.prototype.cos = function(){
return FloatPoint.makeInstance(Math.cos(_integerDivideToFixnum(this.n, this.d)));
};
Rational.prototype.sin = function(){
return FloatPoint.makeInstance(Math.sin(_integerDivideToFixnum(this.n, this.d)));
};
Rational.prototype.expt = function(a){
if (isExactInteger(a) && greaterThanOrEqual(a, 0)) {
return fastExpt(this, a);
}
return FloatPoint.makeInstance(Math.pow(_integerDivideToFixnum(this.n, this.d),
_integerDivideToFixnum(a.n, a.d)));
};
Rational.prototype.exp = function(){
return FloatPoint.makeInstance(Math.exp(_integerDivideToFixnum(this.n, this.d)));
};
Rational.prototype.acos = function(){
return FloatPoint.makeInstance(Math.acos(_integerDivideToFixnum(this.n, this.d)));
};
Rational.prototype.asin = function(){
return FloatPoint.makeInstance(Math.asin(_integerDivideToFixnum(this.n, this.d)));
};
Rational.prototype.imaginaryPart = function(){
return 0;
};
Rational.prototype.realPart = function(){
return this;
};
Rational.prototype.round = function() {
// FIXME: not correct when values are bignums
if (equals(this.d, 2)) {
// Round to even if it's a n/2
var v = _integerDivideToFixnum(this.n, this.d);
var fl = Math.floor(v);
var ce = Math.ceil(v);
if (_integerIsZero(fl % 2)) {
return fl;
}
else {
return ce;
}
} else {
return Math.round(this.n / this.d);
}
};
Rational.makeInstance = function(n, d) {
if (n === undefined)
throwRuntimeError("n undefined", n, d);
if (d === undefined) { d = 1; }
if (_integerLessThan(d, 0)) {
n = negate(n);
d = negate(d);
}
var divisor = _integerGcd(abs(n), abs(d));
n = _integerQuotient(n, divisor);
d = _integerQuotient(d, divisor);
// Optimization: if we can get around construction the rational
// in favor of just returning n, do it:
if (_integerIsOne(d) || _integerIsZero(n)) {
return n;
}
return new Rational(n, d);
};
// Floating Point numbers
var FloatPoint = function(n) {
this.n = n;
};
FloatPoint = FloatPoint;
var NaN = new FloatPoint(Number.NaN);
var inf = new FloatPoint(Number.POSITIVE_INFINITY);
var neginf = new FloatPoint(Number.NEGATIVE_INFINITY);
// We use these two constants to represent the floating-point coersion
// of bignums that can't be represented with fidelity.
var TOO_POSITIVE_TO_REPRESENT = new FloatPoint(Number.POSITIVE_INFINITY);
var TOO_NEGATIVE_TO_REPRESENT = new FloatPoint(Number.NEGATIVE_INFINITY);
// Negative zero is a distinguished value representing -0.0.
// There should only be one instance for -0.0.
var NEGATIVE_ZERO = new FloatPoint(-0.0);
var INEXACT_ZERO = new FloatPoint(0.0);
FloatPoint.pi = new FloatPoint(Math.PI);
FloatPoint.e = new FloatPoint(Math.E);
FloatPoint.nan = NaN;
FloatPoint.inf = inf;
FloatPoint.neginf = neginf;
FloatPoint.makeInstance = function(n) {
if (isNaN(n)) {
return FloatPoint.nan;
} else if (n === Number.POSITIVE_INFINITY) {
return FloatPoint.inf;
} else if (n === Number.NEGATIVE_INFINITY) {
return FloatPoint.neginf;
} else if (n === 0) {
if ((1/n) === -Infinity) {
return NEGATIVE_ZERO;
} else {
return INEXACT_ZERO;
}
}
return new FloatPoint(n);
};
FloatPoint.prototype.isExact = function() {
return false;
};
FloatPoint.prototype.isInexact = function() {
return true;
};
FloatPoint.prototype.isFinite = function() {
return (isFinite(this.n) ||
this === TOO_POSITIVE_TO_REPRESENT ||
this === TOO_NEGATIVE_TO_REPRESENT);
};
FloatPoint.prototype.toExact = function() {
// The precision of ieee is about 16 decimal digits, which we use here.
if (! isFinite(this.n) || isNaN(this.n)) {
throwRuntimeError("toExact: no exact representation for " + this, this);
}
var stringRep = this.n.toString();
var match = stringRep.match(/^(.*)\.(.*)$/);
if (match) {
var intPart = parseInt(match[1]);
var fracPart = parseInt(match[2]);
var tenToDecimalPlaces = Math.pow(10, match[2].length);
return Rational.makeInstance(Math.round(this.n * tenToDecimalPlaces),
tenToDecimalPlaces);
}
else {
return this.n;
}
};
FloatPoint.prototype.toInexact = function() {
return this;
};
FloatPoint.prototype.isInexact = function() {
return true;
};
FloatPoint.prototype.level = 2;
FloatPoint.prototype.liftTo = function(target) {
if (target.level === 3)
return new Complex(this, 0);
return throwRuntimeError("invalid level of Number", this, target);
};
FloatPoint.prototype.toString = function() {
if (isNaN(this.n))
return "+nan.0";
if (this.n === Number.POSITIVE_INFINITY)
return "+inf.0";
if (this.n === Number.NEGATIVE_INFINITY)
return "-inf.0";
if (this === NEGATIVE_ZERO)
return "-0.0";
var partialResult = this.n.toString();
if (! partialResult.match('\\.')) {
return partialResult + ".0";
} else {
return partialResult;
}
};
FloatPoint.prototype.equals = function(other, aUnionFind) {
return ((other instanceof FloatPoint) &&
((this.n === other.n)));
};
FloatPoint.prototype.isRational = function() {
return this.isFinite();
};
FloatPoint.prototype.isInteger = function() {
return this.isFinite() && this.n === Math.floor(this.n);
};
FloatPoint.prototype.isReal = function() {
return true;
};
// sign: Number -> {-1, 0, 1}
var sign = function(n) {
if (lessThan(n, 0)) {
return -1;
} else if (greaterThan(n, 0)) {
return 1;
} else if (n === NEGATIVE_ZERO) {
return -1;
} else {
return 0;
}
};
FloatPoint.prototype.add = function(other) {
if (this.isFinite() && other.isFinite()) {
return FloatPoint.makeInstance(this.n + other.n);
} else {
if (isNaN(this.n) || isNaN(other.n)) {
return NaN;
} else if (this.isFinite() && ! other.isFinite()) {
return other;
} else if (!this.isFinite() && other.isFinite()) {
return this;
} else {
return ((sign(this) * sign(other) === 1) ?
