1469 lines
67 KiB
Racket
1469 lines
67 KiB
Racket
#lang typed/racket/base
|
|
|
|
(require "expression-structs.rkt"
|
|
"lexical-structs.rkt"
|
|
"il-structs.rkt"
|
|
"kernel-primitives.rkt"
|
|
"optimize-il.rkt"
|
|
racket/bool
|
|
racket/list)
|
|
|
|
(provide (rename-out [-compile compile])
|
|
compile-general-procedure-call
|
|
append-instruction-sequences
|
|
adjust-target-depth)
|
|
|
|
|
|
|
|
|
|
|
|
(: -compile (Expression Target Linkage -> (Listof Statement)))
|
|
;; Generates the instruction-sequence stream.
|
|
;; Note: the toplevel generates the lambda body streams at the head, and then the
|
|
;; rest of the instruction stream.
|
|
(define (-compile exp target linkage)
|
|
(let ([after-lam-bodies (make-label 'afterLamBodies)]
|
|
[before-pop-prompt (make-label 'beforePopPrompt)])
|
|
(optimize-il
|
|
(statements
|
|
(append-instruction-sequences
|
|
|
|
(make-instruction-sequence
|
|
`(,(make-GotoStatement (make-Label after-lam-bodies))))
|
|
(compile-lambda-bodies (collect-all-lams exp))
|
|
after-lam-bodies
|
|
|
|
(make-instruction-sequence
|
|
`(,(make-PushControlFrame/Prompt default-continuation-prompt-tag
|
|
before-pop-prompt)))
|
|
(compile exp '() target prompt-linkage)
|
|
before-pop-prompt)))))
|
|
|
|
(define-struct: lam+cenv ([lam : Lam]
|
|
[cenv : CompileTimeEnvironment]))
|
|
|
|
|
|
(: collect-all-lams (Expression -> (Listof lam+cenv)))
|
|
;; Finds all the lambdas in the expression.
|
|
(define (collect-all-lams exp)
|
|
(let: loop : (Listof lam+cenv)
|
|
([exp : Expression exp]
|
|
[cenv : CompileTimeEnvironment '()])
|
|
|
|
(cond
|
|
[(Top? exp)
|
|
(loop (Top-code exp) (cons (Top-prefix exp) cenv))]
|
|
[(Constant? exp)
|
|
'()]
|
|
[(LocalRef? exp)
|
|
'()]
|
|
[(ToplevelRef? exp)
|
|
'()]
|
|
[(ToplevelSet? exp)
|
|
(loop (ToplevelSet-value exp) cenv)]
|
|
[(Branch? exp)
|
|
(append (loop (Branch-predicate exp) cenv)
|
|
(loop (Branch-consequent exp) cenv)
|
|
(loop (Branch-alternative exp) cenv))]
|
|
[(Lam? exp)
|
|
(cons (make-lam+cenv exp cenv)
|
|
(loop (Lam-body exp)
|
|
(extract-lambda-cenv exp cenv)))]
|
|
[(Seq? exp)
|
|
(apply append (map (lambda: ([e : Expression]) (loop e cenv))
|
|
(Seq-actions exp)))]
|
|
[(Splice? exp)
|
|
(apply append (map (lambda: ([e : Expression]) (loop e cenv))
|
|
(Splice-actions exp)))]
|
|
[(App? exp)
|
|
(let ([new-cenv (append (build-list (length (App-operands exp)) (lambda: ([i : Natural]) '?))
|
|
cenv)])
|
|
(append (loop (App-operator exp) new-cenv)
|
|
(apply append (map (lambda: ([e : Expression]) (loop e new-cenv)) (App-operands exp)))))]
|
|
[(Let1? exp)
|
|
(append (loop (Let1-rhs exp)
|
|
(cons '? cenv))
|
|
(loop (Let1-body exp)
|
|
(cons (extract-static-knowledge (Let1-rhs exp) (cons '? cenv))
|
|
cenv)))]
|
|
[(LetVoid? exp)
|
|
(loop (LetVoid-body exp)
|
|
(append (build-list (LetVoid-count exp) (lambda: ([i : Natural]) '?))
|
|
cenv))]
|
|
[(InstallValue? exp)
|
|
(loop (InstallValue-body exp) cenv)]
|
|
[(BoxEnv? exp)
|
|
(loop (BoxEnv-body exp) cenv)]
|
|
[(LetRec? exp)
|
|
(let ([new-cenv (append (map (lambda: ([p : Lam])
|
|
(extract-static-knowledge
|
|
p
|
|
(append (build-list (length (LetRec-procs exp))
|
|
(lambda: ([i : Natural]) '?))
|
|
cenv)))
|
|
(reverse (LetRec-procs exp)))
|
|
cenv)])
|
|
(append (apply append
|
|
(map (lambda: ([lam : Lam])
|
|
(loop lam new-cenv))
|
|
(LetRec-procs exp)))
|
|
(loop (LetRec-body exp) new-cenv)))]
|
|
[(WithContMark? exp)
|
|
(append (loop (WithContMark-key exp) cenv)
|
|
(loop (WithContMark-value exp) cenv)
|
|
(loop (WithContMark-body exp) cenv))])))
|
|
|
|
|
|
|
|
(: extract-lambda-cenv (Lam CompileTimeEnvironment -> CompileTimeEnvironment))
|
|
(define (extract-lambda-cenv lam cenv)
|
|
(append (map (lambda: ([d : Natural])
|
|
(list-ref cenv d))
|
|
(Lam-closure-map lam))
|
|
(build-list (if (Lam-rest? lam)
|
|
(add1 (Lam-num-parameters lam))
|
|
(Lam-num-parameters lam))
|
|
(lambda: ([i : Natural]) '?))))
|
|
|
|
|
|
|
|
(: compile (Expression CompileTimeEnvironment Target Linkage -> InstructionSequence))
|
|
;; Compiles an expression into an instruction sequence.
|
|
(define (compile exp cenv target linkage)
|
|
(cond
|
|
[(Top? exp)
|
|
(compile-top exp cenv target linkage)]
|
|
[(Constant? exp)
|
|
(compile-constant exp cenv target linkage)]
|
|
[(LocalRef? exp)
|
|
(compile-local-reference exp cenv target linkage)]
|
|
[(ToplevelRef? exp)
|
|
(compile-toplevel-reference exp cenv target linkage)]
|
|
[(ToplevelSet? exp)
|
|
(compile-toplevel-set exp cenv target linkage)]
|
|
[(Branch? exp)
|
|
(compile-branch exp cenv target linkage)]
|
|
[(Lam? exp)
|
|
(compile-lambda exp cenv target linkage)]
|
|
[(Seq? exp)
|
|
(compile-sequence (Seq-actions exp)
|
|
cenv
|
|
target
|
|
linkage)]
|
|
[(Splice? exp)
|
|
(compile-splice (Splice-actions exp)
|
|
cenv
|
|
target
|
|
linkage)]
|
|
[(App? exp)
|
|
(compile-application exp cenv target linkage)]
|
|
[(Let1? exp)
|
|
(compile-let1 exp cenv target linkage)]
|
|
[(LetVoid? exp)
|
|
(compile-let-void exp cenv target linkage)]
|
|
[(InstallValue? exp)
|
|
(compile-install-value exp cenv target linkage)]
|
|
[(BoxEnv? exp)
|
|
(compile-box-environment-value exp cenv target linkage)]
|
|
[(LetRec? exp)
|
|
(compile-let-rec exp cenv target linkage)]
|
|
[(WithContMark? exp)
|
|
(compile-with-cont-mark exp cenv target linkage)]))
|
|
|
|
|
|
|
|
|
|
(: compile-top (Top CompileTimeEnvironment Target Linkage -> InstructionSequence))
|
|
(define (compile-top top cenv target linkage)
|
|
(let*: ([names : (Listof (U Symbol ModuleVariable False)) (Prefix-names (Top-prefix top))])
|
|
(end-with-linkage
|
|
linkage cenv
|
|
(append-instruction-sequences
|
|
(make-instruction-sequence
|
|
`(,(make-PerformStatement (make-ExtendEnvironment/Prefix! names))))
|
|
(compile (Top-code top) (cons (Top-prefix top) cenv) target next-linkage)
|
|
(make-instruction-sequence
|
|
`(,(make-PopEnvironment (make-Const 1)
|
|
(make-Const 0))))))))
|
|
|
|
|
|
|
|
;; Add linkage for expressions.
|
|
(: end-with-linkage (Linkage CompileTimeEnvironment InstructionSequence -> InstructionSequence))
|
|
(define (end-with-linkage linkage cenv instruction-sequence)
|
|
(append-instruction-sequences instruction-sequence
|
|
(compile-linkage cenv linkage)))
|
|
|
|
|
|
|
|
|
|
(: compile-linkage (CompileTimeEnvironment Linkage -> InstructionSequence))
|
|
(define (compile-linkage cenv linkage)
|
|
(cond
|
|
[(ReturnLinkage? linkage)
|
|
(make-instruction-sequence `(,(make-AssignPrimOpStatement 'proc (make-GetControlStackLabel))
|
|
,(make-PopEnvironment (make-Const (length cenv))
|
|
(make-Const 0))
|
|
,(make-PopControlFrame)
|
|
,(make-GotoStatement (make-Reg 'proc))))]
|
|
[(PromptLinkage? linkage)
|
|
(make-instruction-sequence `(,(make-AssignPrimOpStatement 'proc (make-GetControlStackLabel))
|
|
,(make-PopControlFrame/Prompt)
|
|
,(make-GotoStatement (make-Reg 'proc))))]
|
|
[(NextLinkage? linkage)
|
|
empty-instruction-sequence]
|
|
[(LabelLinkage? linkage)
|
|
(make-instruction-sequence `(,(make-GotoStatement (make-Label (LabelLinkage-label linkage)))))]))
|
|
|
|
|
|
|
|
(: compile-constant (Constant CompileTimeEnvironment Target Linkage -> InstructionSequence))
|
|
(define (compile-constant exp cenv target linkage)
|
|
;; Compiles constant values.
|
|
(end-with-linkage linkage
|
|
cenv
|
|
(make-instruction-sequence
|
|
`(,(make-AssignImmediateStatement target (make-Const (Constant-v exp)))))))
|
|
|
|
|
|
|
|
(: compile-local-reference (LocalRef CompileTimeEnvironment Target Linkage -> InstructionSequence))
|
|
(define (compile-local-reference exp cenv target linkage)
|
|
;; Compiles local references.
|
|
(end-with-linkage linkage
|
|
cenv
|
|
(make-instruction-sequence
|
|
`(,(make-AssignImmediateStatement
|
|
target
|
|
(make-EnvLexicalReference (LocalRef-depth exp)
|
|
(LocalRef-unbox? exp)))))))
|
|
|
|
|
|
(: compile-toplevel-reference (ToplevelRef CompileTimeEnvironment Target Linkage -> InstructionSequence))
|
|
;; Compiles toplevel references.
|
|
(define (compile-toplevel-reference exp cenv target linkage)
|
|
(end-with-linkage linkage
|
|
cenv
|
|
(make-instruction-sequence
|
|
`(,(make-PerformStatement (make-CheckToplevelBound!
|
|
(ToplevelRef-depth exp)
|
|
(ToplevelRef-pos exp)))
|
|
,(make-AssignImmediateStatement
|
|
target
|
|
(make-EnvPrefixReference (ToplevelRef-depth exp)
|
|
(ToplevelRef-pos exp)))))))
|
|
|
|
|
|
(: compile-toplevel-set (ToplevelSet CompileTimeEnvironment Target Linkage -> InstructionSequence))
|
|
;; Compiles toplevel definition.
|
|
(define (compile-toplevel-set exp cenv target linkage)
|
|
(let* ([var (ToplevelSet-name exp)]
|
|
[lexical-pos (make-EnvPrefixReference (ToplevelSet-depth exp)
|
|
(ToplevelSet-pos exp))])
|
|
(let ([get-value-code
|
|
(compile (ToplevelSet-value exp) cenv lexical-pos
|
|
next-linkage)])
|
|
(end-with-linkage
|
|
linkage
|
|
cenv
|
|
(append-instruction-sequences
|
|
get-value-code
|
|
(make-instruction-sequence `(,(make-AssignImmediateStatement target (make-Const (void))))))))))
|
|
|
|
|
|
(: compile-branch (Branch CompileTimeEnvironment Target Linkage -> InstructionSequence))
|
|
;; Compiles a conditional branch.
|
|
(define (compile-branch exp cenv target linkage)
|
|
(let: ([t-branch : LabelLinkage (make-LabelLinkage (make-label 'trueBranch))]
|
|
[f-branch : LabelLinkage (make-LabelLinkage (make-label 'falseBranch))]
|
|
[after-if : LabelLinkage (make-LabelLinkage (make-label 'afterIf))])
|
|
(let ([consequent-linkage
|
|
(if (eq? linkage next-linkage)
|
|
after-if
|
|
linkage)])
|
|
(let ([p-code (compile (Branch-predicate exp) cenv 'val next-linkage)]
|
|
[c-code (compile (Branch-consequent exp) cenv target consequent-linkage)]
|
|
[a-code (compile (Branch-alternative exp) cenv target linkage)])
|
|
(append-instruction-sequences p-code
|
|
(append-instruction-sequences
|
|
(make-instruction-sequence
|
|
`(,(make-TestAndBranchStatement 'false?
|
|
'val
|
|
(LabelLinkage-label f-branch))))
|
|
(append-instruction-sequences
|
|
(append-instruction-sequences (LabelLinkage-label t-branch) c-code)
|
|
(append-instruction-sequences (LabelLinkage-label f-branch) a-code))
|
|
(LabelLinkage-label after-if)))))))
|
|
|
|
|
|
(: compile-sequence ((Listof Expression) CompileTimeEnvironment Target Linkage -> InstructionSequence))
|
|
;; Compiles a sequence of expressions. The last expression will be compiled in the provided linkage.
|
|
(define (compile-sequence seq cenv target linkage)
|
|
;; All but the last will use next-linkage linkage.
|
|
(if (last-exp? seq)
|
|
(compile (first-exp seq) cenv target linkage)
|
|
(append-instruction-sequences (compile (first-exp seq) cenv target next-linkage)
|
|
(compile-sequence (rest-exps seq) cenv target linkage))))
|
|
|
|
|
|
(: compile-splice ((Listof Expression) CompileTimeEnvironment Target Linkage -> InstructionSequence))
|
|
;; Compiles a sequence of expressions. A continuation prompt wraps around each of the expressions
|
|
;; to delimit any continuation captures.
|
|
(define (compile-splice seq cenv target linkage)
|
|
(cond [(last-exp? seq)
|
|
(let* ([before-pop-prompt-multiple (make-label 'beforePromptPopMultiple)]
|
|
[before-pop-prompt (make-LinkedLabel (make-label 'beforePromptPop)
|
|
before-pop-prompt-multiple)])
|
|
(end-with-linkage
|
|
linkage
|
|
cenv
|
|
(append-instruction-sequences
|
|
(make-instruction-sequence `(,(make-PushControlFrame/Prompt
|
|
default-continuation-prompt-tag
|
|
before-pop-prompt)))
|
|
(compile (first-exp seq) cenv target prompt-linkage)
|
|
before-pop-prompt-multiple
|
|
(make-instruction-sequence `(,(make-PopEnvironment (make-Reg 'argcount) (make-Const 0))))
|
|
before-pop-prompt)))]
|
|
[else
|
|
(let* ([before-pop-prompt-multiple (make-label 'beforePromptPopMultiple)]
|
|
[before-pop-prompt (make-LinkedLabel (make-label 'beforePromptPop)
|
|
before-pop-prompt-multiple)])
|
|
(append-instruction-sequences
|
|
(make-instruction-sequence `(,(make-PushControlFrame/Prompt
|
|
(make-DefaultContinuationPromptTag)
|
|
before-pop-prompt)))
|
|
(compile (first-exp seq) cenv target prompt-linkage)
|
|
before-pop-prompt-multiple
|
|
(make-instruction-sequence `(,(make-PopEnvironment (make-Reg 'argcount) (make-Const 0))))
|
|
before-pop-prompt
|
|
(compile-splice (rest-exps seq) cenv target linkage)))]))
|
|
|
|
|
|
|
|
(: compile-lambda (Lam CompileTimeEnvironment Target Linkage -> InstructionSequence))
|
|
;; Write out code for lambda expressions.