this : NaN);
};
}
};
FloatPoint.prototype.subtract = function(other) {
if (this.isFinite() && other.isFinite()) {
return FloatPoint.makeInstance(this.n - other.n);
} else if (isNaN(this.n) || isNaN(other.n)) {
return NaN;
} else if (! this.isFinite() && ! other.isFinite()) {
if (sign(this) === sign(other)) {
return NaN;
} else {
return this;
}
} else if (this.isFinite()) {
return multiply(other, -1);
} else { // other.isFinite()
return this;
}
};
FloatPoint.prototype.negate = function() {
return FloatPoint.makeInstance(-this.n);
};
FloatPoint.prototype.multiply = function(other) {
return FloatPoint.makeInstance(this.n * other.n);
};
FloatPoint.prototype.divide = function(other) {
return FloatPoint.makeInstance(this.n / other.n);
};
FloatPoint.prototype.toFixnum = function() {
return this.n;
};
FloatPoint.prototype.numerator = function() {
var stringRep = this.n.toString();
var match = stringRep.match(/^(.*)\.(.*)$/);
if (match) {
var afterDecimal = parseInt(match[2]);
var factorToInt = Math.pow(10, match[2].length);
var extraFactor = _integerGcd(factorToInt, afterDecimal);
var multFactor = factorToInt / extraFactor;
return FloatPoint.makeInstance( Math.round(this.n * multFactor) );
} else {
return this;
}
};
FloatPoint.prototype.denominator = function() {
var stringRep = this.n.toString();
var match = stringRep.match(/^(.*)\.(.*)$/);
if (match) {
var afterDecimal = parseInt(match[2]);
var factorToInt = Math.pow(10, match[2].length);
var extraFactor = _integerGcd(factorToInt, afterDecimal);
return FloatPoint.makeInstance( Math.round(factorToInt/extraFactor) );
} else {
return FloatPoint.makeInstance(1);
}
};
FloatPoint.prototype.floor = function() {
return FloatPoint.makeInstance(Math.floor(this.n));
};
FloatPoint.prototype.ceiling = function() {
return FloatPoint.makeInstance(Math.ceil(this.n));
};
FloatPoint.prototype.greaterThan = function(other) {
return this.n > other.n;
};
FloatPoint.prototype.greaterThanOrEqual = function(other) {
return this.n >= other.n;
};
FloatPoint.prototype.lessThan = function(other) {
return this.n < other.n;
};
FloatPoint.prototype.lessThanOrEqual = function(other) {
return this.n <= other.n;
};
FloatPoint.prototype.integerSqrt = function() {
if (this === NEGATIVE_ZERO) { return this; }
if (isInteger(this)) {
if(this.n >= 0) {
return FloatPoint.makeInstance(Math.floor(Math.sqrt(this.n)));
} else {
return Complex.makeInstance(
INEXACT_ZERO,
FloatPoint.makeInstance(Math.floor(Math.sqrt(-this.n))));
}
} else {
throwRuntimeError("integerSqrt: can only be applied to an integer", this);
}
};
FloatPoint.prototype.sqrt = function() {
if (this.n < 0) {
var result = Complex.makeInstance(
0,
FloatPoint.makeInstance(Math.sqrt(-this.n)));
return result;
} else {
return FloatPoint.makeInstance(Math.sqrt(this.n));
}
};
FloatPoint.prototype.abs = function() {
return FloatPoint.makeInstance(Math.abs(this.n));
};
FloatPoint.prototype.log = function(){
if (this.n < 0)
return (new Complex(this, 0)).log();
else
return FloatPoint.makeInstance(Math.log(this.n));
};
FloatPoint.prototype.angle = function(){
if (0 === this.n)
return 0;
if (this.n > 0)
return 0;
else
return FloatPoint.pi;
};
FloatPoint.prototype.tan = function(){
return FloatPoint.makeInstance(Math.tan(this.n));
};
FloatPoint.prototype.atan = function(){
return FloatPoint.makeInstance(Math.atan(this.n));
};
FloatPoint.prototype.cos = function(){
return FloatPoint.makeInstance(Math.cos(this.n));
};
FloatPoint.prototype.sin = function(){
return FloatPoint.makeInstance(Math.sin(this.n));
};
FloatPoint.prototype.expt = function(a){
if (this.n === 1) {
if (a.isFinite()) {
return this;
} else if (isNaN(a.n)){
return this;
} else {
return this;
}
} else {
return FloatPoint.makeInstance(Math.pow(this.n, a.n));
}
};
FloatPoint.prototype.exp = function(){
return FloatPoint.makeInstance(Math.exp(this.n));
};
FloatPoint.prototype.acos = function(){
return FloatPoint.makeInstance(Math.acos(this.n));
};
FloatPoint.prototype.asin = function(){
return FloatPoint.makeInstance(Math.asin(this.n));
};
FloatPoint.prototype.imaginaryPart = function(){
return 0;
};
FloatPoint.prototype.realPart = function(){
return this;
};
FloatPoint.prototype.round = function(){
if (isFinite(this.n)) {
if (this === NEGATIVE_ZERO) {
return this;
}
if (Math.abs(Math.floor(this.n) - this.n) === 0.5) {
if (Math.floor(this.n) % 2 === 0)
return FloatPoint.makeInstance(Math.floor(this.n));
return FloatPoint.makeInstance(Math.ceil(this.n));
} else {
return FloatPoint.makeInstance(Math.round(this.n));
}
} else {
return this;
}
};
FloatPoint.prototype.conjugate = function() {
return this;
};
FloatPoint.prototype.magnitude = FloatPoint.prototype.abs;
//////////////////////////////////////////////////////////////////////
// Complex numbers
//////////////////////////////////////////////////////////////////////
var Complex = function(r, i){
this.r = r;
this.i = i;
};
// Constructs a complex number from two basic number r and i. r and i can
// either be plt.type.Rational or plt.type.FloatPoint.
Complex.makeInstance = function(r, i){
if (i === undefined) { i = 0; }
if (isExact(i) && isInteger(i) && _integerIsZero(i)) {
return r;
}
if (isInexact(r) || isInexact(i)) {
r = toInexact(r);
i = toInexact(i);
}
return new Complex(r, i);
};
Complex.prototype.toString = function() {
var realPart = this.r.toString(), imagPart = this.i.toString();
if (imagPart[0] === '-' || imagPart[0] === '+') {
return realPart + imagPart + 'i';
} else {
return realPart + "+" + imagPart + 'i';
}
};
Complex.prototype.isFinite = function() {
return isSchemeNumberFinite(this.r) && isSchemeNumberFinite(this.i);
};
Complex.prototype.isRational = function() {
return isRational(this.r) && eqv(this.i, 0);
};
Complex.prototype.isInteger = function() {
return (isInteger(this.r) &&
eqv(this.i, 0));
};
Complex.prototype.toExact = function() {
return Complex.makeInstance( toExact(this.r), toExact(this.i) );
};
Complex.prototype.toInexact = function() {
return Complex.makeInstance(toInexact(this.r),
toInexact(this.i));
};
Complex.prototype.isExact = function() {
return isExact(this.r) && isExact(this.i);
};
Complex.prototype.isInexact = function() {
return isInexact(this.r) || isInexact(this.i);
};
Complex.prototype.level = 3;
Complex.prototype.liftTo = function(target){
throwRuntimeError("Don't know how to lift Complex number", this, target);
};
Complex.prototype.equals = function(other) {
var result = ((other instanceof Complex) &&
(equals(this.r, other.r)) &&
(equals(this.i, other.i)));
return result;
};
Complex.prototype.greaterThan = function(other) {
if (! this.isReal() || ! other.isReal()) {
throwRuntimeError(">: expects argument of type real number", this, other);
}
return greaterThan(this.r, other.r);
};
Complex.prototype.greaterThanOrEqual = function(other) {
if (! this.isReal() || ! other.isReal()) {
throwRuntimeError(">=: expects argument of type real number", this, other);
}
return greaterThanOrEqual(this.r, other.r);
};
Complex.prototype.lessThan = function(other) {
if (! this.isReal() || ! other.isReal()) {
throwRuntimeError("<: expects argument of type real number", this, other);
}
return lessThan(this.r, other.r);
};
Complex.prototype.lessThanOrEqual = function(other) {
if (! this.isReal() || ! other.isReal()) {
throwRuntimeError("<=: expects argument of type real number", this, other);
}
return lessThanOrEqual(this.r, other.r);
};
Complex.prototype.abs = function(){
if (!equals(this.i, 0).valueOf())
throwRuntimeError("abs: expects argument of type real number", this);
return abs(this.r);
};
Complex.prototype.toFixnum = function(){
if (!equals(this.i, 0).valueOf())
throwRuntimeError("toFixnum: expects argument of type real number", this);
return toFixnum(this.r);
};
Complex.prototype.numerator = function() {
if (!this.isReal())
throwRuntimeError("numerator: can only be applied to real number", this);
return numerator(this.n);
};
Complex.prototype.denominator = function() {
if (!this.isReal())
throwRuntimeError("floor: can only be applied to real number", this);
return denominator(this.n);
};
Complex.prototype.add = function(other){
return Complex.makeInstance(
add(this.r, other.r),
add(this.i, other.i));
};
Complex.prototype.subtract = function(other){
return Complex.makeInstance(
subtract(this.r, other.r),
subtract(this.i, other.i));
};
Complex.prototype.negate = function() {
return Complex.makeInstance(negate(this.r),
negate(this.i));
};
Complex.prototype.multiply = function(other){
// If the other value is real, just do primitive division
if (other.isReal()) {
return Complex.makeInstance(
multiply(this.r, other.r),
multiply(this.i, other.r));
}
var r = subtract(
multiply(this.r, other.r),
multiply(this.i, other.i));
var i = add(
multiply(this.r, other.i),
multiply(this.i, other.r));
return Complex.makeInstance(r, i);
};
Complex.prototype.divide = function(other){
var a, b, c, d, r, x, y;
// If the other value is real, just do primitive division
if (other.isReal()) {
return Complex.makeInstance(
divide(this.r, other.r),
divide(this.i, other.r));
}
if (this.isInexact() || other.isInexact()) {
// http://portal.acm.org/citation.cfm?id=1039814
// We currently use Smith's method, though we should
// probably switch over to Priest's method.