|
|
;; The lambda will close over the free variables.
|
|
;; Assumption: all of the lambda bodies have already been written out at the top, in -compile.
|
|
(define (compile-lambda exp cenv target linkage)
|
|
(end-with-linkage
|
|
linkage
|
|
cenv
|
|
(make-instruction-sequence
|
|
`(,(make-AssignPrimOpStatement
|
|
target
|
|
(make-MakeCompiledProcedure (Lam-entry-label exp)
|
|
(if (Lam-rest? exp)
|
|
(make-ArityAtLeast (Lam-num-parameters exp))
|
|
(Lam-num-parameters exp))
|
|
(Lam-closure-map exp)
|
|
(Lam-name exp)))))))
|
|
|
|
|
|
(: compile-lambda-shell (Lam CompileTimeEnvironment Target Linkage -> InstructionSequence))
|
|
;; Write out code for lambda expressions, minus the closure map.
|
|
;; Assumption: all of the lambda bodies have already been written out at the top, in -compile.
|
|
(define (compile-lambda-shell exp cenv target linkage)
|
|
(end-with-linkage
|
|
linkage
|
|
cenv
|
|
(make-instruction-sequence
|
|
`(,(make-AssignPrimOpStatement
|
|
target
|
|
(make-MakeCompiledProcedureShell (Lam-entry-label exp)
|
|
(if (Lam-rest? exp)
|
|
(make-ArityAtLeast (Lam-num-parameters exp))
|
|
(Lam-num-parameters exp))
|
|
(Lam-name exp)))))))
|
|
|
|
|
|
(: compile-lambda-body (Lam CompileTimeEnvironment -> InstructionSequence))
|
|
;; Compiles the body of the lambda in the appropriate environment.
|
|
;; Closures will target their value to the 'val register, and use return linkage.
|
|
(define (compile-lambda-body exp cenv)
|
|
(let: ([maybe-unsplice-rest-argument : InstructionSequence
|
|
(if (Lam-rest? exp)
|
|
(make-instruction-sequence
|
|
`(,(make-PerformStatement
|
|
(make-UnspliceRestFromStack!
|
|
(make-Const (Lam-num-parameters exp))
|
|
(make-SubtractArg (make-Reg 'argcount)
|
|
(make-Const (Lam-num-parameters exp)))))))
|
|
empty-instruction-sequence)]
|
|
[maybe-install-closure-values : InstructionSequence
|
|
(if (not (empty? (Lam-closure-map exp)))
|
|
(make-instruction-sequence
|
|
`(,(make-PerformStatement (make-InstallClosureValues!))))
|
|
empty-instruction-sequence)]
|
|
[lam-body-code : InstructionSequence
|
|
(compile (Lam-body exp)
|
|
(extract-lambda-cenv exp cenv)
|
|
'val
|
|
return-linkage)])
|
|
|
|
(append-instruction-sequences
|
|
(make-instruction-sequence
|
|
`(,(Lam-entry-label exp)))
|
|
|
|
maybe-unsplice-rest-argument
|
|
maybe-install-closure-values
|
|
lam-body-code)))
|
|
|
|
|
|
|
|
(: compile-lambda-bodies ((Listof lam+cenv) -> InstructionSequence))
|
|
;; Compile several lambda bodies, back to back.
|
|
(define (compile-lambda-bodies exps)
|
|
(cond
|
|
[(empty? exps)
|
|
(make-instruction-sequence '())]
|
|
[else
|
|
(append-instruction-sequences (compile-lambda-body (lam+cenv-lam (first exps))
|
|
(lam+cenv-cenv (first exps)))
|
|
(compile-lambda-bodies (rest exps)))]))
|
|
|
|
|
|
(: extend-compile-time-environment/scratch-space (CompileTimeEnvironment Natural -> CompileTimeEnvironment))
|
|
(define (extend-compile-time-environment/scratch-space cenv n)
|
|
(append (build-list n (lambda: ([i : Natural])
|
|
'?))
|
|
cenv))
|
|
|
|
|
|
|
|
(: compile-application (App CompileTimeEnvironment Target Linkage -> InstructionSequence))
|
|
;; Compiles procedure application
|
|
;; Special cases: if we know something about the operator, the compiler will special case.
|
|
;; This includes:
|
|
;; Known closure
|
|
;; Known kernel primitive
|
|
;; In the general case, we do general procedure application.
|
|
(define (compile-application exp cenv target linkage)
|
|
(let ([extended-cenv
|
|
(extend-compile-time-environment/scratch-space
|
|
cenv
|
|
(length (App-operands exp)))])
|
|
|
|
(define (default)
|
|
(compile-general-application exp cenv target linkage))
|
|
|
|
(let: ([op-knowledge : CompileTimeEnvironmentEntry
|
|
(extract-static-knowledge (App-operator exp)
|
|
extended-cenv)])
|
|
(cond
|
|
[(eq? op-knowledge '?)
|
|
(default)]
|
|
[(ModuleVariable? op-knowledge)
|
|
(cond
|
|
[(symbol=? (ModuleVariable-module-path op-knowledge) '#%kernel)
|
|
(let ([op (ModuleVariable-name op-knowledge)])
|
|
(cond [(KernelPrimitiveName? op)
|
|
(compile-kernel-primitive-application
|
|
op
|
|
exp cenv target linkage)]
|
|
[else
|
|
(default)]))]
|
|
[else
|
|
(default)])]
|
|
[(StaticallyKnownLam? op-knowledge)
|
|
(compile-statically-known-lam-application op-knowledge exp cenv target linkage)]
|
|
[(Prefix? op-knowledge)
|
|
(error 'impossible)]
|
|
[(Const? op-knowledge)
|
|
(error 'application "Can't apply constant ~s as a function" (Const-const op-knowledge))]))))
|
|
|
|
|
|
(: compile-general-application (App CompileTimeEnvironment Target Linkage -> InstructionSequence))
|
|
(define (compile-general-application exp cenv target linkage)
|
|
(let* ([extended-cenv
|
|
(extend-compile-time-environment/scratch-space
|
|
cenv
|
|
(length (App-operands exp)))]
|
|
[proc-code (compile (App-operator exp)
|
|
extended-cenv
|
|
(if (empty? (App-operands exp))
|
|
'proc
|
|
(make-EnvLexicalReference
|
|
(ensure-natural (sub1 (length (App-operands exp))))
|
|
#f))
|
|
next-linkage)]
|
|
[operand-codes (map (lambda: ([operand : Expression]
|
|
[target : Target])
|
|
(compile operand extended-cenv target next-linkage))
|
|
(App-operands exp)
|
|
(build-list (length (App-operands exp))
|
|
(lambda: ([i : Natural])
|
|
(if (< i (sub1 (length (App-operands exp))))
|
|
(make-EnvLexicalReference i #f)
|
|
'val))))])
|
|
(append-instruction-sequences
|
|
(if (not (empty? (App-operands exp)))
|
|
(make-instruction-sequence `(,(make-PushEnvironment (length (App-operands exp)) #f)))
|
|
empty-instruction-sequence)
|
|
proc-code
|
|
(juggle-operands operand-codes)
|
|
(make-instruction-sequence `(,(make-AssignImmediateStatement
|
|
'argcount
|
|
(make-Const (length (App-operands exp))))))
|
|
(compile-general-procedure-call cenv
|
|
(cond [(= (length extended-cenv)
|
|
(length (App-operands exp)))
|
|
(make-Reg 'argcount)]
|
|
[else
|
|
(make-Const (length extended-cenv))])
|
|
target
|
|
linkage))))
|
|
|
|
|
|
(: compile-kernel-primitive-application
|
|
(KernelPrimitiveName App CompileTimeEnvironment Target Linkage -> InstructionSequence))
|
|
;; This is a special case of application, where the operator is statically
|
|
;; known to be in the set of hardcoded primitives.
|
|
;;
|
|
;; There's a special case optimization we can perform: we can avoid touching
|
|
;; the stack for constant arguments; rather than allocate (length (App-operands exp))
|
|
;; stack slots, we can do less than that.
|
|
;;
|
|
;; We have to be sensitive to mutation.
|
|
(define (compile-kernel-primitive-application kernel-op exp cenv target linkage)
|
|
(cond
|
|
;; If all the arguments are primitive enough (all constants, localrefs, or toplevelrefs),
|
|
;; then application requires no stack space at all, and application is especially simple.
|
|
[(andmap (lambda (op)
|
|
;; TODO: as long as the operand contains no applications?
|
|
(or (Constant? op)
|
|
(ToplevelRef? op)
|
|
(LocalRef? op)))
|
|
(App-operands exp))
|
|
(let* ([n (length (App-operands exp))]
|
|
|
|
[operand-knowledge
|
|
(map (lambda: ([arg : Expression])
|
|
(extract-static-knowledge
|
|
arg
|
|
(extend-compile-time-environment/scratch-space
|
|
cenv n)))
|
|
(App-operands exp))]
|
|
|
|
[typechecks?
|
|
(map (lambda: ([dom : OperandDomain]
|
|
[known : CompileTimeEnvironmentEntry])
|
|
(not (redundant-check? dom known)))
|
|
(kernel-primitive-expected-operand-types kernel-op n)
|
|
operand-knowledge)]
|
|
|
|
[expected-operand-types
|
|
(kernel-primitive-expected-operand-types kernel-op n)]
|
|
[operand-poss
|
|
(simple-operands->opargs (map (lambda: ([op : Expression])
|
|
(adjust-expression-depth op n n))
|
|
(App-operands exp)))])
|
|
(end-with-linkage
|
|
linkage cenv
|
|
(make-instruction-sequence
|
|
`(,(make-AssignPrimOpStatement
|
|
target
|
|
(make-CallKernelPrimitiveProcedure
|
|
kernel-op
|
|
operand-poss
|
|
expected-operand-types
|
|
typechecks?))))))]
|
|
|
|
[else
|
|
;; Otherwise, we can split the operands into two categories: constants, and the rest.
|
|
(let*-values ([(n)
|
|
(length (App-operands exp))]
|
|
|
|
[(expected-operand-types)
|
|
(kernel-primitive-expected-operand-types kernel-op n)]
|
|
|
|
[(constant-operands rest-operands)
|
|
(split-operands-by-constants
|
|
(App-operands exp))]
|
|
|
|
;; here, we rewrite the stack references so they assume no scratch space
|
|
;; used by the constant operands.
|
|
[(extended-cenv constant-operands rest-operands)
|
|
(values (extend-compile-time-environment/scratch-space
|
|
cenv
|
|
(length rest-operands))
|
|
|
|
(map (lambda: ([constant-operand : Expression])
|
|
(ensure-simple-expression
|
|
(adjust-expression-depth constant-operand
|
|
(length constant-operands)
|
|
n)))
|
|
constant-operands)
|
|
|
|
(map (lambda: ([rest-operand : Expression])
|
|
(adjust-expression-depth rest-operand
|
|
(length constant-operands)
|
|
n))
|
|
rest-operands))]
|
|
|
|
[(operand-knowledge)
|
|
(append (map (lambda: ([arg : Expression])
|
|
(extract-static-knowledge arg extended-cenv))
|
|
constant-operands)
|
|
(map (lambda: ([arg : Expression])
|
|
(extract-static-knowledge arg extended-cenv))
|
|
rest-operands))]
|
|
|
|
[(typechecks?)
|
|
(map (lambda: ([dom : OperandDomain]
|
|
[known : CompileTimeEnvironmentEntry])
|
|
(not (redundant-check? dom known)))
|
|
(kernel-primitive-expected-operand-types kernel-op n)
|
|
operand-knowledge)]
|
|
|
|
[(stack-pushing-code)
|
|
(if (empty? rest-operands)
|
|
empty-instruction-sequence
|
|
(make-instruction-sequence `(,(make-PushEnvironment
|
|
(length rest-operands)
|
|
#f))))]
|
|
[(stack-popping-code)
|
|
(if (empty? rest-operands)
|
|
empty-instruction-sequence
|
|
(make-instruction-sequence `(,(make-PopEnvironment
|
|
(make-Const (length rest-operands))
|
|
(make-Const 0)))))]
|
|
|
|
[(constant-operand-poss)
|
|
(simple-operands->opargs constant-operands)]
|
|
|
|
[(rest-operand-poss)
|
|
(build-list (length rest-operands)
|
|
(lambda: ([i : Natural])
|
|
(make-EnvLexicalReference i #f)))]
|
|
[(rest-operand-code)
|
|
(apply append-instruction-sequences
|
|
(map (lambda: ([operand : Expression]
|
|
[target : Target])
|
|
(compile operand extended-cenv target next-linkage))
|
|
rest-operands
|
|
rest-operand-poss))])
|
|
|
|
(end-with-linkage
|
|
linkage cenv
|
|
(append-instruction-sequences
|
|
stack-pushing-code
|
|
rest-operand-code
|
|
(make-instruction-sequence
|
|
`(,(make-AssignPrimOpStatement
|
|
(adjust-target-depth target (length rest-operands))
|
|
(make-CallKernelPrimitiveProcedure
|
|
kernel-op
|
|
(append constant-operand-poss rest-operand-poss)
|
|
expected-operand-types
|
|
typechecks?))))
|
|
stack-popping-code)))]))
|
|
|
|
|
|
|
|
|
|
(: ensure-simple-expression (Expression -> (U Constant ToplevelRef LocalRef)))
|
|
(define (ensure-simple-expression e)
|
|
(if (or (Constant? e)
|
|
(LocalRef? e)
|
|
(ToplevelRef? e))
|
|
e
|
|
(error 'ensure-simple-expression)))
|
|
|
|
|
|
(: simple-operands->opargs ((Listof Expression) -> (Listof OpArg)))
|
|
;; Produces a list of OpArgs if all the operands are particularly simple, and false therwise.
|
|
(define (simple-operands->opargs rands)
|
|
(map (lambda: ([e : Expression])
|
|
(cond
|
|
[(Constant? e)
|
|
(make-Const (Constant-v e))]
|
|
[(LocalRef? e)
|
|
(make-EnvLexicalReference (LocalRef-depth e)
|
|
(LocalRef-unbox? e))]
|
|
[(ToplevelRef? e)
|
|
(make-EnvPrefixReference (ToplevelRef-depth e)
|
|
(ToplevelRef-pos e))]
|
|
[else
|
|
(error 'all-operands-are-constant "Impossible")]))
|
|
rands))
|
|
|
|
|
|
|
|
(: redundant-check? (OperandDomain CompileTimeEnvironmentEntry -> Boolean))
|
|
;; Produces true if we know the knowledge implies the domain-type.
|
|
(define (redundant-check? domain-type knowledge)
|
|
(cond
|
|
[(eq? domain-type 'any)
|
|
#t]
|
|
[else
|
|
(cond [(Const? knowledge)
|
|
(case domain-type
|
|
[(number)
|
|
(number? (Const-const knowledge))]
|
|
[(string)
|
|
(string? (Const-const knowledge))]
|
|
[(box)
|
|
(box? (Const-const knowledge))]
|
|
[(list)
|
|
(list? (Const-const knowledge))]
|
|
[(pair)
|
|
(pair? (Const-const knowledge))])]
|
|
[else
|
|
#f])]))
|
|
|
|
|
|
(: split-operands-by-constants
|
|
((Listof Expression) ->
|
|
(values (Listof (U Constant LocalRef ToplevelRef))
|
|
(Listof Expression))))
|
|
;; Splits off the list of operations into two: a prefix of constant
|
|
;; or simple expressions, and the remainder.
|
|
;; TODO: if we can statically determine what arguments are immutable, regardless of
|
|
;; side effects, we can do a much better job here...
|
|
(define (split-operands-by-constants rands)
|
|
(let: loop : (values (Listof (U Constant LocalRef ToplevelRef)) (Listof Expression))
|
|
([rands : (Listof Expression) rands]
|
|
[constants : (Listof (U Constant LocalRef ToplevelRef))
|
|
empty])
|
|
(cond [(empty? rands)
|
|
(values (reverse constants) empty)]
|
|
[else (let ([e (first rands)])
|
|
(if (or (Constant? e)
|
|
|
|
;; These two are commented out because it's not sound otherwise.
|
|
#;(and (LocalRef? e) (not (LocalRef-unbox? e)))
|
|
#;(and (ToplevelRef? e)
|
|
(let ([prefix (ensure-prefix
|
|
(list-ref cenv (ToplevelRef-depth e)))])
|
|
(ModuleVariable?