a = this.r;
b = this.i;
c = other.r;
d = other.i;
if (lessThanOrEqual(abs(d), abs(c))) {
r = divide(d, c);
x = divide(add(a, multiply(b, r)),
add(c, multiply(d, r)));
y = divide(subtract(b, multiply(a, r)),
add(c, multiply(d, r)));
} else {
r = divide(c, d);
x = divide(add(multiply(a, r), b),
add(multiply(c, r), d));
y = divide(subtract(multiply(b, r), a),
add(multiply(c, r), d));
}
return Complex.makeInstance(x, y);
} else {
var con = conjugate(other);
var up = multiply(this, con);
// Down is guaranteed to be real by this point.
var down = realPart(multiply(other, con));
var result = Complex.makeInstance(
divide(realPart(up), down),
divide(imaginaryPart(up), down));
return result;
}
};
Complex.prototype.conjugate = function(){
var result = Complex.makeInstance(
this.r,
subtract(0, this.i));
return result;
};
Complex.prototype.magnitude = function(){
var sum = add(
multiply(this.r, this.r),
multiply(this.i, this.i));
return sqrt(sum);
};
Complex.prototype.isReal = function(){
return eqv(this.i, 0);
};
Complex.prototype.integerSqrt = function() {
if (isInteger(this)) {
return integerSqrt(this.r);
} else {
throwRuntimeError("integerSqrt: can only be applied to an integer", this);
}
};
Complex.prototype.sqrt = function(){
if (this.isReal())
return sqrt(this.r);
// http://en.wikipedia.org/wiki/Square_root#Square_roots_of_negative_and_complex_numbers
var r_plus_x = add(this.magnitude(), this.r);
var r = sqrt(halve(r_plus_x));
var i = divide(this.i, sqrt(multiply(r_plus_x, 2)));
return Complex.makeInstance(r, i);
};
Complex.prototype.log = function(){
var m = this.magnitude();
var theta = this.angle();
var result = add(
log(m),
timesI(theta));
return result;
};
Complex.prototype.angle = function(){
if (this.isReal()) {
return angle(this.r);
}
if (equals(0, this.r)) {
var tmp = halve(FloatPoint.pi);
return greaterThan(this.i, 0) ?
tmp : negate(tmp);
} else {
var tmp = atan(divide(abs(this.i), abs(this.r)));
if (greaterThan(this.r, 0)) {
return greaterThan(this.i, 0) ?
tmp : negate(tmp);
} else {
return greaterThan(this.i, 0) ?
subtract(FloatPoint.pi, tmp) : subtract(tmp, FloatPoint.pi);
}
}
};
var plusI = Complex.makeInstance(0, 1);
var minusI = Complex.makeInstance(0, -1);
Complex.prototype.tan = function() {
return divide(this.sin(), this.cos());
};
Complex.prototype.atan = function(){
if (equals(this, plusI) ||
equals(this, minusI)) {
return neginf;
}
return multiply(
plusI,
multiply(
FloatPoint.makeInstance(0.5),
log(divide(
add(plusI, this),
add(
plusI,
subtract(0, this))))));
};
Complex.prototype.cos = function(){
if (this.isReal())
return cos(this.r);
var iz = timesI(this);
var iz_negate = negate(iz);
return halve(add(exp(iz), exp(iz_negate)));
};
Complex.prototype.sin = function(){
if (this.isReal())
return sin(this.r);
var iz = timesI(this);
var iz_negate = negate(iz);
var z2 = Complex.makeInstance(0, 2);
var exp_negate = subtract(exp(iz), exp(iz_negate));
var result = divide(exp_negate, z2);
return result;
};
Complex.prototype.expt = function(y){
if (isExactInteger(y) && greaterThanOrEqual(y, 0)) {
return fastExpt(this, y);
}
var expo = multiply(y, this.log());
return exp(expo);
};
Complex.prototype.exp = function(){
var r = exp(this.r);
var cos_a = cos(this.i);
var sin_a = sin(this.i);
return multiply(
r,
add(cos_a, timesI(sin_a)));
};
Complex.prototype.acos = function(){
if (this.isReal())
return acos(this.r);
var pi_half = halve(FloatPoint.pi);
var iz = timesI(this);
var root = sqrt(subtract(1, sqr(this)));
var l = timesI(log(add(iz, root)));
return add(pi_half, l);
};
Complex.prototype.asin = function(){
if (this.isReal())
return asin(this.r);
var oneNegateThisSq =
subtract(1, sqr(this));
var sqrtOneNegateThisSq = sqrt(oneNegateThisSq);
return multiply(2, atan(divide(this,
add(1, sqrtOneNegateThisSq))));
};
Complex.prototype.ceiling = function(){
if (!this.isReal())
throwRuntimeError("ceiling: can only be applied to real number", this);
return ceiling(this.r);
};
Complex.prototype.floor = function(){
if (!this.isReal())
throwRuntimeError("floor: can only be applied to real number", this);
return floor(this.r);
};
Complex.prototype.imaginaryPart = function(){
return this.i;
};
Complex.prototype.realPart = function(){
return this.r;
};
Complex.prototype.round = function(){
if (!this.isReal())
throwRuntimeError("round: can only be applied to real number", this);
return round(this.r);
};
var rationalRegexp = new RegExp("^([+-]?\\d+)/(\\d+)$");
var complexRegexp = new RegExp("^([+-]?[\\d\\w/\\.]*)([+-])([\\d\\w/\\.]*)i$");
var digitRegexp = new RegExp("^[+-]?\\d+$");
var flonumRegexp = new RegExp("^([+-]?\\d*)\\.(\\d*)$");
var scientificPattern = new RegExp("^([+-]?\\d*\\.?\\d*)[Ee](\\+?\\d+)$");
// fromString: string -> (scheme-number | false)
var fromString = function(x) {
var aMatch = x.match(rationalRegexp);
if (aMatch) {
return Rational.makeInstance(fromString(aMatch[1]),
fromString(aMatch[2]));
}
var cMatch = x.match(complexRegexp);
if (cMatch) {
return Complex.makeInstance(fromString(cMatch[1] || "0"),
fromString(cMatch[2] + (cMatch[3] || "1")));
}
// Floating point tests
if (x === '+nan.0' || x === '-nan.0')
return FloatPoint.nan;
if (x === '+inf.0')
return FloatPoint.inf;
if (x === '-inf.0')
return FloatPoint.neginf;
if (x === "-0.0") {
return NEGATIVE_ZERO;
}
if (x.match(flonumRegexp) || x.match(scientificPattern)) {
return FloatPoint.makeInstance(Number(x));
}
// Finally, integer tests.
if (x.match(digitRegexp)) {
var n = Number(x);
if (isOverflow(n)) {
return makeBignum(x);
} else {
return n;
}
} else {
return false;
}
};
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
// The code below comes from Tom Wu's BigInteger implementation:
// Copyright (c) 2005 Tom Wu
// All Rights Reserved.
// See "LICENSE" for details.
// Basic JavaScript BN library - subset useful for RSA encryption.
// Bits per digit
var dbits;
// JavaScript engine analysis
var canary = 0xdeadbeefcafe;
var j_lm = ((canary&0xffffff)==0xefcafe);
// (public) Constructor
function BigInteger(a,b,c) {
if(a != null)
if("number" == typeof a) this.fromNumber(a,b,c);
else if(b == null && "string" != typeof a) this.fromString(a,256);
else this.fromString(a,b);
}
// return new, unset BigInteger
function nbi() { return new BigInteger(null); }
// am: Compute w_j += (x*this_i), propagate carries,
// c is initial carry, returns final carry.
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
// We need to select the fastest one that works in this environment.
// am1: use a single mult and divide to get the high bits,
// max digit bits should be 26 because
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
function am1(i,x,w,j,c,n) {
while(--n >= 0) {
var v = x*this[i++]+w[j]+c;
c = Math.floor(v/0x4000000);
w[j++] = v&0x3ffffff;
}
return c;
}
// am2 avoids a big mult-and-extract completely.