|
|
(list-ref prefix (ToplevelRef-pos e))))))
|
|
(loop (rest rands) (cons e constants))
|
|
(values (reverse constants) rands)))])))
|
|
|
|
|
|
(define-predicate natural? Natural)
|
|
|
|
(: arity-matches? (Arity Natural -> Boolean))
|
|
(define (arity-matches? an-arity n)
|
|
(cond
|
|
[(natural? an-arity)
|
|
(= an-arity n)]
|
|
[(ArityAtLeast? an-arity)
|
|
(>= n (ArityAtLeast-value an-arity))]
|
|
[else
|
|
(error 'fixme)]))
|
|
|
|
|
|
(: compile-statically-known-lam-application
|
|
(StaticallyKnownLam App CompileTimeEnvironment Target Linkage
|
|
-> InstructionSequence))
|
|
(define (compile-statically-known-lam-application static-knowledge exp cenv target linkage)
|
|
;; FIXME: this needs to be turned into a runtime error, not a compile-time error, to preserve
|
|
;; Racket semantics.
|
|
(unless (arity-matches? (StaticallyKnownLam-arity static-knowledge)
|
|
(length (App-operands exp)))
|
|
(error 'arity-mismatch "~s expected ~s arguments, but received ~s"
|
|
(StaticallyKnownLam-name static-knowledge)
|
|
(StaticallyKnownLam-arity static-knowledge)
|
|
(length (App-operands exp))))
|
|
|
|
(let* ([extended-cenv
|
|
(extend-compile-time-environment/scratch-space
|
|
cenv
|
|
(length (App-operands exp)))]
|
|
[proc-code (compile (App-operator exp)
|
|
extended-cenv
|
|
(if (empty? (App-operands exp))
|
|
'proc
|
|
(make-EnvLexicalReference
|
|
(ensure-natural (sub1 (length (App-operands exp))))
|
|
#f))
|
|
next-linkage)]
|
|
[operand-codes (map (lambda: ([operand : Expression]
|
|
[target : Target])
|
|
(compile operand extended-cenv target next-linkage))
|
|
(App-operands exp)
|
|
(build-list (length (App-operands exp))
|
|
(lambda: ([i : Natural])
|
|
(if (< i (sub1 (length (App-operands exp))))
|
|
(make-EnvLexicalReference i #f)
|
|
'val))))])
|
|
(append-instruction-sequences
|
|
(if (not (empty? (App-operands exp)))
|
|
(make-instruction-sequence `(,(make-PushEnvironment (length (App-operands exp)) #f)))
|
|
empty-instruction-sequence)
|
|
proc-code
|
|
(juggle-operands operand-codes)
|
|
(compile-procedure-call/statically-known-lam static-knowledge
|
|
cenv
|
|
extended-cenv
|
|
(length (App-operands exp))
|
|
target
|
|
linkage))))
|
|
|
|
|
|
(: juggle-operands ((Listof InstructionSequence) -> InstructionSequence))
|
|
;; Installs the operators. At the end of this,
|
|
;; the procedure lives in 'proc, and the operands on the environment stack.
|
|
(define (juggle-operands operand-codes)
|
|
(let: loop : InstructionSequence ([ops : (Listof InstructionSequence) operand-codes])
|
|
(cond
|
|
;; If there are no operands, no need to juggle.
|
|
[(null? ops)
|
|
(make-instruction-sequence empty)]
|
|
[(null? (rest ops))
|
|
(let: ([n : Natural (ensure-natural (sub1 (length operand-codes)))])
|
|
;; The last operand needs to be handled specially: it currently lives in
|
|
;; val. We move the procedure at env[n] over to proc, and move the
|
|
;; last operand at 'val into env[n].
|
|
(append-instruction-sequences
|
|
(car ops)
|
|
(make-instruction-sequence
|
|
`(,(make-AssignImmediateStatement 'proc
|
|
(make-EnvLexicalReference n #f))
|
|
,(make-AssignImmediateStatement (make-EnvLexicalReference n #f)
|
|
(make-Reg 'val))))))]
|
|
[else
|
|
;; Otherwise, add instructions to juggle the operator and operands in the stack.
|
|
(append-instruction-sequences (car ops)
|
|
(loop (rest ops)))])))
|
|
|
|
|
|
|
|
(: compile-general-procedure-call (CompileTimeEnvironment OpArg Target Linkage
|
|
->
|
|
InstructionSequence))
|
|
;; Assumes the following:
|
|
;; 1. the procedure value has been loaded into the proc register.
|
|
;; 2. the n values passed in has been written into argcount register.
|
|
;; 3. environment stack contains the n operand values.
|
|
;;
|
|
;; n is the number of arguments passed in.
|
|
;; cenv is the compile-time enviroment before arguments have been shifted in.
|
|
;; extended-cenv is the compile-time environment after arguments have been shifted in.
|
|
(define (compile-general-procedure-call cenv extended-cenv-length target linkage)
|
|
(let: ([primitive-branch : LabelLinkage (make-LabelLinkage (make-label 'primitiveBranch))]
|
|
[compiled-branch : LabelLinkage (make-LabelLinkage (make-label 'compiledBranch))]
|
|
[after-call : LabelLinkage (make-LabelLinkage (make-label 'afterCall))])
|
|
(let: ([compiled-linkage : Linkage (if (ReturnLinkage? linkage)
|
|
linkage
|
|
after-call)])
|
|
(append-instruction-sequences
|
|
(make-instruction-sequence
|
|
`(,(make-TestAndBranchStatement 'primitive-procedure?
|
|
'proc
|
|
(LabelLinkage-label primitive-branch))))
|
|
|
|
|
|
;; Compiled branch
|
|
(LabelLinkage-label compiled-branch)
|
|
(make-instruction-sequence
|
|
`(,(make-PerformStatement (make-CheckClosureArity! (make-Reg 'argcount)))))
|
|
(compile-compiled-procedure-application extended-cenv-length
|
|
'val
|
|
target
|
|
compiled-linkage)
|
|
|
|
|
|
;; Primitive branch
|
|
(LabelLinkage-label primitive-branch)
|
|
(end-with-linkage
|
|
linkage
|
|
cenv
|
|
(append-instruction-sequences
|
|
(make-instruction-sequence
|
|
`(,(make-PerformStatement (make-CheckPrimitiveArity! (make-Reg 'argcount)))
|
|
,(make-AssignPrimOpStatement 'val
|
|
(make-ApplyPrimitiveProcedure))
|
|
,(make-PopEnvironment (make-Reg 'argcount)
|
|
(make-Const 0))
|
|
,(make-AssignImmediateStatement target (make-Reg 'val))))
|
|
(LabelLinkage-label after-call)))))))
|
|
|
|
|
|
(: compile-procedure-call/statically-known-lam
|
|
(StaticallyKnownLam CompileTimeEnvironment CompileTimeEnvironment Natural Target Linkage -> InstructionSequence))
|
|
(define (compile-procedure-call/statically-known-lam static-knowledge cenv extended-cenv n target linkage)
|
|
(let*: ([after-call : LabelLinkage (make-LabelLinkage (make-label 'afterCall))]
|
|
[compiled-linkage : Linkage (if (ReturnLinkage? linkage)
|
|
linkage
|
|
after-call)])
|
|
(append-instruction-sequences
|
|
(make-instruction-sequence `(,(make-AssignImmediateStatement
|
|
'argcount
|
|
(make-Const n))))
|
|
(compile-compiled-procedure-application (cond
|
|
[(= (length extended-cenv)
|
|
n)
|
|
(make-Reg 'argcount)]
|
|
[else
|
|
(make-Const (length extended-cenv))])
|
|
(make-Label (StaticallyKnownLam-entry-point static-knowledge))
|
|
target
|
|
compiled-linkage)
|
|
(end-with-linkage
|
|
linkage
|
|
cenv
|
|
(LabelLinkage-label after-call)))))
|
|
|
|
|
|
|
|
(: compile-compiled-procedure-application (OpArg (U Label 'val) Target Linkage -> InstructionSequence))
|
|
;; Three fundamental cases for general compiled-procedure application.
|
|
;; 1. Tail calls.
|
|
;; 2. Non-tail calls (next/label linkage) that write to val
|
|
;; 3. Calls in argument position (next/label linkage) that write to the stack.
|
|
(define (compile-compiled-procedure-application cenv-length-with-args entry-point target linkage)
|
|
(let ([maybe-install-jump-address
|
|
;; Optimization: if the entry-point is supposed to be val, then it needs to hold
|
|
;; the procedure entry here. Otherwise, it doesn't.
|
|
(cond [(Label? entry-point)
|
|
empty-instruction-sequence]
|
|
[(eq? entry-point 'val)
|
|
(make-instruction-sequence
|
|
`(,(make-AssignPrimOpStatement 'val (make-GetCompiledProcedureEntry))))])]
|
|
|
|
[entry-point-target
|
|
(cond
|
|
[(Label? entry-point)
|
|
entry-point]
|
|
[(eq? entry-point 'val)
|
|
(make-Reg 'val)])])
|
|
|
|
(cond [(ReturnLinkage? linkage)
|
|
(cond
|
|
[(eq? target 'val)
|
|
;; This case happens when we're in tail position.
|
|
;; We clean up the stack right before the jump, and do not add
|
|
;; to the control stack.
|
|
(append-instruction-sequences
|
|
maybe-install-jump-address
|
|
(cond [(equal? cenv-length-with-args (make-Reg 'argcount))
|
|
empty-instruction-sequence]
|
|
[else
|
|
(make-instruction-sequence `(,(make-PopEnvironment (make-SubtractArg cenv-length-with-args
|
|
(make-Reg 'argcount))
|
|
(make-Reg 'argcount))))])
|
|
(make-instruction-sequence
|
|
`(;; Assign the proc value of the existing call frame
|
|
,(make-PerformStatement
|
|
(make-SetFrameCallee! (make-Reg 'proc)))
|
|
|
|
,(make-GotoStatement entry-point-target))))]
|
|
|
|
[else
|
|
;; This case should be impossible: return linkage should only
|
|
;; occur when we're in tail position, and we should be in tail position
|
|
;; only when the target is the val register.
|
|
(error 'compile "return linkage, target not val: ~s" target)])]
|
|
|
|
|
|
[(PromptLinkage? linkage)
|
|
(cond [(eq? target 'val)
|
|
;; This case happens for a function call that isn't in
|
|
;; tail position.
|
|
(let* ([proc-return-multiple (make-label 'procReturnMultiple)]
|
|
[proc-return (make-LinkedLabel (make-label 'procReturn)
|
|
proc-return-multiple)])
|
|
(append-instruction-sequences
|
|
(make-instruction-sequence
|
|
`(,(make-PushControlFrame proc-return)))
|
|
maybe-install-jump-address
|
|
(make-instruction-sequence
|
|
`(,(make-GotoStatement entry-point-target)))
|
|
proc-return-multiple
|
|
(make-instruction-sequence `(,(make-PopEnvironment (make-Reg 'argcount)
|
|
(make-Const 0))))
|
|
proc-return))]
|
|
|
|
[else
|
|
;; This case happens for evaluating arguments, since the
|
|
;; arguments are being installed into the scratch space.
|
|
(let* ([proc-return-multiple (make-label 'procReturnMultiple)]
|
|
[proc-return (make-LinkedLabel (make-label 'procReturn)
|
|
proc-return-multiple)])
|
|
(append-instruction-sequences
|
|
(make-instruction-sequence
|
|
`(,(make-PushControlFrame proc-return)))
|
|
maybe-install-jump-address
|
|
(make-instruction-sequence
|
|
`(,(make-GotoStatement entry-point-target)))
|
|
proc-return-multiple
|
|
;; FIXME: this needs to error out instead!
|
|
(make-instruction-sequence `(,(make-PopEnvironment (make-Reg 'argcount)
|
|
(make-Const 0))))
|
|
proc-return
|
|
(make-instruction-sequence
|
|
`(,(make-AssignImmediateStatement target (make-Reg 'val))))))])]
|
|
|
|
[(NextLinkage? linkage)
|
|
(cond [(eq? target 'val)
|
|
;; This case happens for a function call that isn't in
|
|
;; tail position.
|
|
(let* ([proc-return-multiple (make-label 'procReturnMultiple)]
|
|
[proc-return (make-LinkedLabel (make-label 'procReturn)
|
|
proc-return-multiple)])
|
|
(append-instruction-sequences
|
|
(make-instruction-sequence
|
|
`(,(make-PushControlFrame proc-return)))
|
|
maybe-install-jump-address
|
|
(make-instruction-sequence
|
|
`(,(make-GotoStatement entry-point-target)))
|
|
proc-return-multiple
|
|
(make-instruction-sequence `(,(make-PopEnvironment (make-Reg 'argcount)
|
|
(make-Const 0))))
|
|
proc-return))]
|
|
|
|
[else
|
|
;; This case happens for evaluating arguments, since the
|
|
;; arguments are being installed into the scratch space.
|
|
(let* ([proc-return-multiple (make-label 'procReturnMultiple)]
|
|
[proc-return (make-LinkedLabel (make-label 'procReturn)
|
|
proc-return-multiple)])
|
|
(append-instruction-sequences
|
|
(make-instruction-sequence
|
|
`(,(make-PushControlFrame proc-return)))
|
|
maybe-install-jump-address
|
|
(make-instruction-sequence
|
|
`(,(make-GotoStatement entry-point-target)))
|
|
proc-return-multiple
|
|
;; FIMXE: this needs to raise a runtime error!
|
|
(make-instruction-sequence `(,(make-PopEnvironment (make-Reg 'argcount)
|
|
(make-Const 0))))
|
|
proc-return
|
|
(make-instruction-sequence
|
|
`(,(make-AssignImmediateStatement target (make-Reg 'val))))))])]
|
|
|
|
[(LabelLinkage? linkage)
|
|
(cond [(eq? target 'val)
|
|
;; This case happens for a function call that isn't in
|
|
;; tail position.
|
|
(let* ([proc-return-multiple (make-label 'procReturnMultiple)]
|
|
[proc-return (make-LinkedLabel (make-label 'procReturn)
|
|
proc-return-multiple)])
|
|
(append-instruction-sequences
|
|
(make-instruction-sequence
|
|
`(,(make-PushControlFrame proc-return)))
|
|
maybe-install-jump-address
|
|
(make-instruction-sequence
|
|
`(,(make-GotoStatement entry-point-target)))
|
|
proc-return-multiple
|
|
(make-instruction-sequence `(,(make-PopEnvironment (make-Reg 'argcount)
|
|
(make-Const 0))))
|
|
proc-return
|
|
(make-instruction-sequence
|
|
`(,(make-GotoStatement (make-Label (LabelLinkage-label linkage)))))))]
|
|
|
|
[else
|
|
;; This case happens for evaluating arguments, since the
|
|
;; arguments are being installed into the scratch space.
|
|
(let* ([proc-return-multiple (make-label 'procReturnMultiple)]
|
|
[proc-return (make-LinkedLabel (make-label 'procReturn)
|
|
proc-return-multiple)])
|
|
(append-instruction-sequences
|
|
(make-instruction-sequence
|
|
`(,(make-PushControlFrame proc-return)))
|
|
maybe-install-jump-address
|
|
(make-instruction-sequence
|
|
`(,(make-GotoStatement entry-point-target)))
|
|
proc-return-multiple
|
|
;; FIXME: this needs to raise a runtime error here!
|
|
(make-instruction-sequence `(,(make-PopEnvironment (make-Reg 'argcount)
|
|
(make-Const 0))))
|
|
proc-return
|
|
(make-instruction-sequence
|
|
`(,(make-AssignImmediateStatement target (make-Reg 'val))
|
|
,(make-GotoStatement (make-Label (LabelLinkage-label linkage)))))))])])))
|
|
|
|
|
|
|
|
(: extract-static-knowledge (Expression CompileTimeEnvironment ->
|
|
CompileTimeEnvironmentEntry))
|
|
;; Statically determines what we know about exp, given the compile time environment.