// Max digit bits should be <= 30 because we do bitwise ops
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
function am2(i,x,w,j,c,n) {
var xl = x&0x7fff, xh = x>>15;
while(--n >= 0) {
var l = this[i]&0x7fff;
var h = this[i++]>>15;
var m = xh*l+h*xl;
l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
w[j++] = l&0x3fffffff;
}
return c;
}
// Alternately, set max digit bits to 28 since some
// browsers slow down when dealing with 32-bit numbers.
function am3(i,x,w,j,c,n) {
var xl = x&0x3fff, xh = x>>14;
while(--n >= 0) {
var l = this[i]&0x3fff;
var h = this[i++]>>14;
var m = xh*l+h*xl;
l = xl*l+((m&0x3fff)<<14)+w[j]+c;
c = (l>>28)+(m>>14)+xh*h;
w[j++] = l&0xfffffff;
}
return c;
}
if(j_lm && (typeof(navigator) !== 'undefined' && navigator.appName == "Microsoft Internet Explorer")) {
BigInteger.prototype.am = am2;
dbits = 30;
}
else if(j_lm && (typeof(navigator) !== 'undefined' && navigator.appName != "Netscape")) {
BigInteger.prototype.am = am1;
dbits = 26;
}
else { // Mozilla/Netscape seems to prefer am3
BigInteger.prototype.am = am3;
dbits = 28;
}
BigInteger.prototype.DB = dbits;
BigInteger.prototype.DM = ((1<<dbits)-1);
BigInteger.prototype.DV = (1<<dbits);
var BI_FP = 52;
BigInteger.prototype.FV = Math.pow(2,BI_FP);
BigInteger.prototype.F1 = BI_FP-dbits;
BigInteger.prototype.F2 = 2*dbits-BI_FP;
// Digit conversions
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
var BI_RC = [];
var rr,vv;
rr = "0".charCodeAt(0);
for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
rr = "a".charCodeAt(0);
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
rr = "A".charCodeAt(0);
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
function int2char(n) { return BI_RM.charAt(n); }
function intAt(s,i) {
var c = BI_RC[s.charCodeAt(i)];
return (c==null)?-1:c;
}
// (protected) copy this to r
function bnpCopyTo(r) {
for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
r.t = this.t;
r.s = this.s;
}
// (protected) set from integer value x, -DV <= x < DV
function bnpFromInt(x) {
this.t = 1;
this.s = (x<0)?-1:0;
if(x > 0) this[0] = x;
else if(x < -1) this[0] = x+DV;
else this.t = 0;
}
// return bigint initialized to value
function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
// (protected) set from string and radix
function bnpFromString(s,b) {
var k;
if(b == 16) k = 4;
else if(b == 8) k = 3;
else if(b == 256) k = 8; // byte array
else if(b == 2) k = 1;
else if(b == 32) k = 5;
else if(b == 4) k = 2;
else { this.fromRadix(s,b); return; }
this.t = 0;
this.s = 0;
var i = s.length, mi = false, sh = 0;
while(--i >= 0) {
var x = (k==8)?s[i]&0xff:intAt(s,i);
if(x < 0) {
if(s.charAt(i) == "-") mi = true;
continue;
}
mi = false;
if(sh == 0)
this[this.t++] = x;
else if(sh+k > this.DB) {
this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
this[this.t++] = (x>>(this.DB-sh));
}
else
this[this.t-1] |= x<<sh;
sh += k;
if(sh >= this.DB) sh -= this.DB;
}
if(k == 8 && (s[0]&0x80) != 0) {
this.s = -1;
if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
}
this.clamp();
if(mi) BigInteger.ZERO.subTo(this,this);
}
// (protected) clamp off excess high words
function bnpClamp() {
var c = this.s&this.DM;
while(this.t > 0 && this[this.t-1] == c) --this.t;
}
// (public) return string representation in given radix
function bnToString(b) {
if(this.s < 0) return "-"+this.negate().toString(b);
var k;
if(b == 16) k = 4;
else if(b == 8) k = 3;
else if(b == 2) k = 1;
else if(b == 32) k = 5;
else if(b == 4) k = 2;
else return this.toRadix(b);
var km = (1<<k)-1, d, m = false, r = [], i = this.t;
var p = this.DB-(i*this.DB)%k;
if(i-- > 0) {
if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r.push(int2char(d)); }
while(i >= 0) {
if(p < k) {
d = (this[i]&((1<<p)-1))<<(k-p);
d |= this[--i]>>(p+=this.DB-k);
}
else {
d = (this[i]>>(p-=k))&km;
if(p <= 0) { p += this.DB; --i; }
}
if(d > 0) m = true;
if(m) r.push(int2char(d));
}
}
return m?r.join(""):"0";
}
// (public) -this
function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
// (public) |this|
function bnAbs() { return (this.s<0)?this.negate():this; }
// (public) return + if this > a, - if this < a, 0 if equal
function bnCompareTo(a) {
var r = this.s-a.s;
if(r != 0) return r;
var i = this.t;
if ( this.s < 0 ) {
r = a.t - i;
}
else {
r = i - a.t;
}
if(r != 0) return r;
while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
return 0;
}
// returns bit length of the integer x
function nbits(x) {
var r = 1, t;
if((t=x>>>16) != 0) { x = t; r += 16; }
if((t=x>>8) != 0) { x = t; r += 8; }
if((t=x>>4) != 0) { x = t; r += 4; }
if((t=x>>2) != 0) { x = t; r += 2; }
if((t=x>>1) != 0) { x = t; r += 1; }
return r;
}
// (public) return the number of bits in "this"
function bnBitLength() {
if(this.t <= 0) return 0;
return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
}
// (protected) r = this << n*DB
function bnpDLShiftTo(n,r) {
var i;
for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
for(i = n-1; i >= 0; --i) r[i] = 0;
r.t = this.t+n;
r.s = this.s;
}
// (protected) r = this >> n*DB
function bnpDRShiftTo(n,r) {
for(var i = n; i < this.t; ++i) r[i-n] = this[i];
r.t = Math.max(this.t-n,0);
r.s = this.s;
}
// (protected) r = this << n
function bnpLShiftTo(n,r) {
var bs = n%this.DB;
var cbs = this.DB-bs;
var bm = (1<<cbs)-1;
var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
for(i = this.t-1; i >= 0; --i) {
r[i+ds+1] = (this[i]>>cbs)|c;
c = (this[i]&bm)<<bs;
}
for(i = ds-1; i >= 0; --i) r[i] = 0;
r[ds] = c;
r.t = this.t+ds+1;
r.s = this.s;
r.clamp();
}
// (protected) r = this >> n
function bnpRShiftTo(n,r) {
r.s = this.s;
var ds = Math.floor(n/this.DB);
if(ds >= this.t) { r.t = 0; return; }
var bs = n%this.DB;
var cbs = this.DB-bs;
var bm = (1<<bs)-1;
r[0] = this[ds]>>bs;
for(var i = ds+1; i < this.t; ++i) {
r[i-ds-1] |= (this[i]&bm)<<cbs;
r[i-ds] = this[i]>>bs;
}
if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
r.t = this.t-ds;
r.clamp();
}
// (protected) r = this - a
function bnpSubTo(a,r) {
var i = 0, c = 0, m = Math.min(a.t,this.t);
while(i < m) {
c += this[i]-a[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
if(a.t < this.t) {
c -= a.s;
while(i < this.t) {
c += this[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
c += this.s;
}
else {
c += this.s;
while(i < a.t) {
c -= a[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
c -= a.s;
}
r.s = (c<0)?-1:0;
if(c < -1) r[i++] = this.DV+c;
else if(c > 0) r[i++] = c;
r.t = i;
r.clamp();
}
// (protected) r = this * a, r != this,a (HAC 14.12)
// "this" should be the larger one if appropriate.
function bnpMultiplyTo(a,r) {
var x = this.abs(), y = a.abs();
var i = x.t;
r.t = i+y.t;
while(--i >= 0) r[i] = 0;
for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
r.s = 0;
r.clamp();
if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
}
// (protected) r = this^2, r != this (HAC 14.16)
function bnpSquareTo(r) {
var x = this.abs();
var i = r.t = 2*x.t;
while(--i >= 0) r[i] = 0;
for(i = 0; i < x.t-1; ++i) {
var c = x.am(i,x[i],r,2*i,0,1);
if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
r[i+x.t] -= x.DV;
r[i+x.t+1] = 1;
}
}
if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
r.s = 0;
r.clamp();
}
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
// r != q, this != m. q or r may be null.
function bnpDivRemTo(m,q,r) {
var pm = m.abs();
if(pm.t <= 0) return;
var pt = this.abs();
if(pt.t < pm.t) {
if(q != null) q.fromInt(0);
if(r != null) this.copyTo(r);
return;
}
if(r == null) r = nbi();
var y = nbi(), ts = this.s, ms = m.s;
var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus
if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
else { pm.copyTo(y); pt.copyTo(r); }
var ys = y.t;
var y0 = y[ys-1];
if(y0 == 0) return;
var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
var i = r.t, j = i-ys, t = (q==null)?nbi():q;
y.dlShiftTo(j,t);
if(r.compareTo(t) >= 0) {
r[r.t++] = 1;
r.subTo(t,r);
}
BigInteger.ONE.dlShiftTo(ys,t);
t.subTo(y,y); // "negative" y so we can replace sub with am later
while(y.t < ys) y[y.t++] = 0;
while(--j >= 0) {
// Estimate quotient digit
var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
y.dlShiftTo(j,t);
r.subTo(t,r);
while(r[i] < --qd) r.subTo(t,r);
}
}
if(q != null) {
r.drShiftTo(ys,q);
if(ts != ms) BigInteger.ZERO.subTo(q,q);
}
r.t = ys;
r.clamp();
if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
if(ts < 0) BigInteger.ZERO.subTo(r,r);
}
// (public) this mod a
function bnMod(a) {
var r = nbi();
this.abs().divRemTo(a,null,r);
if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
return r;
}
// Modular reduction using "classic" algorithm
function Classic(m) { this.m = m; }
function cConvert(x) {
if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
else return x;
}
function cRevert(x) { return x; }
function cReduce(x) { x.divRemTo(this.m,null,x); }
function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
Classic.prototype.convert = cConvert;
Classic.prototype.revert = cRevert;
Classic.prototype.reduce = cReduce;
Classic.prototype.mulTo = cMulTo;
Classic.prototype.sqrTo = cSqrTo;
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
// justification:
// xy == 1 (mod m)
// xy = 1+km
// xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// JS multiply "overflows" differently from C/C++, so care is needed here.