|
|
(define (extract-static-knowledge exp cenv)
|
|
(cond
|
|
[(Lam? exp)
|
|
(make-StaticallyKnownLam (Lam-name exp)
|
|
(Lam-entry-label exp)
|
|
(if (Lam-rest? exp)
|
|
(make-ArityAtLeast (Lam-num-parameters exp))
|
|
(Lam-num-parameters exp)))]
|
|
[(and (LocalRef? exp)
|
|
(not (LocalRef-unbox? exp)))
|
|
(let ([entry (list-ref cenv (LocalRef-depth exp))])
|
|
entry)]
|
|
|
|
[(ToplevelRef? exp)
|
|
(let: ([name : (U Symbol False ModuleVariable)
|
|
(list-ref (Prefix-names (ensure-prefix (list-ref cenv (ToplevelRef-depth exp))))
|
|
(ToplevelRef-pos exp))])
|
|
(cond
|
|
[(ModuleVariable? name)
|
|
name]
|
|
[else
|
|
'?]))]
|
|
|
|
[(Constant? exp)
|
|
(make-Const (Constant-v exp))]
|
|
|
|
[else
|
|
'?]))
|
|
|
|
|
|
(: compile-let1 (Let1 CompileTimeEnvironment Target Linkage -> InstructionSequence))
|
|
(define (compile-let1 exp cenv target linkage)
|
|
(let*: ([rhs-code : InstructionSequence
|
|
(compile (Let1-rhs exp)
|
|
(cons '? cenv)
|
|
(make-EnvLexicalReference 0 #f)
|
|
next-linkage)]
|
|
[after-let1 : Symbol (make-label 'afterLetOne)]
|
|
[after-body-code : LabelLinkage (make-LabelLinkage (make-label 'afterLetBody))]
|
|
[extended-cenv : CompileTimeEnvironment (cons (extract-static-knowledge (Let1-rhs exp)
|
|
(cons '? cenv))
|
|
cenv)]
|
|
[let-linkage : Linkage
|
|
(cond
|
|
[(NextLinkage? linkage)
|
|
linkage]
|
|
[(ReturnLinkage? linkage)
|
|
linkage]
|
|
[(PromptLinkage? linkage)
|
|
after-body-code]
|
|
[(LabelLinkage? linkage)
|
|
after-body-code])]
|
|
[body-target : Target (adjust-target-depth target 1)]
|
|
[body-code : InstructionSequence
|
|
(compile (Let1-body exp) extended-cenv body-target let-linkage)])
|
|
(end-with-linkage
|
|
linkage
|
|
extended-cenv
|
|
(append-instruction-sequences
|
|
(make-instruction-sequence `(,(make-PushEnvironment 1 #f)))
|
|
rhs-code
|
|
body-code
|
|
(LabelLinkage-label after-body-code)
|
|
(make-instruction-sequence `(,(make-PopEnvironment (make-Const 1) (make-Const 0))))
|
|
after-let1))))
|
|
|
|
|
|
|
|
(: compile-let-void (LetVoid CompileTimeEnvironment Target Linkage -> InstructionSequence))
|
|
(define (compile-let-void exp cenv target linkage)
|
|
(let*: ([n : Natural (LetVoid-count exp)]
|
|
[after-let : Symbol (make-label 'afterLet)]
|
|
[after-body-code : LabelLinkage (make-LabelLinkage (make-label 'afterLetBody))]
|
|
[extended-cenv : CompileTimeEnvironment (append (build-list (LetVoid-count exp)
|
|
(lambda: ([i : Natural]) '?))
|
|
cenv)]
|
|
[let-linkage : Linkage
|
|
(cond
|
|
[(NextLinkage? linkage)
|
|
linkage]
|
|
[(ReturnLinkage? linkage)
|
|
linkage]
|
|
[(PromptLinkage? linkage)
|
|
after-body-code]
|
|
[(LabelLinkage? linkage)
|
|
after-body-code])]
|
|
[body-target : Target (adjust-target-depth target n)]
|
|
[body-code : InstructionSequence
|
|
(compile (LetVoid-body exp) extended-cenv body-target let-linkage)])
|
|
(end-with-linkage
|
|
linkage
|
|
extended-cenv
|
|
(append-instruction-sequences
|
|
(if (> n 0)
|
|
(make-instruction-sequence `(,(make-PushEnvironment n (LetVoid-boxes? exp))))
|
|
empty-instruction-sequence)
|
|
body-code
|
|
(LabelLinkage-label after-body-code)
|
|
(if (> n 0)
|
|
(make-instruction-sequence `(,(make-PopEnvironment (make-Const n) (make-Const 0))))
|
|
empty-instruction-sequence)
|
|
after-let))))
|
|
|
|
|
|
|
|
(: compile-let-rec (LetRec CompileTimeEnvironment Target Linkage -> InstructionSequence))
|
|
(define (compile-let-rec exp cenv target linkage)
|
|
(let*: ([extended-cenv : CompileTimeEnvironment
|
|
(append (map (lambda: ([p : Lam])
|
|
(extract-static-knowledge
|
|
p
|
|
(append (build-list (length (LetRec-procs exp))
|
|
(lambda: ([i : Natural])
|
|
'?))
|
|
cenv)))
|
|
(reverse (LetRec-procs exp)))
|
|
cenv)]
|
|
[n : Natural (length (LetRec-procs exp))]
|
|
[after-body-code : LabelLinkage (make-LabelLinkage (make-label 'afterBodyCode))]
|
|
[letrec-linkage : Linkage (cond
|
|
[(NextLinkage? linkage)
|
|
linkage]
|
|
[(ReturnLinkage? linkage)
|
|
linkage]
|
|
[(PromptLinkage? linkage)
|
|
after-body-code]
|
|
[(LabelLinkage? linkage)
|
|
after-body-code])])
|
|
(end-with-linkage
|
|
linkage
|
|
extended-cenv
|
|
(append-instruction-sequences
|
|
(if (> n 0)
|
|
(make-instruction-sequence `(,(make-PushEnvironment n #f)))
|
|
empty-instruction-sequence)
|
|
|
|
;; Install each of the closure shells
|
|
(apply append-instruction-sequences
|
|
(map (lambda: ([lam : Lam]
|
|
[i : Natural])
|
|
(compile-lambda-shell lam
|
|
extended-cenv
|
|
(make-EnvLexicalReference i #f)
|
|
next-linkage))
|
|
(LetRec-procs exp)
|
|
(build-list n (lambda: ([i : Natural]) (ensure-natural (- n 1 i))))))
|
|
|
|
;; Fix the closure maps of each
|
|
(apply append-instruction-sequences
|
|
(map (lambda: ([lam : Lam]
|
|
[i : Natural])
|
|
(make-instruction-sequence
|
|
`(,(make-PerformStatement
|
|
(make-FixClosureShellMap! i (Lam-closure-map lam))))))
|
|
|
|
(LetRec-procs exp)
|
|
(build-list n (lambda: ([i : Natural]) (ensure-natural (- n 1 i))))))
|
|
|
|
;; Compile the body
|
|
(compile (LetRec-body exp) extended-cenv (adjust-target-depth target n) letrec-linkage)
|
|
(LabelLinkage-label after-body-code)
|
|
(if (> n 0)
|
|
(make-instruction-sequence `(,(make-PopEnvironment (make-Const n) (make-Const 0))))
|
|
empty-instruction-sequence)))))
|
|
|
|
|
|
|
|
(: compile-install-value (InstallValue CompileTimeEnvironment Target Linkage -> InstructionSequence))
|
|
(define (compile-install-value exp cenv target linkage)
|
|
(compile (InstallValue-body exp)
|
|
cenv
|
|
(make-EnvLexicalReference (InstallValue-depth exp) (InstallValue-box? exp))
|
|
linkage))
|
|
|
|
|
|
|
|
(: compile-box-environment-value (BoxEnv CompileTimeEnvironment Target Linkage -> InstructionSequence))
|
|
(define (compile-box-environment-value exp cenv target linkage)
|
|
(append-instruction-sequences
|
|
(make-instruction-sequence
|
|
`(,(make-AssignPrimOpStatement (make-EnvLexicalReference (BoxEnv-depth exp) #f)
|
|
(make-MakeBoxedEnvironmentValue (BoxEnv-depth exp)))))
|
|
(compile (BoxEnv-body exp) cenv target linkage)))
|
|
|
|
|
|
|
|
(: compile-with-cont-mark (WithContMark CompileTimeEnvironment Target Linkage -> InstructionSequence))
|
|
(define (compile-with-cont-mark exp cenv target linkage)
|
|
(append-instruction-sequences
|
|
(compile (WithContMark-key exp) cenv 'val next-linkage)
|
|
(make-instruction-sequence `(,(make-AssignImmediateStatement
|
|
(make-ControlFrameTemporary 'pendingContinuationMarkKey)
|
|
(make-Reg 'val))))
|
|
(compile (WithContMark-value exp) cenv 'val next-linkage)
|
|
(make-instruction-sequence `(,(make-PerformStatement
|
|
(make-InstallContinuationMarkEntry!))))
|
|
(compile (WithContMark-body exp) cenv target linkage)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(: append-instruction-sequences (InstructionSequence * -> InstructionSequence))
|
|
(define (append-instruction-sequences . seqs)
|
|
(append-seq-list seqs))
|
|
|
|
(: append-2-sequences (InstructionSequence InstructionSequence -> InstructionSequence))
|
|
(define (append-2-sequences seq1 seq2)
|
|
(make-instruction-sequence
|
|
(append (statements seq1) (statements seq2))))
|
|
|
|
(: append-seq-list ((Listof InstructionSequence) -> InstructionSequence))
|
|
(define (append-seq-list seqs)
|
|
(if (null? seqs)
|
|
empty-instruction-sequence
|
|
(append-2-sequences (car seqs)
|
|
(append-seq-list (cdr seqs)))))
|
|
|
|
|
|
(: ensure-natural (Integer -> Natural))
|
|
(define (ensure-natural n)
|
|
(if (>= n 0)
|
|
n
|
|
(error 'ensure-natural "Not a natural: ~s\n" n)))
|
|
|
|
(: ensure-prefix (CompileTimeEnvironmentEntry -> Prefix))
|
|
(define (ensure-prefix x)
|
|
(if (Prefix? x)
|
|
x
|
|
(error 'ensure-prefix "Not a prefix: ~s" x)))
|
|
|
|
(: ensure-lam (Any -> Lam))
|
|
(define (ensure-lam x)
|
|
(if (Lam? x)
|
|
x
|
|
(error 'ensure-lam "Not a Lam: ~s" x)))
|
|
|
|
|
|
|
|
(: adjust-target-depth (Target Natural -> Target))
|
|
(define (adjust-target-depth target n)
|
|
(cond
|
|
[(eq? target 'val)
|
|
target]
|
|
[(eq? target 'proc)
|
|
target]
|
|
[(eq? target 'argcount)
|
|
target]
|
|
[(EnvLexicalReference? target)
|
|
(make-EnvLexicalReference (+ n (EnvLexicalReference-depth target))
|
|
(EnvLexicalReference-unbox? target))]
|
|
[(EnvPrefixReference? target)
|
|
(make-EnvPrefixReference (+ n (EnvPrefixReference-depth target))
|
|
(EnvPrefixReference-pos target))]
|
|
[(PrimitivesReference? target)
|
|
target]
|
|
[(ControlFrameTemporary? target)
|
|
target]))
|
|
|
|
|
|
|
|
(: adjust-expression-depth (Expression Natural Natural -> Expression))
|
|
;; Redirects references to the stack to route around a region of size n.
|
|
;; The region begins at offset skip into the environment.
|
|
(define (adjust-expression-depth exp n skip)
|
|
(cond
|
|
[(Top? exp)
|
|
(make-Top (Top-prefix exp)
|
|
(adjust-expression-depth (Top-code exp) n (add1 skip)))]
|
|
|
|
[(Constant? exp)
|
|
exp]
|
|
|
|
[(ToplevelRef? exp)
|
|
(if (< (ToplevelRef-depth exp) skip)
|
|
exp
|
|
(make-ToplevelRef (ensure-natural (- (ToplevelRef-depth exp) n))
|
|
(ToplevelRef-pos exp)))]
|
|
|
|
[(LocalRef? exp)
|
|
(if (< (LocalRef-depth exp) skip)
|
|
exp
|
|
(make-LocalRef (ensure-natural (- (LocalRef-depth exp) n))
|
|
(LocalRef-unbox? exp)))]
|
|
|
|
[(ToplevelSet? exp)
|
|
(if (< (ToplevelSet-depth exp) skip)
|
|
(make-ToplevelSet (ToplevelSet-depth exp)
|
|
(ToplevelSet-pos exp)
|
|
(ToplevelSet-name exp)
|
|
(adjust-expression-depth (ToplevelSet-value exp) n skip))
|
|
(make-ToplevelSet (ensure-natural (- (ToplevelSet-depth exp) n))
|
|
(ToplevelSet-pos exp)
|
|
(ToplevelSet-name exp)
|
|
(adjust-expression-depth (ToplevelSet-value exp) n skip)))]
|
|
|
|
[(Branch? exp)
|
|
(make-Branch (adjust-expression-depth (Branch-predicate exp) n skip)
|
|
(adjust-expression-depth (Branch-consequent exp) n skip)
|
|
(adjust-expression-depth (Branch-alternative exp) n skip))]
|
|
|
|
[(Lam? exp)
|
|
(make-Lam (Lam-name exp)
|
|
(Lam-num-parameters exp)
|
|
(Lam-rest? exp)
|
|
(Lam-body exp)
|
|
(map (lambda: ([d : Natural])
|
|
(if (< d skip)
|
|
d
|
|
(ensure-natural (- d n))))
|
|
(Lam-closure-map exp))
|
|
(Lam-entry-label exp))]
|
|
|
|
[(Seq? exp)
|
|
(make-Seq (map (lambda: ([action : Expression])
|
|
(adjust-expression-depth action n skip))
|
|
(Seq-actions exp)))]
|
|
|
|
[(Splice? exp)
|
|
(make-Splice (map (lambda: ([action : Expression])
|
|
(adjust-expression-depth action n skip))
|
|
(Splice-actions exp)))]
|
|
|
|
[(App? exp)
|
|
(make-App (adjust-expression-depth (App-operator exp) n
|
|
(+ skip (length (App-operands exp))))
|
|
(map (lambda: ([operand : Expression])
|
|
(adjust-expression-depth
|
|
operand n (+ skip (length (App-operands exp)))))
|
|
(App-operands exp)))]
|
|
|
|
[(Let1? exp)
|
|
(make-Let1 (adjust-expression-depth (Let1-rhs exp) n (add1 skip))
|
|
(adjust-expression-depth (Let1-body exp) n (add1 skip)))]
|
|
|
|
[(LetVoid? exp)
|
|
(make-LetVoid (LetVoid-count exp)
|
|
(adjust-expression-depth (LetVoid-body exp)
|
|
n
|
|
(+ skip (LetVoid-count exp)))
|
|
(LetVoid-boxes? exp))]
|
|
|
|
[(LetRec? exp)
|
|
(make-LetRec (let: loop : (Listof Lam) ([procs : (Listof Lam) (LetRec-procs exp)])
|
|
(cond
|
|
[(empty? procs)
|
|
'()]
|
|
[else
|
|
(cons (ensure-lam (adjust-expression-depth
|
|
(first procs)
|
|
n
|
|
(+ skip (length (LetRec-procs exp)))))
|
|
(loop (rest procs)))]))
|
|
(adjust-expression-depth (LetRec-body exp) n
|
|
(+ skip (length (LetRec-procs exp)))))]
|
|
|
|
[(InstallValue? exp)
|
|
(if (< (InstallValue-depth exp) skip)
|
|
(make-InstallValue (InstallValue-depth exp)
|
|
(adjust-expression-depth (InstallValue-body exp)
|
|
n
|
|
skip)
|
|
(InstallValue-box? exp))
|
|
(make-InstallValue (ensure-natural (- (InstallValue-depth exp) n))
|
|
(adjust-expression-depth (InstallValue-body exp)
|
|
n
|
|
skip)
|
|
(InstallValue-box? exp)))]
|
|
|
|
[(BoxEnv? exp)
|
|
(if (< (BoxEnv-depth exp) skip)
|
|
(make-BoxEnv (BoxEnv-depth exp)
|
|
(adjust-expression-depth (BoxEnv-body exp) n skip))
|
|
(make-BoxEnv (ensure-natural (- (BoxEnv-depth exp) n))
|
|
(adjust-expression-depth (BoxEnv-body exp) n skip)))]
|
|
|
|
[(WithContMark? exp)
|
|
(make-WithContMark (adjust-expression-depth (WithContMark-key exp) n skip)
|
|
(adjust-expression-depth (WithContMark-value exp) n skip)
|
|
(adjust-expression-depth (WithContMark-body exp) n skip))]))
|
|
|
|
|