function bnpInvDigit() {
if(this.t < 1) return 0;
var x = this[0];
if((x&1) == 0) return 0;
var y = x&3; // y == 1/x mod 2^2
y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
// last step - calculate inverse mod DV directly;
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
// we really want the negative inverse, and -DV < y < DV
return (y>0)?this.DV-y:-y;
}
// Montgomery reduction
function Montgomery(m) {
this.m = m;
this.mp = m.invDigit();
this.mpl = this.mp&0x7fff;
this.mph = this.mp>>15;
this.um = (1<<(m.DB-15))-1;
this.mt2 = 2*m.t;
}
// xR mod m
function montConvert(x) {
var r = nbi();
x.abs().dlShiftTo(this.m.t,r);
r.divRemTo(this.m,null,r);
if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
return r;
}
// x/R mod m
function montRevert(x) {
var r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
}
// x = x/R mod m (HAC 14.32)
function montReduce(x) {
while(x.t <= this.mt2) // pad x so am has enough room later
x[x.t++] = 0;
for(var i = 0; i < this.m.t; ++i) {
// faster way of calculating u0 = x[i]*mp mod DV
var j = x[i]&0x7fff;
var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
// use am to combine the multiply-shift-add into one call
j = i+this.m.t;
x[j] += this.m.am(0,u0,x,i,0,this.m.t);
// propagate carry
while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
}
x.clamp();
x.drShiftTo(this.m.t,x);
if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
}
// r = "x^2/R mod m"; x != r
function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
// r = "xy/R mod m"; x,y != r
function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
Montgomery.prototype.convert = montConvert;
Montgomery.prototype.revert = montRevert;
Montgomery.prototype.reduce = montReduce;
Montgomery.prototype.mulTo = montMulTo;
Montgomery.prototype.sqrTo = montSqrTo;
// (protected) true iff this is even
function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
function bnpExp(e,z) {
if(e > 0xffffffff || e < 1) return BigInteger.ONE;
var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
g.copyTo(r);
while(--i >= 0) {
z.sqrTo(r,r2);
if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
else { var t = r; r = r2; r2 = t; }
}
return z.revert(r);
}
// (public) this^e % m, 0 <= e < 2^32
function bnModPowInt(e,m) {
var z;
if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
return this.exp(e,z);
}
// protected
BigInteger.prototype.copyTo = bnpCopyTo;
BigInteger.prototype.fromInt = bnpFromInt;
BigInteger.prototype.fromString = bnpFromString;
BigInteger.prototype.clamp = bnpClamp;
BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
BigInteger.prototype.drShiftTo = bnpDRShiftTo;
BigInteger.prototype.lShiftTo = bnpLShiftTo;
BigInteger.prototype.rShiftTo = bnpRShiftTo;
BigInteger.prototype.subTo = bnpSubTo;
BigInteger.prototype.multiplyTo = bnpMultiplyTo;
BigInteger.prototype.squareTo = bnpSquareTo;
BigInteger.prototype.divRemTo = bnpDivRemTo;
BigInteger.prototype.invDigit = bnpInvDigit;
BigInteger.prototype.isEven = bnpIsEven;
BigInteger.prototype.exp = bnpExp;
// public
BigInteger.prototype.toString = bnToString;
BigInteger.prototype.negate = bnNegate;
BigInteger.prototype.abs = bnAbs;
BigInteger.prototype.compareTo = bnCompareTo;
BigInteger.prototype.bitLength = bnBitLength;
BigInteger.prototype.mod = bnMod;
BigInteger.prototype.modPowInt = bnModPowInt;
// "constants"
BigInteger.ZERO = nbv(0);
BigInteger.ONE = nbv(1);
// Copyright (c) 2005-2009 Tom Wu
// All Rights Reserved.
// See "LICENSE" for details.
// Extended JavaScript BN functions, required for RSA private ops.
// Version 1.1: new BigInteger("0", 10) returns "proper" zero
// (public)
function bnClone() { var r = nbi(); this.copyTo(r); return r; }
// (public) return value as integer
function bnIntValue() {
if(this.s < 0) {
if(this.t == 1) return this[0]-this.DV;
else if(this.t == 0) return -1;
}
else if(this.t == 1) return this[0];
else if(this.t == 0) return 0;
// assumes 16 < DB < 32
return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0];
}
// (public) return value as byte
function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; }
// (public) return value as short (assumes DB>=16)
function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }
// (protected) return x s.t. r^x < DV
function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }
// (public) 0 if this == 0, 1 if this > 0
function bnSigNum() {
if(this.s < 0) return -1;
else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
else return 1;
}
// (protected) convert to radix string
function bnpToRadix(b) {
if(b == null) b = 10;
if(this.signum() == 0 || b < 2 || b > 36) return "0";
var cs = this.chunkSize(b);
var a = Math.pow(b,cs);
var d = nbv(a), y = nbi(), z = nbi(), r = "";
this.divRemTo(d,y,z);
while(y.signum() > 0) {
r = (a+z.intValue()).toString(b).substr(1) + r;
y.divRemTo(d,y,z);
}
return z.intValue().toString(b) + r;
}
// (protected) convert from radix string
function bnpFromRadix(s,b) {
this.fromInt(0);
if(b == null) b = 10;
var cs = this.chunkSize(b);
var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
for(var i = 0; i < s.length; ++i) {
var x = intAt(s,i);
if(x < 0) {
if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
continue;
}
w = b*w+x;
if(++j >= cs) {
this.dMultiply(d);
this.dAddOffset(w,0);
j = 0;
w = 0;
}
}
if(j > 0) {
this.dMultiply(Math.pow(b,j));
this.dAddOffset(w,0);
}
if(mi) BigInteger.ZERO.subTo(this,this);
}
// (protected) alternate constructor
function bnpFromNumber(a,b,c) {
if("number" == typeof b) {
// new BigInteger(int,int,RNG)
if(a < 2) this.fromInt(1);
else {
this.fromNumber(a,c);
if(!this.testBit(a-1)) // force MSB set
this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
if(this.isEven()) this.dAddOffset(1,0); // force odd
while(!this.isProbablePrime(b)) {
this.dAddOffset(2,0);
if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);
}
}
}
else {
// new BigInteger(int,RNG)
var x = [], t = a&7;
x.length = (a>>3)+1;
b.nextBytes(x);
if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
this.fromString(x,256);
}
}
// (public) convert to bigendian byte array
function bnToByteArray() {
var i = this.t, r = [];
r[0] = this.s;
var p = this.DB-(i*this.DB)%8, d, k = 0;
if(i-- > 0) {
if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p)
r[k++] = d|(this.s<<(this.DB-p));
while(i >= 0) {
if(p < 8) {
d = (this[i]&((1<<p)-1))<<(8-p);
d |= this[--i]>>(p+=this.DB-8);
}
else {
d = (this[i]>>(p-=8))&0xff;
if(p <= 0) { p += this.DB; --i; }
}
if((d&0x80) != 0) d |= -256;
if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
if(k > 0 || d != this.s) r[k++] = d;
}
}
return r;
}
function bnEquals(a) { return(this.compareTo(a)==0); }
function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
// (protected) r = this op a (bitwise)
function bnpBitwiseTo(a,op,r) {
var i, f, m = Math.min(a.t,this.t);
for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]);
if(a.t < this.t) {
f = a.s&this.DM;
for(i = m; i < this.t; ++i) r[i] = op(this[i],f);
r.t = this.t;
}
else {
f = this.s&this.DM;
for(i = m; i < a.t; ++i) r[i] = op(f,a[i]);
r.t = a.t;
}
r.s = op(this.s,a.s);
r.clamp();
}
// (public) this & a
function op_and(x,y) { return x&y; }
function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }
// (public) this | a
function op_or(x,y) { return x|y; }
function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }
// (public) this ^ a
function op_xor(x,y) { return x^y; }
function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }
// (public) this & ~a
function op_andnot(x,y) { return x&~y; }
function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }
// (public) ~this
function bnNot() {
var r = nbi();
for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i];
r.t = this.t;
r.s = ~this.s;
return r;
}
// (public) this << n
function bnShiftLeft(n) {
var r = nbi();
if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
return r;
}
// (public) this >> n
function bnShiftRight(n) {
var r = nbi();
if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
return r;
}
// return index of lowest 1-bit in x, x < 2^31
function lbit(x) {
if(x == 0) return -1;
var r = 0;
if((x&0xffff) == 0) { x >>= 16; r += 16; }
if((x&0xff) == 0) { x >>= 8; r += 8; }
if((x&0xf) == 0) { x >>= 4; r += 4; }
if((x&3) == 0) { x >>= 2; r += 2; }
if((x&1) == 0) ++r;
return r;
}
// (public) returns index of lowest 1-bit (or -1 if none)
function bnGetLowestSetBit() {
for(var i = 0; i < this.t; ++i)
if(this[i] != 0) return i*this.DB+lbit(this[i]);
if(this.s < 0) return this.t*this.DB;
return -1;
}
// return number of 1 bits in x
function cbit(x) {
var r = 0;
while(x != 0) { x &= x-1; ++r; }
return r;
}
// (public) return number of set bits
function bnBitCount() {
var r = 0, x = this.s&this.DM;
for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x);
return r;
}
// (public) true iff nth bit is set
function bnTestBit(n) {
var j = Math.floor(n/this.DB);
if(j >= this.t) return(this.s!=0);
return((this[j]&(1<<(n%this.DB)))!=0);
}
// (protected) this op (1<<n)
function bnpChangeBit(n,op) {
var r = BigInteger.ONE.shiftLeft(n);
this.bitwiseTo(r,op,r);
return r;
}
// (public) this | (1<<n)
function bnSetBit(n) { return this.changeBit(n,op_or); }
// (public) this & ~(1<<n)
function bnClearBit(n) { return this.changeBit(n,op_andnot); }
// (public) this ^ (1<<n)
function bnFlipBit(n) { return this.changeBit(n,op_xor); }
// (protected) r = this + a
function bnpAddTo(a,r) {
var i = 0, c = 0, m = Math.min(a.t,this.t);
while(i < m) {
c += this[i]+a[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
if(a.t < this.t) {
c += a.s;
while(i < this.t) {
c += this[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
c += this.s;
}
else {
c += this.s;
while(i < a.t) {
c += a[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
c += a.s;
}
r.s = (c<0)?-1:0;
if(c > 0) r[i++] = c;
else if(c < -1) r[i++] = this.DV+c;
r.t = i;
r.clamp();
}
// (public) this + a
function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }
// (public) this - a
function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }
// (public) this * a
function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }
// (public) this / a
function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }
// (public) this % a
function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }
// (public) [this/a,this%a]
function bnDivideAndRemainder(a) {
var q = nbi(), r = nbi();
this.divRemTo(a,q,r);
return [q,r];
}
// (protected) this *= n, this >= 0, 1 < n < DV
function bnpDMultiply(n) {
this[this.t] = this.am(0,n-1,this,0,0,this.t);
++this.t;
this.clamp();
}
// (protected) this += n << w words, this >= 0
function bnpDAddOffset(n,w) {
if(n == 0) return;
while(this.t <= w) this[this.t++] = 0;
this[w] += n;
while(this[w] >= this.DV) {
this[w] -= this.DV;
if(++w >= this.t) this[this.t++] = 0;
++this[w];
}
}
// A "null" reducer
function NullExp() {}
function nNop(x) { return x; }
function nMulTo(x,y,r) { x.multiplyTo(y,r); }
function nSqrTo(x,r) { x.squareTo(r); }
NullExp.prototype.convert = nNop;
NullExp.prototype.revert = nNop;
NullExp.prototype.mulTo = nMulTo;
NullExp.prototype.sqrTo = nSqrTo;
// (public) this^e
function bnPow(e) { return this.exp(e,new NullExp()); }
// (protected) r = lower n words of "this * a", a.t <= n
// "this" should be the larger one if appropriate.
function bnpMultiplyLowerTo(a,n,r) {
var i = Math.min(this.t+a.t,n);
r.s = 0; // assumes a,this >= 0
r.t = i;
while(i > 0) r[--i] = 0;
var j;
for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t);
for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i);
r.clamp();
}
// (protected) r = "this * a" without lower n words, n > 0
// "this" should be the larger one if appropriate.
function bnpMultiplyUpperTo(a,n,r) {
--n;
var i = r.t = this.t+a.t-n;
r.s = 0; // assumes a,this >= 0
while(--i >= 0) r[i] = 0;
for(i = Math.max(n-this.t,0); i < a.t; ++i)
r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n);
r.clamp();
r.drShiftTo(1,r);
}
// Barrett modular reduction
function Barrett(m) {
// setup Barrett
this.r2 = nbi();
this.q3 = nbi();
BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
this.mu = this.r2.divide(m);
this.m = m;
}
function barrettConvert(x) {
if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
else if(x.compareTo(this.m) < 0) return x;
else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
}
function barrettRevert(x) { return x; }
// x = x mod m (HAC 14.42)
function barrettReduce(x) {
x.drShiftTo(this.m.t-1,this.r2);
if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
x.subTo(this.r2,x);
while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
}
// r = x^2 mod m; x != r
function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
// r = x*y mod m; x,y != r
function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
Barrett.prototype.convert = barrettConvert;
Barrett.prototype.revert = barrettRevert;
Barrett.prototype.reduce = barrettReduce;
Barrett.prototype.mulTo = barrettMulTo;
Barrett.prototype.sqrTo = barrettSqrTo;
// (public) this^e % m (HAC 14.85)
function bnModPow(e,m) {
var i = e.bitLength(), k, r = nbv(1), z;
if(i <= 0) return r;
else if(i < 18) k = 1;
else if(i < 48) k = 3;
else if(i < 144) k = 4;
else if(i < 768) k = 5;
else k = 6;
if(i < 8)
z = new Classic(m);
else if(m.isEven())
z = new Barrett(m);
else
z = new Montgomery(m);
// precomputation
var g = [], n = 3, k1 = k-1, km = (1<<k)-1;
g[1] = z.convert(this);
if(k > 1) {
var g2 = nbi();
z.sqrTo(g[1],g2);
while(n <= km) {
g[n] = nbi();
z.mulTo(g2,g[n-2],g[n]);
n += 2;
}
}
var j = e.t-1, w, is1 = true, r2 = nbi(), t;
i = nbits(e[j])-1;
while(j >= 0) {
if(i >= k1) w = (e[j]>>(i-k1))&km;
else {
w = (e[j]&((1<<(i+1))-1))<<(k1-i);
if(j > 0) w |= e[j-1]>>(this.DB+i-k1);
}
n = k;
while((w&1) == 0) { w >>= 1; --n; }
if((i -= n) < 0) { i += this.DB; --j; }
if(is1) { // ret == 1, don't bother squaring or multiplying it
g[w].copyTo(r);
is1 = false;
}
else {
while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
z.mulTo(r2,g[w],r);
}
while(j >= 0 && (e[j]&(1<<i)) == 0) {
z.sqrTo(r,r2); t = r; r = r2; r2 = t;
if(--i < 0) { i = this.DB-1; --j; }
}
}
return z.revert(r);
}
// (public) gcd(this,a) (HAC 14.54)
function bnGCD(a) {
var x = (this.s<0)?this.negate():this.clone();
var y = (a.s<0)?a.negate():a.clone();
if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
var i = x.getLowestSetBit(), g = y.getLowestSetBit();
if(g < 0) return x;
if(i < g) g = i;
if(g > 0) {
x.rShiftTo(g,x);
y.rShiftTo(g,y);
}
while(x.signum() > 0) {
if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
if(x.compareTo(y) >= 0) {
x.subTo(y,x);
x.rShiftTo(1,x);
}
else {
y.subTo(x,y);
y.rShiftTo(1,y);
}
}
if(g > 0) y.lShiftTo(g,y);
return y;
}
// (protected) this % n, n < 2^26
function bnpModInt(n) {
if(n <= 0) return 0;
var d = this.DV%n, r = (this.s<0)?n-1:0;
if(this.t > 0)
if(d == 0) r = this[0]%n;
else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n;
return r;
}
// (public) 1/this % m (HAC 14.61)
function bnModInverse(m) {
var ac = m.isEven();
if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
var u = m.clone(), v = this.clone();
var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
while(u.signum() != 0) {
while(u.isEven()) {
u.rShiftTo(1,u);
if(ac) {
if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
a.rShiftTo(1,a);
}
else if(!b.isEven()) b.subTo(m,b);
b.rShiftTo(1,b);
}
while(v.isEven()) {
v.rShiftTo(1,v);
if(ac) {
if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
c.rShiftTo(1,c);
}
else if(!d.isEven()) d.subTo(m,d);
d.rShiftTo(1,d);
}
if(u.compareTo(v) >= 0) {
u.subTo(v,u);
if(ac) a.subTo(c,a);
b.subTo(d,b);
}
else {
v.subTo(u,v);
if(ac) c.subTo(a,c);
d.subTo(b,d);
}
}
if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
if(d.compareTo(m) >= 0) return d.subtract(m);
if(d.signum() < 0) d.addTo(m,d); else return d;
if(d.signum() < 0) return d.add(m); else return d;
}
var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509];
var lplim = (1<<26)/lowprimes[lowprimes.length-1];
// (public) test primality with certainty >= 1-.5^t
function bnIsProbablePrime(t) {
var i, x = this.abs();
if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) {
for(i = 0; i < lowprimes.length; ++i)
if(x[0] == lowprimes[i]) return true;
return false;
}
if(x.isEven()) return false;
i = 1;
while(i < lowprimes.length) {
var m = lowprimes[i], j = i+1;
while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
m = x.modInt(m);
while(i < j) if(m%lowprimes[i++] == 0) return false;
}
return x.millerRabin(t);
}
// (protected) true if probably prime (HAC 4.24, Miller-Rabin)
function bnpMillerRabin(t) {
var n1 = this.subtract(BigInteger.ONE);
var k = n1.getLowestSetBit();
if(k <= 0) return false;
var r = n1.shiftRight(k);
t = (t+1)>>1;
if(t > lowprimes.length) t = lowprimes.length;
var a = nbi();
for(var i = 0; i < t; ++i) {
a.fromInt(lowprimes[i]);
var y = a.modPow(r,this);
if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
var j = 1;
while(j++ < k && y.compareTo(n1) != 0) {
y = y.modPowInt(2,this);
if(y.compareTo(BigInteger.ONE) == 0) return false;
}
if(y.compareTo(n1) != 0) return false;
}
}
return true;
}
// protected
BigInteger.prototype.chunkSize = bnpChunkSize;
BigInteger.prototype.toRadix = bnpToRadix;
BigInteger.prototype.fromRadix = bnpFromRadix;
BigInteger.prototype.fromNumber = bnpFromNumber;
BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
BigInteger.prototype.changeBit = bnpChangeBit;
BigInteger.prototype.addTo = bnpAddTo;
BigInteger.prototype.dMultiply = bnpDMultiply;
BigInteger.prototype.dAddOffset = bnpDAddOffset;
BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
BigInteger.prototype.modInt = bnpModInt;
BigInteger.prototype.millerRabin = bnpMillerRabin;
// public
BigInteger.prototype.clone = bnClone;
BigInteger.prototype.intValue = bnIntValue;
BigInteger.prototype.byteValue = bnByteValue;
BigInteger.prototype.shortValue = bnShortValue;
BigInteger.prototype.signum = bnSigNum;
BigInteger.prototype.toByteArray = bnToByteArray;
BigInteger.prototype.equals = bnEquals;
BigInteger.prototype.min = bnMin;
BigInteger.prototype.max = bnMax;
BigInteger.prototype.and = bnAnd;
BigInteger.prototype.or = bnOr;
BigInteger.prototype.xor = bnXor;
BigInteger.prototype.andNot = bnAndNot;
BigInteger.prototype.not = bnNot;
BigInteger.prototype.shiftLeft = bnShiftLeft;
BigInteger.prototype.shiftRight = bnShiftRight;
BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
BigInteger.prototype.bitCount = bnBitCount;
BigInteger.prototype.testBit = bnTestBit;
BigInteger.prototype.setBit = bnSetBit;
BigInteger.prototype.clearBit = bnClearBit;
BigInteger.prototype.flipBit = bnFlipBit;
BigInteger.prototype.add = bnAdd;
BigInteger.prototype.subtract = bnSubtract;
BigInteger.prototype.multiply = bnMultiply;
BigInteger.prototype.divide = bnDivide;
BigInteger.prototype.remainder = bnRemainder;
BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
BigInteger.prototype.modPow = bnModPow;
BigInteger.prototype.modInverse = bnModInverse;
BigInteger.prototype.pow = bnPow;
BigInteger.prototype.gcd = bnGCD;
BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
// BigInteger interfaces not implemented in jsbn:
// BigInteger(int signum, byte[] magnitude)
// double doubleValue()
// float floatValue()
// int hashCode()
// long longValue()
// static BigInteger valueOf(long val)
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
// END OF copy-and-paste of jsbn.
BigInteger.NEGATIVE_ONE = BigInteger.ONE.negate();
// Other methods we need to add for compatibilty with js-numbers numeric tower.
// add is implemented above.
// subtract is implemented above.
// multiply is implemented above.
// equals is implemented above.
// abs is implemented above.
// negate is defined above.
// makeBignum: string -> BigInteger
var makeBignum = function(s) {
if (typeof(s) === 'number') { s = s + ''; }
s = expandExponent(s);
return new BigInteger(s, 10);
};
var zerostring = function(n) {
var buf = [];
for (var i = 0; i < n; i++) {
buf.push('0');
}
return buf.join('');
};
BigInteger.prototype.level = 0;
BigInteger.prototype.liftTo = function(target) {
if (target.level === 1) {
return new Rational(this, 1);
}
if (target.level === 2) {
var fixrep = this.toFixnum();
if (fixrep === Number.POSITIVE_INFINITY)
return TOO_POSITIVE_TO_REPRESENT;
if (fixrep === Number.NEGATIVE_INFINITY)
return TOO_NEGATIVE_TO_REPRESENT;
return new FloatPoint(fixrep);
}
if (target.level === 3) {
return new Complex(this, 0);
}
return throwRuntimeError("invalid level for BigInteger lift", this, target);
};
BigInteger.prototype.isFinite = function() {
return true;
};
BigInteger.prototype.isInteger = function() {
return true;
};
BigInteger.prototype.isRational = function() {
return true;
};
BigInteger.prototype.isReal = function() {
return true;
};
BigInteger.prototype.isExact = function() {
return true;
};
BigInteger.prototype.isInexact = function() {
return false;
};
BigInteger.prototype.toExact = function() {
return this;
};
BigInteger.prototype.toInexact = function() {
return FloatPoint.makeInstance(this.toFixnum());
};
BigInteger.prototype.toFixnum = function() {
var result = 0, str = this.toString(), i;
if (str[0] === '-') {
for (i=1; i < str.length; i++) {
result = result * 10 + Number(str[i]);
}
return -result;
} else {
for (i=0; i < str.length; i++) {
result = result * 10 + Number(str[i]);
}
return result;
}
};
BigInteger.prototype.greaterThan = function(other) {
return this.compareTo(other) > 0;
};
BigInteger.prototype.greaterThanOrEqual = function(other) {
return this.compareTo(other) >= 0;
};
BigInteger.prototype.lessThan = function(other) {
return this.compareTo(other) < 0;
};
BigInteger.prototype.lessThanOrEqual = function(other) {
return this.compareTo(other) <= 0;
};
// divide: scheme-number -> scheme-number
// WARNING NOTE: we override the old version of divide.
BigInteger.prototype.divide = function(other) {
var quotientAndRemainder = bnDivideAndRemainder.call(this, other);
if (quotientAndRemainder[1].compareTo(BigInteger.ZERO) === 0) {
return quotientAndRemainder[0];
} else {
var result = add(quotientAndRemainder[0],
Rational.makeInstance(quotientAndRemainder[1], other));
return result;
}
};
BigInteger.prototype.numerator = function() {
return this;
};
BigInteger.prototype.denominator = function() {
return 1;
};
(function() {
// Classic implementation of Newton-Ralphson square-root search,
// adapted for integer-sqrt.
// http://en.wikipedia.org/wiki/Newton's_method#Square_root_of_a_number
var searchIter = function(n, guess) {
while(!(lessThanOrEqual(sqr(guess),n) &&
lessThan(n,sqr(add(guess, 1))))) {
guess = floor(divide(add(guess,
floor(divide(n, guess))),
2));
}
return guess;
};
// integerSqrt: -> scheme-number
BigInteger.prototype.integerSqrt = function() {
var n;
if(sign(this) >= 0) {
return searchIter(this, this);
} else {
n = this.negate();
return Complex.makeInstance(0, searchIter(n, n));
}
};
})();
(function() {
// Get an approximation using integerSqrt, and then start another
// Newton-Ralphson search if necessary.
BigInteger.prototype.sqrt = function() {
var approx = this.integerSqrt(), fix;
if (eqv(sqr(approx), this)) {
return approx;
}
fix = toFixnum(this);
if (isFinite(fix)) {
if (fix >= 0) {
return FloatPoint.makeInstance(Math.sqrt(fix));
} else {
return Complex.makeInstance(
0,
FloatPoint.makeInstance(Math.sqrt(-fix)));
}
} else {
return approx;
}
};
})();
// sqrt: -> scheme-number
// http://en.wikipedia.org/wiki/Newton's_method#Square_root_of_a_number
// Produce the square root.
// floor: -> scheme-number
// Produce the floor.
BigInteger.prototype.floor = function() {
return this;
}
// ceiling: -> scheme-number
// Produce the ceiling.
BigInteger.prototype.ceiling = function() {
return this;
}
// conjugate: -> scheme-number
// Produce the conjugate.
// magnitude: -> scheme-number
// Produce the magnitude.
// log: -> scheme-number
// Produce the log.
// angle: -> scheme-number
// Produce the angle.
// atan: -> scheme-number
// Produce the arc tangent.
// cos: -> scheme-number
// Produce the cosine.
// sin: -> scheme-number
// Produce the sine.
// expt: scheme-number -> scheme-number
// Produce the power to the input.
BigInteger.prototype.expt = function(n) {
return bnPow.call(this, n);
};
// exp: -> scheme-number
// Produce e raised to the given power.
// acos: -> scheme-number
// Produce the arc cosine.
// asin: -> scheme-number
// Produce the arc sine.
BigInteger.prototype.imaginaryPart = function() {
return 0;
}
BigInteger.prototype.realPart = function() {
return this;
}
// round: -> scheme-number
// Round to the nearest integer.
//////////////////////////////////////////////////////////////////////
// toRepeatingDecimal: jsnum jsnum {limit: number}? -> [string, string, string]
//
// Given the numerator and denominator parts of a rational,
// produces the repeating-decimal representation, where the first
// part are the digits before the decimal, the second are the
// non-repeating digits after the decimal, and the third are the
// remaining repeating decimals.
//
// An optional limit on the decimal expansion can be provided, in which
// case the search cuts off if we go past the limit.
// If this happens, the third argument returned becomes '...' to indicate
// that the search was prematurely cut off.
var toRepeatingDecimal = (function() {
var getResidue = function(r, d, limit) {
var digits = [];
var seenRemainders = {};
seenRemainders[r] = true;
while(true) {
if (limit-- <= 0) {
return [digits.join(''), '...']
}
var nextDigit = quotient(
multiply(r, 10), d);
var nextRemainder = remainder(
multiply(r, 10),
d);
digits.push(nextDigit.toString());
if (seenRemainders[nextRemainder]) {
r = nextRemainder;
break;
} else {
seenRemainders[nextRemainder] = true;
r = nextRemainder;
}
}
var firstRepeatingRemainder = r;
var repeatingDigits = [];
while (true) {
var nextDigit = quotient(multiply(r, 10), d);
var nextRemainder = remainder(
multiply(r, 10),
d);
repeatingDigits.push(nextDigit.toString());
if (equals(nextRemainder, firstRepeatingRemainder)) {
break;
} else {
r = nextRemainder;
}
};
var digitString = digits.join('');
var repeatingDigitString = repeatingDigits.join('');
while (digitString.length >= repeatingDigitString.length &&
(digitString.substring(
digitString.length - repeatingDigitString.length)
=== repeatingDigitString)) {
digitString = digitString.substring(
0, digitString.length - repeatingDigitString.length);
}
return [digitString, repeatingDigitString];
};
return function(n, d, options) {
// default limit on decimal expansion; can be overridden
var limit = 512;
if (options && typeof(options.limit) !== 'undefined') {
limit = options.limit;
}
if (! isInteger(n)) {
throwRuntimeError('toRepeatingDecimal: n ' + n.toString() +
" is not an integer.");
}
if (! isInteger(d)) {
throwRuntimeError('toRepeatingDecimal: d ' + d.toString() +
" is not an integer.");
}
if (equals(d, 0)) {
throwRuntimeError('toRepeatingDecimal: d equals 0');
}
if (lessThan(d, 0)) {
throwRuntimeError('toRepeatingDecimal: d < 0');
}
var sign = (lessThan(n, 0) ? "-" : "");
n = abs(n);
var beforeDecimalPoint = sign + quotient(n, d);
var afterDecimals = getResidue(remainder(n, d), d, limit);
return [beforeDecimalPoint].concat(afterDecimals);
};
})();
//////////////////////////////////////////////////////////////////////
// External interface of js-numbers:
Numbers['fromFixnum'] = fromFixnum;
Numbers['fromString'] = fromString;
Numbers['makeBignum'] = makeBignum;
Numbers['makeRational'] = Rational.makeInstance;
Numbers['makeFloat'] = FloatPoint.makeInstance;
Numbers['makeComplex'] = Complex.makeInstance;
Numbers['makeComplexPolar'] = makeComplexPolar;
Numbers['pi'] = FloatPoint.pi;
Numbers['e'] = FloatPoint.e;
Numbers['nan'] = FloatPoint.nan;
Numbers['negative_inf'] = FloatPoint.neginf;
Numbers['inf'] = FloatPoint.inf;
Numbers['negative_one'] = -1; // Rational.NEGATIVE_ONE;
Numbers['zero'] = 0; // Rational.ZERO;
Numbers['one'] = 1; // Rational.ONE;
Numbers['i'] = plusI;
Numbers['negative_i'] = minusI;
Numbers['negative_zero'] = NEGATIVE_ZERO;
Numbers['onThrowRuntimeError'] = onThrowRuntimeError;
Numbers['isSchemeNumber'] = isSchemeNumber;
Numbers['isRational'] = isRational;
Numbers['isReal'] = isReal;
Numbers['isExact'] = isExact;
Numbers['isInexact'] = isInexact;
Numbers['isInteger'] = isInteger;
Numbers['toFixnum'] = toFixnum;
Numbers['toExact'] = toExact;
Numbers['toInexact'] = toInexact;
Numbers['add'] = add;
Numbers['subtract'] = subtract;
Numbers['multiply'] = multiply;
Numbers['divide'] = divide;
Numbers['equals'] = equals;
Numbers['eqv'] = eqv;
Numbers['approxEquals'] = approxEquals;
Numbers['greaterThanOrEqual'] = greaterThanOrEqual;
Numbers['lessThanOrEqual'] = lessThanOrEqual;
Numbers['greaterThan'] = greaterThan;
Numbers['lessThan'] = lessThan;
Numbers['expt'] = expt;
Numbers['exp'] = exp;
Numbers['modulo'] = modulo;
Numbers['numerator'] = numerator;
Numbers['denominator'] = denominator;
Numbers['integerSqrt'] = integerSqrt;
Numbers['sqrt'] = sqrt;
Numbers['abs'] = abs;
Numbers['quotient'] = quotient;
Numbers['remainder'] = remainder;
Numbers['floor'] = floor;
Numbers['ceiling'] = ceiling;
Numbers['conjugate'] = conjugate;
Numbers['magnitude'] = magnitude;
Numbers['log'] = log;
Numbers['angle'] = angle;
Numbers['tan'] = tan;
Numbers['atan'] = atan;
Numbers['cos'] = cos;
Numbers['sin'] = sin;
Numbers['tan'] = tan;
Numbers['acos'] = acos;
Numbers['asin'] = asin;
Numbers['cosh'] = cosh;
Numbers['sinh'] = sinh;
Numbers['imaginaryPart'] = imaginaryPart;
Numbers['realPart'] = realPart;
Numbers['round'] = round;
Numbers['sqr'] = sqr;
Numbers['gcd'] = gcd;
Numbers['lcm'] = lcm;
Numbers['toRepeatingDecimal'] = toRepeatingDecimal;
// The following exposes the class representations for easier
// integration with other projects.
Numbers['BigInteger'] = BigInteger;
Numbers['Rational'] = Rational;
Numbers['FloatPoint'] = FloatPoint;
Numbers['Complex'] = Complex;
Numbers['MIN_FIXNUM'] = MIN_FIXNUM;
Numbers['MAX_FIXNUM'] = MAX_FIXNUM;
})();